JP3338714B2 - Semiconductor laser pumped solid-state laser device - Google Patents

Semiconductor laser pumped solid-state laser device

Info

Publication number
JP3338714B2
JP3338714B2 JP24555592A JP24555592A JP3338714B2 JP 3338714 B2 JP3338714 B2 JP 3338714B2 JP 24555592 A JP24555592 A JP 24555592A JP 24555592 A JP24555592 A JP 24555592A JP 3338714 B2 JP3338714 B2 JP 3338714B2
Authority
JP
Japan
Prior art keywords
solid
state laser
semiconductor laser
crystal
yvo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24555592A
Other languages
Japanese (ja)
Other versions
JPH0669567A (en
Inventor
輝夫 小林
Original Assignee
日本コロムビア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本コロムビア株式会社 filed Critical 日本コロムビア株式会社
Priority to JP24555592A priority Critical patent/JP3338714B2/en
Publication of JPH0669567A publication Critical patent/JPH0669567A/en
Application granted granted Critical
Publication of JP3338714B2 publication Critical patent/JP3338714B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、固体レーザ装置に係わ
り、特に固体レーザ光の出力変動を低減した半導体レー
ザ励起固体レーザ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state laser device and, more particularly, to a semiconductor laser-excited solid-state laser device in which the output fluctuation of solid-state laser light is reduced.

【0002】[0002]

【従来の技術】半導体レーザ励起固体レーザ装置(以下
固体レーザ装置という)は、半導体レーザ光により固体
レーザ媒質を励起してレーザ発振を行わせるものであ
り、小型、軽量、長寿命、電気ー光変換効率が高いこ
と、動作が安定すること、等の特長を有し、種々の産業
分野において利用が拡大している。また近年、非線形光
学素子と固体レーザを組み合わせ、可視域のグリーンレ
ーザやブルーレーザを実現する試みが盛んである。
2. Description of the Related Art A semiconductor laser-excited solid-state laser device (hereinafter, referred to as a solid-state laser device) excites a solid-state laser medium with semiconductor laser light to cause laser oscillation. It has features such as high conversion efficiency and stable operation, and its use is expanding in various industrial fields. In recent years, attempts have been made actively to realize a green laser or a blue laser in the visible region by combining a nonlinear optical element and a solid-state laser.

【0003】図5は、固体レーザ装置の装置断面を示し
ている。固体レーザ媒質43はNd:YAG(ネオジウ
ム:イットリウムアルミニウム酸化物)、Nd:YVO
4 、Nd:YLF(ネオジウム:イットリウムリチウム
フッ化物)等が用いられる。半導体レーザ41は固体レ
ーザ媒質43の吸収波長域である808〜810nmの
発振波長で出力が100mW以上のものが使われる。
FIG. 5 shows a cross section of a solid-state laser device. The solid-state laser medium 43 is made of Nd: YAG (neodymium: yttrium aluminum oxide), Nd: YVO
4 , Nd: YLF (neodymium: yttrium lithium fluoride) or the like is used. The semiconductor laser 41 has an oscillation wavelength of 808 to 810 nm, which is the absorption wavelength range of the solid-state laser medium 43, and has an output of 100 mW or more.

【0004】固体レーザ媒質43の半導体レーザ光入射
面と、出力ミラー44の凹面は、固体レーザの基本波1
053〜1064nmに対して高反射率のコーティング
がなされ固体レーザ共振器(以下共振器という)を構成
している。集光光学系42によって半導体レーザ光が固
体レーザ媒質43に集光されると、共振器内で固体レー
ザ発振が起こりその一部が出力ミラー44を通して外部
に出射される。この共振器内に非線形光学素子を挿入す
ると、非線形光学素子と固体レーザ基本波との相互作用
によって固体レーザ基本波の第2高調波あるいは第3高
調波が発生する。2次の非線形光学効果の大きい非線形
光学素子を使って第2高調波即ち固体レーザ基本波の1
/2の波長のレーザを実現する試みが盛んである。
The solid-state laser medium incident surface of the solid-state laser medium 43 and the concave surface of the output mirror 44 are connected to the fundamental wave 1 of the solid-state laser.
A coating having a high reflectivity for 053 to 1064 nm is formed to constitute a solid-state laser resonator (hereinafter referred to as a resonator). When the semiconductor laser light is condensed on the solid-state laser medium 43 by the condensing optical system 42, solid-state laser oscillation occurs in the resonator and a part thereof is emitted to the outside through the output mirror 44. When a nonlinear optical element is inserted into the resonator, the second harmonic or the third harmonic of the solid-state laser fundamental wave is generated by the interaction between the nonlinear optical element and the solid-state laser fundamental wave. By using a nonlinear optical element having a large second-order nonlinear optical effect, the second harmonic, that is, the solid-state laser fundamental wave 1
Attempts have been made to realize a laser having a wavelength of / 2.

【0005】かかる固体レーザ装置において、固体レー
ザ媒質43としてNd:YVO4 結晶を用いた場合、N
d:YVO4 結晶は半導体レーザの発振波長である80
8〜810nmの領域の吸収係数がNd:YAG結晶の
約4倍であり、また熱伝導度がNd:YAG結晶の約1
/2のため、Nd:YVO4 結晶の半導体レーザ励起光
吸収部の温度が上昇し固体レーザ光の出力が変動する。
In such a solid-state laser device, when an Nd: YVO 4 crystal is used as the solid-state laser medium 43,
d: YVO4 crystal has an oscillation wavelength of 80 of the semiconductor laser.
The absorption coefficient in the range of 8 to 810 nm is about four times that of the Nd: YAG crystal, and the thermal conductivity is about 1 times that of the Nd: YAG crystal.
As a result, the temperature of the Nd: YVO 4 crystal semiconductor laser pumping light absorbing portion rises, and the output of solid-state laser light fluctuates.

【0006】例えば、半導体レーザ励起光パワーが50
0mW、励起光スポットサイズ100μmのとき、N
d:YVO4 結晶の半導体レーザ励起光入射表面の励起
光スポット中心部の温度は約40度上昇し、それにとも
ない固体レーザ光の出力が1/3に減少することが知ら
れている。(電子情報通信学会技術研究会OQE91−
30P73−78)
For example, when the power of the pumping light of the semiconductor laser is 50,
0 mW, excitation light spot size 100 μm, N
It is known that the temperature of the center of the pumping light spot on the surface of the semiconductor laser pumping light incident surface of the d: YVO4 crystal rises by about 40 degrees, and the output of the solid-state laser light decreases to one third with that. (IEICE Technical Study Group OQE91-
30P73-78)

【0007】3mm×3mm×1mmのNd:YVO4
結晶を10mm×10mm×2mmのアルミニウム製ホ
ルダの中に埋め込み接着剤で固定し、半導体レーザ発振
波長809nm,半導体レーザ励起光パワーが200m
W,励起光スポットサイズ100μmの条件でNd:Y
VO4 結晶を励起したときのアルミニウム製ホルダの温
度変動と固体レーザ光の出力変化を測定した結果、固体
レーザ光の出力変動は±15%であり、アルミニウム製
ホルダの温度変動と概略同期していることが分かった。
これは、Nd:YVO4 結晶の半導体レーザ励起光吸収
ー温度上昇ー固体レーザ出力の低下ー温度下降ー半導体
レーザ励起光吸収増大ー温度上昇のサイクルを繰り返し
ているものと思われる。
3 mm × 3 mm × 1 mm Nd: YVO4
The crystal was fixed in an aluminum holder of 10 mm × 10 mm × 2 mm embedded with an adhesive, and the semiconductor laser oscillation wavelength was 809 nm and the semiconductor laser excitation light power was 200 m.
W, Nd: Y under the condition of an excitation light spot size of 100 μm
As a result of measuring the temperature change of the aluminum holder and the output change of the solid-state laser beam when the VO 4 crystal was excited, the output change of the solid-state laser beam was ± 15%, which was substantially synchronized with the temperature change of the aluminum holder. I knew it was there.
This is presumably because the cycle of absorption of the semiconductor laser pumping light of the Nd: YVO 4 crystal, increase in temperature, decrease in solid-state laser output, decrease in temperature, increase in absorption of semiconductor laser pumping light, and increase in temperature are repeated.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、固体
レーザ媒質がNd:YVO4 である固体レーザ装置の出
力変動を抑制し、安定した出力の固体レーザ装置を得よ
うとするものである。
[SUMMARY OF THE INVENTION An object of the present invention, the solid-state laser medium is Nd: suppress output variations of the solid-state laser device is YVO 4, it is intended to obtain a solid-state laser device of stable output .

【0009】[0009]

【課題を解決するための手段】本発明は、半導体レーザ
チップと、該半導体レーザチップを支持する金属ブロッ
クと、該金属ブロックに接合した電子冷却素子と、該電
子冷却素子を固着したヒートシンクと、前記半導体レー
ザチップのレーザ励起光出射面と対向配置したNd:Y
VO4結晶の固体レーザ媒質と、該Nd:YVO4結晶の
レーザ励起光出射面前方に配置した出力ミラーと、該出
力ミラーを固定した光学筐体と、該光学筐体に前記金属
ブロック、前記固体レーザ媒質及び前記ヒートシンクを
固定した半導体レーザ励起固体レーザ装置において、前
記Nd:YVO4結晶の半導体レーザ励起光入射面であ
って、該半導体レーザ励起光の入射部を除いた表面をA
u、Ag、Cu、Alから選ばれた少なくとも一つの
属又は合金で被覆し、前記金属ブロックの一面と前記N
d:YVO4結晶の半導体レーザ励起光入射面の対向面
とを接触配置して前記対向面を熱的に結合したことを特
徴とする。
SUMMARY OF THE INVENTION The present invention provides a semiconductor laser chip, a metal block for supporting the semiconductor laser chip, an electronic cooling element joined to the metal block, a heat sink to which the electronic cooling element is fixed, Nd: Y arranged opposite to the laser excitation light emission surface of the semiconductor laser chip
A solid-state laser medium of a VO 4 crystal, an output mirror disposed in front of a laser excitation light emission surface of the Nd: YVO 4 crystal, an optical housing to which the output mirror is fixed, the semiconductor-laser-pumped solid-state laser apparatus with a fixed solid-state laser medium and the heat sink, the Nd: semiconductor laser pumping light incident surface der of YVO 4 crystal
Thus, the surface excluding the incident portion of the semiconductor laser pumping light is A
u, Ag, Cu, Al at least one metal or alloy selected from the group consisting of one surface of the metal block and the N
d: The YVO 4 crystal is characterized in that the opposing surface of the semiconductor laser excitation light incident surface of the YVO 4 crystal is disposed in contact with the surface and the opposing surface is thermally coupled.

【0010】[0010]

【作用】本発明においては、半導体レーザ励起光を吸収
することによってNd:YVO4 結晶において最も温度
が上昇する半導体レーザ励起光入射面が、電子冷却素子
により一定の温度に制御されている金属ブロックの面と
接触している。そのため、Nd:YVO4 結晶の半導体
レーザ励起光入射面の温度は金属ブロックの温度に等し
くなり、常に電子冷却素子により一定の温度に制御され
る。
In [act invention, Nd by absorbing semiconductor laser excitation light: YVO 4 laser excitation light incident surface of most temperature in the crystal is increased, the metal block is controlled to a constant temperature by the electronic cooling element In contact with the surface. Therefore, the temperature of the Nd: YVO4 crystal semiconductor laser pumping light incident surface is equal to the temperature of the metal block, and is always controlled to a constant temperature by the electronic cooling element.

【0011】従って、Nd:YVO4 結晶の温度変化に
基づく固体レーザ装置の出力変動を抑制し、安定した出
力の固体レーザ装置を得ることができる。さらに、N
d:YVO4 結晶の半導体レーザ励起光入射面であっ
て、半導体レーザ励起光入射部を除いた表面を、Au,
Ag,Cu,Alから選ばれた少なくとも1つの金属ま
たは合金で被覆すると、該金属は展延性に富むのでN
d:YVO4 結晶の半導体レーザ励起光入射面と金属ブ
ロックとの接触性が向上し、上記作用をより確実にする
ことができる。
Therefore, the output fluctuation of the solid-state laser device based on the temperature change of the Nd: YVO 4 crystal can be suppressed, and a solid-state laser device having a stable output can be obtained. Furthermore, N
d: The semiconductor laser pumping light incident surface of the YVO 4 crystal, excluding the semiconductor laser pumping light incident portion, was Au,
When coated with at least one metal or alloy selected from Ag, Cu, and Al, the metal is rich in ductility,
d: The contact property between the semiconductor laser pumping light incident surface of the YVO 4 crystal and the metal block is improved, and the above-mentioned action can be further ensured.

【0012】[0012]

【実施例】図1は、本発明による固体レーザ装置の一実
施例を示す断面図で、半導体レーザチップ11、金属ブ
ロック12、電子冷却素子13、Nd:YVO4 結晶1
4、出力ミラー15、光学筐体16、ヒートシンク1
7、放熱フィン18、断熱部材19から構成されてい
る。半導体レーザチップ11には、波長809nm、出
力最大500mWのマルチモード発振半導体レーザを用
いた。
FIG. 1 is a sectional view showing an embodiment of a solid-state laser device according to the present invention, in which a semiconductor laser chip 11, a metal block 12, an electronic cooling element 13, and a Nd: YVO 4 crystal 1 are shown.
4, output mirror 15, optical housing 16, heat sink 1
7, a radiating fin 18 and a heat insulating member 19. As the semiconductor laser chip 11, a multimode oscillation semiconductor laser having a wavelength of 809 nm and an output of maximum 500 mW was used.

【0013】半導体レーザチップ11は銅製金属ブロッ
ク12を介して熱伝導性接着剤により電子冷却素子13
の吸熱板に接合し、金属ブロック12をネジを用いてN
d:YVO4 結晶14と面接触するように光学筐体16
に固定した。Nd:YVO4結晶14は、3×3×1m
mの大きさで、半導体レーザ励起光入射表面は波長80
9nmに対し無反射、波長1064nmに対し高反射と
なるようコーティングを施し、出力ミラー15の凹面と
の間で共振器を構成した。
The semiconductor laser chip 11 is provided with a thermo-conductive adhesive through a copper metal block 12 and an electronic cooling element 13.
Of the metal block 12 using screws.
d: Optical housing 16 so as to make surface contact with YVO4 crystal 14
Fixed to. Nd: YVO 4 crystal 14 is 3 × 3 × 1 m
m, and the semiconductor laser pumping light incident surface has a wavelength of 80
A coating was applied so as to have no reflection at 9 nm and high reflection at a wavelength of 1064 nm, and a resonator was formed between the coating and the concave surface of the output mirror 15.

【0014】出力ミラー15はφ15×5mm曲率半径
50mmである。Nd:YVO4 結晶14、出力ミラー
15の各光学素子は、ネジを用いアルミニウム製の光学
筐体16に位置を精密に調整しながら固定した。放熱フ
ィン18が付いたヒートシンク17は、中心部を熱伝導
性接着剤により電子冷却素子13の放熱板に接合し、周
辺部をテトラフルオロエチレン樹脂(断熱部材19)を
介してアクリル樹脂製のプラスチックネジで光学筐体1
6に固定した。
The output mirror 15 has a diameter of φ15 × 5 mm and a radius of curvature of 50 mm. Each optical element of the Nd: YVO 4 crystal 14 and the output mirror 15 was fixed to an aluminum optical housing 16 with screws while adjusting the position precisely. The heat sink 17 with the heat radiating fin 18 has a central portion joined to a heat radiating plate of the electronic cooling element 13 by a heat conductive adhesive, and a peripheral portion formed of an acrylic resin plastic through a tetrafluoroethylene resin (heat insulating member 19). Optical housing 1 with screws
6 was fixed.

【0015】図2、点線31は、本実施例の固体レーザ
装置の出力の時間変化を示し、出力変動は±5%以内で
あった。同図の、実線32は、金属ブロック12とN
d:YVO4 結晶14が接していない事を除いては本実
施例と同じ光学系と光学素子を用いた従来例の固体レー
ザ装置の出力の時間変化を示し、出力変動は±15%で
ある。
In FIG. 2, the dotted line 31 shows the time change of the output of the solid-state laser device of this embodiment, and the output fluctuation was within ± 5%. The solid line 32 in FIG.
d: Time change of the output of the conventional solid-state laser device using the same optical system and optical element as in the present embodiment except that the YVO 4 crystal 14 is not in contact, and the output fluctuation is ± 15%. .

【0016】本実施例の固体レーザ装置においては、半
導体レーザ励起光入射面が、電子冷却素子13により一
定の温度に制御されている金属ブロック12の面と接触
しているので、Nd:YVO4 結晶14の半導体レーザ
励起光入射面の温度は金属ブロック12の温度に等しく
なり、常に電子冷却素子13により一定の温度に制御さ
れ、固体レーザ装置の出力の時間変化が従来例と比較し
て3分の1に抑制されている事が分かる。
In the solid-state laser device of the present embodiment, the semiconductor laser excitation light incident surface is in contact with the surface of the metal block 12 controlled to a constant temperature by the electronic cooling element 13, so that Nd: YVO 4 The temperature of the semiconductor laser pumping light incident surface of the crystal 14 is equal to the temperature of the metal block 12 and is always controlled to a constant temperature by the thermoelectric cooler 13. It can be seen that it is suppressed to a factor of one.

【0017】図3は、本発明の他の実施例における要部
拡大図で、半導体レーザチップ11、金属ブロック1
2、電子冷却素子13、Nd:YVO4 結晶14の部分
を示している。Nd:YVO4 結晶14の半導体レーザ
励起光入射面であって、半導体レーザ励起光入射部を除
いた表面に公知の技術であるスパッタリング法により金
薄膜20を3μmの厚さに被着した固体レーザ装置の一
例である。
FIG. 3 is an enlarged view of a main part according to another embodiment of the present invention.
2, the electron cooling element 13 and the Nd: YVO 4 crystal 14 are shown. A solid-state laser in which a gold thin film 20 is applied to a thickness of 3 μm on the surface of the Nd: YVO 4 crystal 14 on which the semiconductor laser pumping light is incident, excluding the portion where the semiconductor laser pumping light is incident, by a known sputtering method. It is an example of an apparatus.

【0018】公知の技術であるスパッタリング法により
Nd:YVO4 結晶14の半導体レーザ励起光入射面で
あって、半導体レーザ励起光入射部を除いた表面に、金
薄膜20を3μmの厚さに被着した。金薄膜20が被着
されたNd:YVO4 結晶14の半導体レーザ励起光入
射表面の中心部の金薄膜を直径200μmの円形に公知
の技術であるエッチング法により除去した。除去する金
薄膜20の面積は、入射する半導体レーザのビーム径以
上の大きさであって、できるだけ小さい方がよい。本実
施例で使用した半導体レーザの活性層のストライプ幅は
100μmであり、また出射する固体レーザ基本波のビ
ーム径は、出力ミラー15の凹面の曲率半径と共振器長
で決定され、本実施例では曲率半径が50mm,共振器
長が7mmであるので、77μmである。
The gold thin film 20 is coated to a thickness of 3 μm on the surface of the Nd: YVO 4 crystal 14 on which the semiconductor laser excitation light is incident, excluding the semiconductor laser excitation light incidence portion, by a known technique of sputtering. I wore it. The gold thin film at the center of the semiconductor laser excitation light incident surface of the Nd: YVO 4 crystal 14 on which the gold thin film 20 was adhered was removed by a well-known etching method into a circle having a diameter of 200 μm. The area of the gold thin film 20 to be removed is larger than the beam diameter of the incident semiconductor laser, and is preferably as small as possible. The stripe width of the active layer of the semiconductor laser used in the present embodiment is 100 μm, and the beam diameter of the solid-state laser fundamental wave to be emitted is determined by the radius of curvature of the concave surface of the output mirror 15 and the length of the resonator. Since the radius of curvature is 50 mm and the length of the resonator is 7 mm, it is 77 μm.

【0019】従って、本実施例においては光学素子位置
調整のための余裕度も考慮して、除去する金薄膜20の
直径を200μmとした。図2、実線33は、本実施例
の固体レーザ装置の出力の時間変化を示し、その出力変
動は±3%以内であった。半導体レーザ励起光入射面
が、電子冷却素子13により一定の温度に制御されてい
る金属ブロック12の面と接触しており、Nd:YVO
4 結晶14の半導体レーザ励起光入射面であって、半導
体レーザ励起光入射部を除いた表面に公知の技術である
スパッタリング法により金薄膜20を3μmの厚さに被
着したので金属ブロック12の面との接触性が向上しN
d:YVO4 結晶14の半導体レーザ励起光入射面の温
度はより確実に電子冷却素子により一定の温度に制御さ
れ、固体レーザ装置の出力の時間変化が従来例と比較し
て5分の1に抑制されている事が分かる。
Therefore, in the present embodiment, the diameter of the gold thin film 20 to be removed is set to 200 μm in consideration of a margin for adjusting the position of the optical element. In FIG. 2, the solid line 33 shows the time change of the output of the solid-state laser device of the present embodiment, and the output fluctuation was within ± 3%. The semiconductor laser pumping light incident surface is in contact with the surface of the metal block 12, which is controlled to a constant temperature by the electronic cooling element 13, and Nd: YVO
4 A gold thin film 20 having a thickness of 3 μm was applied to the surface of the crystal 14 on the surface of the crystal 14 where the semiconductor laser pumping light was incident, excluding the portion where the semiconductor laser pumping light was incident. Improved contact with the surface and N
d: The temperature of the semiconductor laser excitation light incident surface of the YVO 4 crystal 14 is more reliably controlled to a constant temperature by the thermoelectric cooler, and the time change of the output of the solid-state laser device is reduced to one-fifth as compared with the conventional example. It turns out that it is suppressed.

【0020】上述した実施例においては、Nd:YVO
4 結晶14の半導体レーザ励起光入射面に被覆する金属
として金を使用する例を示したが、本発明はこれに限定
する事無く、銅、銀、アルミニウム等展延性に富む良熱
伝導性金属を使用する事ができる。
In the above embodiment, Nd: YVO
Although an example in which gold is used as the metal coated on the semiconductor laser pumping light incident surface of the four crystal 14 has been described, the present invention is not limited to this, and copper, silver, aluminum, etc. Can be used.

【0021】以上説明した実施例においては、固体レー
ザの基本波を発振する光学系を示したが、本発明におい
てはこれに限定される事無く、固体レーザ共振器の中に
KTiOPO4 (チタンリン酸カリウム)等の非線形光
学素子を挿入し、非線形光学素子と固体レーザ基本波と
の相互作用によって固体レーザ基本波の第2高調波即ち
固体レーザ基本波の1/2の波長のレーザを実現する事
ができる。第2高調波の出力は共振器内の基本波パワー
の2乗に比例するので、第2高調波の出力変動は固体レ
ーザ基本波の出力変動が増幅された大きさになる。従っ
て、固体レーザ基本波の出力を安定させる事ができる本
発明は第2高調波発生固体レーザ装置に特に有効であ
る。
In the embodiment described above, the optical system for oscillating the fundamental wave of the solid-state laser is shown. However, the present invention is not limited to this, and KTiOPO 4 (titanium phosphate) is contained in the solid-state laser resonator. A nonlinear optical element such as potassium) is inserted, and the second harmonic of the solid-state laser fundamental wave, that is, a laser having a wavelength of の of the solid-state laser fundamental wave is realized by the interaction between the nonlinear optical element and the solid-state laser fundamental wave. Can be. Since the output of the second harmonic is proportional to the square of the power of the fundamental wave in the resonator, the output fluctuation of the second harmonic has a magnitude in which the output fluctuation of the solid-state laser fundamental wave is amplified. Therefore, the present invention, which can stabilize the output of the solid-state laser fundamental wave, is particularly effective for the second harmonic generation solid-state laser device.

【0022】図4は、本発明の他の実施例の固体レーザ
装置の断面図で、固体レーザ基本波の第2高調波即ち固
体レーザ基本波の1/2の波長のレーザを発振する固体
レーザ装置の断面を示している。本実施例の固体レーザ
装置においては、非線形光学素子としてKTiOPO4
結晶21を使用した。KTiOPO4 結晶21は3×3
×5mmの大きさで、固体レーザ基本波の入射面は平面
に研磨し固体レーザ基本波(λ=1064nm)及び第
2高調波(λ=532nm)に対し無反射となるように
コーティングを施した。
FIG. 4 is a cross-sectional view of a solid-state laser device according to another embodiment of the present invention. The solid-state laser oscillates a laser having the second harmonic of the solid-state laser fundamental wave, that is, a half wavelength of the solid-state laser fundamental wave. 2 shows a cross section of the device. In the solid-state laser device of this embodiment, KTiOPO 4 is used as the nonlinear optical element.
Crystal 21 was used. KTiOPO 4 crystal 21 is 3 × 3
The incident surface of the solid-state laser fundamental wave having a size of × 5 mm was polished to a flat surface and coated so as not to reflect the solid-state laser fundamental wave (λ = 1064 nm) and the second harmonic (λ = 532 nm). .

【0023】一方、固体レーザ基本波の出射面はR=5
0mmの凸面に球面研磨し、固体レーザ基本波(λ=1
064nm)に対し高反射となるようにコーティングを
施し、第2高調波(λ=532nm)に対し無反射とな
るようにコーティングを施した。このようにする事によ
って、固体レーザ共振器はNd:YVO4 結晶14の半
導体レーザ励起光入射面とKTiOPO4 結晶21の球
面で構成されるので、出力ミラーを省く事ができ固体レ
ーザ基本波の第2高調波即ち固体レーザ基本波の1/2
の波長のレーザを発振する固体レーザ装置を小型にする
事が可能である。
On the other hand, the emission surface of the solid-state laser fundamental wave is R = 5.
A spherical surface is polished to a convex surface of 0 mm, and a solid-state laser fundamental wave (λ = 1
064 nm), and the coating was applied so as not to reflect the second harmonic (λ = 532 nm). By doing so, the solid-state laser resonator is composed of the semiconductor laser pumping light incident surface of the Nd: YVO 4 crystal 14 and the spherical surface of the KTiOPO 4 crystal 21, so that the output mirror can be omitted and the solid-state laser fundamental wave can be eliminated. The second harmonic, that is, 1/2 of the solid-state laser fundamental wave
It is possible to reduce the size of a solid-state laser device that oscillates a laser having a wavelength of.

【0024】本実施例の固体レーザ装置の出力変動は±
6%以内であり、金属ブロック12とNd:YVO4
晶14が接していない事を除いては本実施例と同じ光学
系と光学素子を用いた従来例の固体レーザ装置の出力変
動は±27%であった。本発明は第2高調波発生固体レ
ーザ装置に特に有効である事が明らかである。
The output fluctuation of the solid-state laser device of this embodiment is ±
The output fluctuation of the conventional solid-state laser device using the same optical system and optical element as in the present embodiment except that the metal block 12 and the Nd: YVO 4 crystal 14 are not in contact with each other is within ± 27%. %Met. It is clear that the present invention is particularly effective for the second harmonic generation solid-state laser device.

【0025】[0025]

【発明の効果】以上のように本発明は、固体レーザ媒質
がNd:YVO4 である固体レーザ装置の出力変動を抑
制し、安定した出力の固体レーザ装置を得ることができ
る。
The present invention as described above, according to the present invention, the solid-state laser medium is Nd: suppress output variations of the solid-state laser device is YVO 4, it is possible to obtain a solid-state laser device of stable output.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による固体レーザ装置の一実施例を示す
断面図。
FIG. 1 is a sectional view showing an embodiment of a solid-state laser device according to the present invention.

【図2】固体レーザ装置出力の時間変動を示す特性図。FIG. 2 is a characteristic diagram showing a time variation of the output of the solid-state laser device.

【図3】本発明の他の実施例における要部拡大図。FIG. 3 is an enlarged view of a main part in another embodiment of the present invention.

【図4】本発明の他の実施例における固体レーザ装置の
断面図。
FIG. 4 is a sectional view of a solid-state laser device according to another embodiment of the present invention.

【図5】従来の固体レーザ装置の断面図。FIG. 5 is a cross-sectional view of a conventional solid-state laser device.

【符号の説明】[Explanation of symbols]

11 半導体レーザチップ 12 金属ブロック 13 電子冷却素子 14 Nd:YVO4 結晶 15,44 出力ミラー 16 光学筐体 17 ヒートシンク 18 放熱フィン 19 断熱部材 20 金薄膜 21 KTiOPO4 結晶 41 半導体レーザ 42 集光光学系 43 固体レーザ媒質 45 ホルダーReference Signs List 11 semiconductor laser chip 12 metal block 13 thermoelectric cooler 14 Nd: YVO 4 crystal 15, 44 output mirror 16 optical housing 17 heat sink 18 radiating fin 19 heat insulating member 20 gold thin film 21 KTiOPO 4 crystal 41 semiconductor laser 42 condensing optical system 43 Solid laser medium 45 Holder

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−134891(JP,A) 特開 平4−157777(JP,A) 特開 平4−209581(JP,A) 特開 平4−62880(JP,A) 特開 平2−161786(JP,A) 特開 平4−174577(JP,A) 特開 平5−55670(JP,A) 特開 平4−283977(JP,A) 特開 平5−299751(JP,A) 実開 平4−97375(JP,U) 特表 平3−505948(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01S 3/00 - 3/30 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-4-1344891 (JP, A) JP-A-4-157777 (JP, A) JP-A-4-209581 (JP, A) JP-A-4-199 62880 (JP, A) JP-A-2-161786 (JP, A) JP-A-4-174577 (JP, A) JP-A-5-55670 (JP, A) JP-A-4-283977 (JP, A) JP-A-5-2999751 (JP, A) JP-A-4-97375 (JP, U) Tables of publication JP-A-3-505948 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01S 3/00-3/30

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】半導体レーザチップと、該半導体レーザチ
ップを支持する金属ブロックと、該金属ブロックに接合
した電子冷却素子と、該電子冷却素子を固着したヒート
シンクと、前記半導体レーザチップのレーザ励起光出射
面と対向配置したNd:YVO4結晶の固体レーザ媒質
と、該Nd:YVO4結晶のレーザ励起光出射面前方に
配置した出力ミラーと、該出力ミラーを固定した光学筐
体と、該光学筐体に前記金属ブロック、前記固体レーザ
媒質及び前記ヒートシンクを固定した半導体レーザ励起
固体レーザ装置において、前記Nd:YVO4結晶の半
導体レーザ励起光入射面であって、該半導体レーザ励起
光の入射部を除いた表面をAu、Ag、Cu、Alから
選ばれた少なくとも一つの金属又は合金で被覆し、前記
金属ブロックの一面と前記Nd:YVO4結晶の半導体
レーザ励起光入射面の対向面とを接触配置して前記対向
面を熱的に結合したことを特徴とする半導体レーザ励起
固体レーザ装置。
1. A semiconductor laser chip, a metal block supporting the semiconductor laser chip, an electronic cooling element bonded to the metal block, a heat sink to which the electronic cooling element is fixed, and laser excitation light of the semiconductor laser chip An Nd: YVO 4 crystal solid laser medium facing the emission surface, an output mirror arranged in front of the laser excitation light emission surface of the Nd: YVO 4 crystal, an optical housing to which the output mirror is fixed, and the optical the metal block in the housing, the laser-diode pumped solid-state laser device fixing the solid-state laser medium and the heat sink, the Nd: a semiconductor laser excitation light incident surface of the YVO 4 crystal, the semiconductor laser excitation
The surface excluding the incident portion of the light Au, Ag, Cu, an Al
And coated with at least one metal or alloy selected, the one surface of the metal block Nd: Semiconductor YVO 4 crystal
A semiconductor laser-excited solid-state laser device, characterized in that the laser excitation light incident surface and the opposing surface are arranged in contact with each other and the opposing surfaces are thermally coupled.
JP24555592A 1992-08-21 1992-08-21 Semiconductor laser pumped solid-state laser device Expired - Fee Related JP3338714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24555592A JP3338714B2 (en) 1992-08-21 1992-08-21 Semiconductor laser pumped solid-state laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24555592A JP3338714B2 (en) 1992-08-21 1992-08-21 Semiconductor laser pumped solid-state laser device

Publications (2)

Publication Number Publication Date
JPH0669567A JPH0669567A (en) 1994-03-11
JP3338714B2 true JP3338714B2 (en) 2002-10-28

Family

ID=17135449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24555592A Expired - Fee Related JP3338714B2 (en) 1992-08-21 1992-08-21 Semiconductor laser pumped solid-state laser device

Country Status (1)

Country Link
JP (1) JP3338714B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0955551A (en) * 1995-08-14 1997-02-25 Nec Corp Solid state laser
JPH09293917A (en) * 1996-04-26 1997-11-11 Mitsui Petrochem Ind Ltd Semiconductor laser exciting solid state laser device
JP5014642B2 (en) 2006-02-16 2012-08-29 株式会社トクヤマ Leaded metallized ceramic substrate and package
ES2324275B1 (en) 2009-02-02 2010-03-16 Macsa Id, S.A. "LASER APPARATUS".

Also Published As

Publication number Publication date
JPH0669567A (en) 1994-03-11

Similar Documents

Publication Publication Date Title
JP4041782B2 (en) Semiconductor laser pumped solid state laser
US6130902A (en) Solid state laser chip
US5130995A (en) Laser with Brewster angled-surface Q-switch alinged co-axially
JP3338714B2 (en) Semiconductor laser pumped solid-state laser device
JPH03150888A (en) Method for generating coherent optical radiation and optical pumping solid laser
US6944196B2 (en) Solid state laser amplifier
JP3011136B2 (en) Pumped solid-state laser device
JP3237525B2 (en) Solid-state laser excitation module
JP3221586B2 (en) Optical wavelength converter
EP0814546A1 (en) Wavelength-conversion laser
JPH088477A (en) Solid state laser device
JP3042173B2 (en) Laser diode pumped solid-state laser device
JPH05335679A (en) Semiconductor laser-excited solid-state laser device
US6341139B1 (en) Semiconductor-laser-pumped solid state laser
JPH114029A (en) Excitation-type solid-state laser device
JP3052546B2 (en) Semiconductor-pumped solid-state laser device
JP2005332989A (en) Laser oscillator
JPH11101995A (en) Wavelength conversion laser
JPH0730171A (en) Semiconductor laser-excited solid-state laser device
JP2006108134A (en) Solid-state laser oscillator and method of oscillation
JPH0730172A (en) Semiconductor laser-excited solid-state laser device
JPH05173215A (en) Manufacture of optical second harmonic generating device
JP2754101B2 (en) Laser diode pumped solid state laser
JP2011146556A (en) Semiconductor laser excitation solid-state laser device
JPH11261137A (en) Laser

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020730

LAPS Cancellation because of no payment of annual fees