JP3338920B2 - Seismic isolation structure - Google Patents

Seismic isolation structure

Info

Publication number
JP3338920B2
JP3338920B2 JP13236895A JP13236895A JP3338920B2 JP 3338920 B2 JP3338920 B2 JP 3338920B2 JP 13236895 A JP13236895 A JP 13236895A JP 13236895 A JP13236895 A JP 13236895A JP 3338920 B2 JP3338920 B2 JP 3338920B2
Authority
JP
Japan
Prior art keywords
rigidity
seismic isolation
isolation device
roof
laminated rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13236895A
Other languages
Japanese (ja)
Other versions
JPH08326351A (en
Inventor
雄一 高瀬
信之 前田
尚範 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP13236895A priority Critical patent/JP3338920B2/en
Publication of JPH08326351A publication Critical patent/JPH08326351A/en
Application granted granted Critical
Publication of JP3338920B2 publication Critical patent/JP3338920B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Load-Bearing And Curtain Walls (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、柱等の下部構造と屋根
等の上部構造との間に積層ゴム等の免震装置を介装して
なる免震構造物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a seismic isolation structure in which a seismic isolation device such as laminated rubber is interposed between a lower structure such as a pillar and an upper structure such as a roof.

【0002】[0002]

【従来の技術】たとえばアリーナやスタジアム等の無柱
大空間を有するような大規模構造物の構造形式として
は、大スパンのドーム状の屋根をこの構造物の周囲に設
けた柱によって支持するような形式のものが最も一般的
である。そして、近年においてはこのような構造の場
合、下部構造としての柱と、それに支持される上部構造
としての屋根との間に、地震時における屋根の振動を吸
収するための積層ゴム等の免震装置を介装することが検
討されている
2. Description of the Related Art For example, as a structural type of a large-scale structure having a pillar-free large space such as an arena or a stadium, a large-span dome-shaped roof is supported by columns provided around the structure. The most common format is the most common. In recent years, in the case of such a structure, a seismic isolation such as a laminated rubber for absorbing the vibration of the roof during an earthquake is provided between the pillar as the lower structure and the roof as the upper structure supported by the lower structure. Intermediate devices are being considered

【0003】[0003]

【発明が解決しようとする課題】ところで、上記のよう
な大規模構造物においては、ドーム状の屋根の各部の剛
性や多数の柱のそれぞれの剛性が一律であるような単純
かつ明快な構造であれば、地震時における各部の挙動も
明快であるのでそのような構造が望まれるのであるが、
屋根の形状が単純な円形ではなく不整形であったり、あ
るいは屋根を支持している多数の柱に長短があったりし
て、屋根の各部の剛性や各柱の剛性が一律ではないこと
がむしろ一般的である。その場合、地震時にはこの構造
物全体が一律に挙動するのではなく各部が個別にかつ複
雑に挙動してしまうことになるが、そのような場合にお
いて積層ゴム等の免震装置を各部に一律に配置しても地
震時に構造物全体がさらに複雑に挙動してしまうことが
懸念され、有効な免震機能が得られないことも想定され
る。
By the way, the large-scale structure as described above has a simple and clear structure in which the rigidity of each part of the dome-shaped roof and the rigidity of each of a large number of columns are uniform. If there is, the behavior of each part during an earthquake is clear, so such a structure is desired,
The shape of the roof is not a simple circular shape but irregular, or the number of columns supporting the roof is long and short, so the rigidity of each part of the roof and the rigidity of each column are not uniform. General. In this case, during an earthquake, the whole structure does not behave uniformly, but each part behaves individually and in a complicated manner.In such a case, seismic isolation devices such as laminated rubber are uniformly applied to each part. Even if it is arranged, there is a concern that the entire structure will behave more complicatedly during an earthquake, and it is assumed that an effective seismic isolation function cannot be obtained.

【0004】[0004]

【課題を解決するための手段】上記事情に鑑み、本発明
は、柱等の下部構造と屋根等の上部構造との間に積層ゴ
ム等の免震装置を介装するに際して、この免震構造物の
各部に設置される免震装置の剛性を、その設置位置にお
ける下部構造の剛性および上部構造の剛性に対応して決
することとして、下部構造および上部構造の剛性が他
の位置よりも相対的に低剛性である場合にはそこに相対
的に高剛性の免震装置を設置し、下部構造および上部構
造の剛性が他の位置よりも相対的に高剛性である場合に
はそこに相対的に低剛性の免震装置を設置することによ
り、それら免震装置と下部構造および上部構造の総合的
な剛性がこの免震構造物の各部において均等になるよう
にしたことを特徴とする。この場合、免震装置としてそ
の剛性を任意に調節可能なものを用い、設置位置に対応
させてその剛性を最適に設定することが考えられる。
SUMMARY OF THE INVENTION In view of the above circumstances, the present invention provides a method for mounting a seismic isolation device such as laminated rubber between a lower structure such as a pillar and an upper structure such as a roof. The rigidity of the seismic isolation device installed on each part of the object is determined according to the rigidity of the lower structure and the rigidity of the upper structure at the installation position.
If the rigidity is relatively lower than the position of
Highly rigid seismic isolation devices are installed, and the lower and upper
When the rigidity of the structure is relatively higher than other positions
By installing relatively low-rigid seismic isolation devices there.
Further, the seismic isolation device and the overall rigidity of the lower structure and the upper structure are equalized in each part of the seismic isolation structure. In this case, it is conceivable to use a seismic isolation device whose rigidity can be adjusted arbitrarily and set the rigidity optimally according to the installation position.

【0005】[0005]

【作用】本発明では、たとえば下部構造としての柱に上
部構造としての屋根を架設する場合において、各柱の剛
性が一様でない場合には、高剛性の柱には相対的に低剛
性の免震装置を設置し、低剛性の柱には相対的に高剛性
の免震装置を設置する。また、屋根の剛性が各部で一様
でない場合には、高剛性の部位に設置する免震装置は相
対的に低剛性とし、低剛性の部位に設置する免震装置は
相対的に高剛性とする。このようにして、免震装置の剛
性をその設置位置における下部構造と上部構造の剛性に
対応させて調節して、それら免震装置と下部構造と上部
構造の総合的な剛性がこの構造物の各部で均等となるよ
うに設定することにより、結果的に構造物の各部の剛性
が一様になり、地震時には全体が一律にかつ単純にして
明快な挙動を示すものとなる。
According to the present invention, for example, when a roof as an upper structure is erected on a pillar as a lower structure, if the rigidity of each column is not uniform, a relatively low rigidity is applied to the high rigidity column. Seismic devices will be installed, and relatively rigid seismic isolation devices will be installed on low rigidity columns. Also, if the rigidity of the roof is not uniform in each part, the seismic isolation device installed in the high rigidity area should have relatively low rigidity, and the seismic isolation device installed in the low rigidity area should have relatively high rigidity. I do. In this way, the rigidity of the seismic isolation device is adjusted to correspond to the rigidity of the lower structure and the upper structure at the installation position, and the overall rigidity of the seismic isolation device, the lower structure, and the upper structure is adjusted for this structure. By setting the parts to be equal, the rigidity of each part of the structure becomes uniform as a result, and the whole becomes uniformly and simply and shows clear behavior during an earthquake.

【0006】[0006]

【実施例】以下、本発明の一実施例を図1〜図3を参照
して説明する。本実施例の免震構造物は平面形状が略楕
円形の大規模なアリーナであって、この構造物の周囲に
位置して楕円環状をなすように列設された多数の柱1
(下部構造)に、略楕円形状のドーム状の屋根2(上部
構造)を架設して構築されるものであり、柱1と屋根2
との間には積層ゴム3(免震装置)が介装された構成と
されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIGS. The seismic isolation structure of the present embodiment is a large-scale arena having a substantially elliptical planar shape, and a large number of pillars 1 arranged in an oval ring around the structure.
A pillar 1 and a roof 2 are constructed by erection of a substantially oval dome-shaped roof 2 (upper structure) on the (lower structure).
A laminated rubber 3 (seismic isolation device) is interposed between the two.

【0007】本実施例の免震構造物は平面形状が略楕円
形とされていることから、その構造的な特性には方向性
がある。すなわち、ドーム状の屋根はその自重によりつ
ぶれる方向に変形しようとするものであり、円形の屋根
であればその変形は全周にわたって均等に生じるが、本
実施例のように楕円形状の屋根2においては主に短径方
向に広がるように変形しようとするので、自ずと長径方
向に比して短径方向に大きな変形が生じることになる。
Since the seismic isolation structure of this embodiment has a substantially elliptical planar shape, its structural characteristics have directionality. That is, the dome-shaped roof tends to be deformed in the direction of collapse by its own weight, and if it is a circular roof, the deformation occurs evenly over the entire circumference. Is mainly deformed so as to expand in the minor axis direction, so that a large deformation naturally occurs in the minor axis direction as compared with the major axis direction.

【0008】このため、従来一般のように何等格別な対
策を施すことなく単に屋根2を各柱1によって同一条件
で支持する場合には、そのような屋根2を支持している
柱1が屋根2から受ける剪断応力も均等にならずに差が
生じてしまい、結果的に長径方向に沿って設けられてい
る柱1aの方が短径方向に沿って設けられている柱1b
よりも大きく変形してしまうことになる。換言すれば、
長径方向に沿う柱1aの剛性が、短径方向に沿う柱1b
の剛性に比して相対的に低いものとなるというアンバラ
ンスが生じ、その結果、地震時に各柱1a,1bや屋根
2の各部に生じる応力が不均一になり、構造物全体が複
雑に挙動するものとなる。
For this reason, in the case where the roof 2 is simply supported by the columns 1 under the same conditions without taking any special measures as in the conventional general case, the columns 1 supporting the roof 2 are The shear stress received from the second 2 is not uniform, and a difference is generated. As a result, the column 1a provided along the major axis direction has the column 1b provided along the minor axis direction.
It will be more deformed than that. In other words,
The rigidity of the column 1a along the major axis direction is higher than the column 1b along the minor axis direction.
The imbalance that is relatively low compared to the rigidity of the structure occurs, and as a result, the stress generated in each column 1a, 1b and each part of the roof 2 during the earthquake becomes uneven, and the whole structure behaves in a complicated manner. Will do.

【0009】このため、本実施例では、柱1と屋根2と
の間に介装する積層ゴム3の剛性を調節することでその
ようなアンバランスを解消せしめ、この構造物各部が均
等に挙動するものとしている。すなわち、本実施例にお
いては、各柱1と屋根2との間に介装する積層ゴム3の
剛性を均等とするのではなく、長辺方向に沿う柱1aに
設置される積層ゴム3aの剛性を相対的に高く設定し、
短辺方向に沿う柱1bに設置される積層ゴム3bの剛性
を相対的に低く設定している。つまり、実質的に低剛性
の柱1aに対しては高剛性の積層ゴム3aを配し、逆に
高剛性の柱1bには低剛性の積層ゴム3bを配すること
で、それらの総合的な剛性を均等にならしめている。そ
の結果、本実施例の構造物は各部の剛性が均等になり、
地震時においても各部が一律に挙動するような単純にし
て明快な構造が実現する。
For this reason, in the present embodiment, such imbalance is eliminated by adjusting the rigidity of the laminated rubber 3 interposed between the column 1 and the roof 2, and each part of this structure behaves uniformly. Shall do. That is, in the present embodiment, the rigidity of the laminated rubber 3 interposed between each column 1 and the roof 2 is not made uniform, but the rigidity of the laminated rubber 3a installed on the column 1a along the long side direction is increased. Is set relatively high,
The rigidity of the laminated rubber 3b installed on the pillar 1b along the short side direction is set relatively low. In other words, the high rigidity laminated rubber 3a is arranged on the substantially low rigidity column 1a, and the low rigidity laminated rubber 3b is arranged on the high rigidity column 1b. The rigidity is equalized. As a result, in the structure of this embodiment, the rigidity of each part is equal,
Even in the event of an earthquake, a simple and clear structure is realized in which all parts behave uniformly.

【0010】ところで、積層ゴム3の剛性は使用してい
るゴムの弾性係数によって決定されるのみならず、図3
に示す直径Dおよび高さ寸法H(ゴムの積層段数)によ
り変化するものであって、直径Dを大きくするほど、あ
るいは高さ寸法Hを小さくするほど、また、同一仕様の
積層ゴム3を多数併設するほど、剛性が高まるものであ
る。したがって、直径Dや高さ寸法Hを任意に設定する
ことでその剛性を所望の値に自由に設定することができ
るから、単に2種類の積層ゴム3a,3bを用いるに留
まらず、設置位置に対応する任意の剛性の積層ゴム3を
用いれば良いし、また積層ゴムの設置個数を適宜調節す
れば良い。
By the way, the rigidity of the laminated rubber 3 is determined not only by the elastic coefficient of the rubber used but also by FIG.
The diameter D and the height H (the number of rubber laminating steps) shown in FIG. 4 vary depending on the diameter D or the height H, and the number of laminated rubbers 3 having the same specification increases. The rigidity increases as they are added. Therefore, the rigidity can be freely set to a desired value by arbitrarily setting the diameter D and the height dimension H. Therefore, not only the two kinds of laminated rubbers 3a and 3b are used but also the installation position. It is only necessary to use the corresponding laminated rubber 3 having an arbitrary rigidity, and it is sufficient to appropriately adjust the number of the laminated rubbers to be installed.

【0011】なお、本発明においては、積層ゴム3に限
らず他の形式の免震装置、たとえば図4に示すような鋼
材ダンパー4を使用することも可能である。鋼材ダンパ
ー4は複数本の鋼棒5を塑性変形させることで振動エネ
ルギを吸収するものであって、この場合は鋼棒5の長さ
寸法Lを短くするほど、また鋼棒5の本数を多くするほ
ど剛性が高まるから、設置位置に対応してそれらを適正
に調節すれば良い。
In the present invention, not only the laminated rubber 3 but also another type of seismic isolation device, for example, a steel damper 4 as shown in FIG. 4 can be used. The steel damper 4 absorbs vibration energy by plastically deforming the plurality of steel rods 5. In this case, as the length L of the steel rod 5 is reduced, the number of the steel rods 5 is increased. The rigidity increases as the distance increases, so that they may be appropriately adjusted according to the installation position.

【0012】また、剛性を自由に調節することが可能な
免震装置、たとえば電圧を印加すると粘性が変化するよ
うな性質を有する電気粘性流体を用いた免震装置を採用
し、それを設置するに際してその剛性を設置位置に応じ
て最適となるように設定するようにしても良い。
Further, a seismic isolation device capable of freely adjusting the rigidity, for example, a seismic isolation device using an electrorheological fluid having a property that the viscosity changes when a voltage is applied is adopted and installed. At this time, the rigidity may be set to be optimal according to the installation position.

【0013】さらに、本発明はアリーナやスタジアム等
の施設のみならず、各種用途、各種規模の構造物全般に
適用できるものであるし、免震装置を柱と屋根との間に
介装する場合のみならず、たとえば下部構造としての基
礎と上部構造としての上層階の躯体との間に設ける場合
にも適用可能であることは言うまでもない。
Further, the present invention is applicable not only to facilities such as arenas and stadiums, but also to various uses and various scale structures in general. When the seismic isolation device is interposed between a pillar and a roof, It goes without saying that the present invention can be applied not only to the case where it is provided between a foundation as a lower structure and a frame on an upper floor as an upper structure, for example.

【0014】[0014]

【発明の効果】以上で説明したように、本発明は、下部
構造と上部構造との間に介装する免震装置の剛性を、そ
の設置位置における下部構造の剛性および上部構造の剛
性に対応して決定することとして、下部構造および上部
構造の剛性が他の位置よりも相対的に低剛性である場合
にはそこに相対的に高剛性の免震装置を設置し、下部構
造および上部構造の剛性が他の位置よりも相対的に高剛
性である場合にはそこに相対的に低剛性の免震装置を設
置することにより、それら免震装置と下部構造および上
部構造の総合的な剛性がこの免震構造物の各部において
均等になるようにしているので、地震時においても各部
が一律に挙動するような単純にして明快な構造が実現
し、また、優れた免震効果を得ることが可能となる。
As described above, according to the present invention, the rigidity of the seismic isolation device interposed between the lower structure and the upper structure corresponds to the rigidity of the lower structure and the rigidity of the upper structure at the installation position. Decide on the lower structure and upper
When the rigidity of the structure is relatively lower than other positions
Installed a relatively high-rigidity seismic isolation device there.
The rigidity of the structure and superstructure is relatively higher than other positions
If it is difficult to install seismic isolation devices with relatively low rigidity,
The seismic isolation device and the overall rigidity of the lower structure and the upper structure are made uniform in each part of this seismic isolation structure, so that each part behaves uniformly even during an earthquake. A simple and clear structure is realized, and an excellent seismic isolation effect can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の免震構造物の一実施例であるアリーナ
を示す図である。
FIG. 1 is a diagram showing an arena which is an embodiment of a seismic isolation structure of the present invention.

【図2】同、部分立面図である。FIG. 2 is a partial elevational view of the same.

【図3】本発明において用いる免震装置の一例である積
層ゴムを示す図である。
FIG. 3 is a view showing a laminated rubber which is an example of a seismic isolation device used in the present invention.

【図4】同、鋼材ダンパーを示す図である。FIG. 4 is a view showing the same steel damper.

【符号の説明】[Explanation of symbols]

1 柱(下部構造) 2 屋根(上部構造) 3 積層ゴム(免震装置) 4 鋼材ダンパー(免震装置)。 1 Pillar (lower structure) 2 Roof (upper structure) 3 Laminated rubber (seismic isolation device) 4 Steel damper (seismic isolation device).

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−257323(JP,A) 特開 平5−306547(JP,A) 特開 平4−14543(JP,A) 実開 平5−66117(JP,U) (58)調査した分野(Int.Cl.7,DB名) E04H 9/02 301 E04B 1/36 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-6-257323 (JP, A) JP-A-5-306547 (JP, A) JP-A-4-14543 (JP, A) 66117 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) E04H 9/02 301 E04B 1/36

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 柱等の下部構造と屋根等の上部構造との
間に積層ゴム等の免震装置を介装してなる免震構造物に
おいて、 この免震構造物の各部に設置される免震装置の剛性が、
その設置位置における下部構造の剛性および上部構造の
剛性に対応して決定されていて、下部構造および上部構
造の剛性が他の位置よりも相対的に低剛性である場合に
はそこに相対的に高剛性の免震装置が設置され、下部構
造および上部構造の剛性が他の位置よりも相対的に高剛
性である場合にはそこに相対的に低剛性の免震装置が設
置されることにより、それら免震装置と下部構造および
上部構造の総合的な剛性がこの免震構造物の各部におい
て均等に設定されてなることを特徴とする免震構造物。
A seismic isolation structure in which a seismic isolation device such as laminated rubber is interposed between a lower structure such as a pillar and an upper structure such as a roof, and is installed at each part of the seismic isolation structure. The rigidity of the seismic isolation device
It has been determined according to the rigidity of the rigidity and the superstructure of a lower structure in the installed position, the lower structure and upper structure
When the rigidity of the structure is relatively lower than other positions
Has a relatively high rigidity seismic isolation device installed
The rigidity of the structure and superstructure is relatively higher than other positions
If it is difficult to install a seismic isolation device with relatively low rigidity,
By being location, seismic isolation structure overall rigidity thereof isolator and the lower structure and upper structure is characterized by comprising evenly set in each part of the seismic isolation structure.
【請求項2】 前記免震装置の剛性が調節可能であるこ
とを特徴とする請求項1記載の免震構造物。
2. The seismic isolation structure according to claim 1, wherein the rigidity of the seismic isolation device is adjustable.
JP13236895A 1995-05-30 1995-05-30 Seismic isolation structure Expired - Fee Related JP3338920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13236895A JP3338920B2 (en) 1995-05-30 1995-05-30 Seismic isolation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13236895A JP3338920B2 (en) 1995-05-30 1995-05-30 Seismic isolation structure

Publications (2)

Publication Number Publication Date
JPH08326351A JPH08326351A (en) 1996-12-10
JP3338920B2 true JP3338920B2 (en) 2002-10-28

Family

ID=15079748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13236895A Expired - Fee Related JP3338920B2 (en) 1995-05-30 1995-05-30 Seismic isolation structure

Country Status (1)

Country Link
JP (1) JP3338920B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297854A (en) * 2006-05-01 2007-11-15 Toshiba Corp Building structure
JP5205145B2 (en) * 2008-07-02 2013-06-05 東海ゴム工業株式会社 Bearing device
JP7261377B2 (en) * 2019-07-23 2023-04-20 株式会社竹中工務店 Seismic isolation structure

Also Published As

Publication number Publication date
JPH08326351A (en) 1996-12-10

Similar Documents

Publication Publication Date Title
JP4836340B2 (en) Seismic isolation structure using a connected seismic control device
JP3338920B2 (en) Seismic isolation structure
JP2001193311A (en) Base isolation building
JP3957890B2 (en) Building vibration control device
JP2001090376A (en) Bearing wall
JP2991030B2 (en) Wind load compatible seismic frame and wind load compatible seismic building
JP2877293B2 (en) Outer tube supported steel chimney
JP3183198B2 (en) Nuclear-related buildings and damping structures
JP2001140343A (en) Theree-storied dwelling house
JP3511045B2 (en) Steel bar vibration control device for buildings
JP3464094B2 (en) Unit building
JP3690450B2 (en) Building vibration control method and damping structure
JPH0686774B2 (en) Variable bending stiffness device for structures
JP3154019B2 (en) How to install substructures for adaptive growth structures
JP4749599B2 (en) Damping structure of structures with large spaces
JPH1150688A (en) Vibration control building
JP2003097086A (en) Base isolation building and construction method therefor
JP3972892B2 (en) Seismic retrofit method for existing buildings
JP3156061B2 (en) High-rise building damping structure
JPS61215825A (en) Anti-seismic supporting device
JP3218529B2 (en) Damping structure
JPH0640493U (en) Vibration reduction device
JP3218527B2 (en) Damping structure
JPH0874442A (en) Vibration control structure
JP3477599B2 (en) Seismic retrofit structure of existing building

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020702

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080816

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090816

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees