JP3337666B2 - Objective lens - Google Patents

Objective lens

Info

Publication number
JP3337666B2
JP3337666B2 JP29338699A JP29338699A JP3337666B2 JP 3337666 B2 JP3337666 B2 JP 3337666B2 JP 29338699 A JP29338699 A JP 29338699A JP 29338699 A JP29338699 A JP 29338699A JP 3337666 B2 JP3337666 B2 JP 3337666B2
Authority
JP
Japan
Prior art keywords
group
lens
a3as
a2sp
order
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29338699A
Other languages
Japanese (ja)
Other versions
JP2000089102A (en
Inventor
公彦 西岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optic Co Ltd filed Critical Olympus Optic Co Ltd
Priority to JP29338699A priority Critical patent/JP3337666B2/en
Publication of JP2000089102A publication Critical patent/JP2000089102A/en
Application granted granted Critical
Publication of JP3337666B2 publication Critical patent/JP3337666B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明の対物レンズは、特に内視
鏡用として好適な対物レンズに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an objective lens particularly suitable for an endoscope.

【0002】[0002]

【従来技術】内視鏡用光学系で、歪曲収差を良好に補正
されしかも比較的構成枚数の良好な簡単な構成のものと
して、特開昭61−162021号公報に記載されたレ
ンズ系がある。しかしこのレンズ系は、画角が狭く又凹
レンズを含んでいないため、像面湾曲も大きく収差が良
好に補正されていない。
2. Description of the Related Art A lens system disclosed in Japanese Patent Application Laid-Open No. 61-162221 is known as an endoscope optical system having a simple configuration in which distortion is well corrected and the number of components is relatively good. . However, since this lens system has a narrow angle of view and does not include a concave lens, the field curvature is large and the aberration is not satisfactorily corrected.

【0003】又特開平2−208617号公報は、全長
が長く又第3群から像までの距離も長く内視鏡用として
は不適当である。
Also, Japanese Patent Application Laid-Open No. 2-208617 is unsuitable for endoscopes because the total length is long and the distance from the third lens unit to the image is long.

【0004】又特願昭63−222884号は、第3群
は非球面を用いておらず、歪曲収差が除去されていな
い。
In Japanese Patent Application No. 63-222884, the third lens unit does not use an aspherical surface, and does not eliminate distortion.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、小型
で画角が広く非点収差が良好に補正された対物レンズを
提供するものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide an objective lens which is small in size, has a wide angle of view, and is excellent in correcting astigmatism.

【0006】[0006]

【課題を解決するための手段】本発明の対物レンズは、
広角化と、ペッツバール和を補正するための負のパワー
を持つ第1群と、正のパワーを持つ第2群と、正のパワ
ーを持ちかつ非球面を含む第3群と、第3群に近接して
置かれた撮像素子とからなる撮像装置用の対物レンズで
ある。
According to the present invention, there is provided an objective lens comprising:
A first group having a negative power for correcting the Petzval sum and widening the angle, a second group having a positive power, a third group having a positive power and including an aspheric surface, and a third group. This is an objective lens for an image pickup device including an image pickup device placed in close proximity.

【0007】本発明の対物レンズは、例えば図1に示す
ような構成で、夫々第1群L1,第2群L2 ,第3群L3
よりなり、絞りSは第1群L1 と第2群L2 との間にお
かれかつ主光線をイメージガイドIGに平行に入射させ
るために第2群と第3群の前側焦点位置付近に置かれて
いる。尚イメージガイドIGの代りに固体撮像素子等の
撮像素子でもよい。
The objective lens according to the present invention has, for example, the configuration shown in FIG. 1 and includes a first unit L1, a second unit L2, and a third unit L3, respectively.
The stop S is located between the first unit L1 and the second unit L2, and is positioned near the front focal position of the second and third units to make the principal ray incident on the image guide IG in parallel. ing. Note that an image sensor such as a solid-state image sensor may be used instead of the image guide IG.

【0008】第3群L3 が撮像素子に近接して配置され
ているのは、この第3群を撮像素子等と一体化すること
によって、第3群を支える枠構造を簡単にするためであ
る。
The reason that the third lens unit L3 is disposed close to the image pickup device is to simplify the frame structure for supporting the third lens unit by integrating the third lens unit with the image pickup device. .

【0009】前述のように第3群に設けた非球面は、歪
曲収差を補正するためのもので、その非球面形状は、光
軸からの距離が増大するにつれて光束を収束する作用が
弱くなる部分を含む形状である。
As described above, the aspherical surface provided in the third lens group is for correcting distortion, and the aspherical shape has a weaker effect of converging a light beam as the distance from the optical axis increases. It is a shape including a part.

【0010】この非球面の形状は、光軸をx軸にとり、
像の方向を正とし、y軸を面と光軸との交点を原点とし
てx軸に直交した方向にとった座標の値をx,yとする
時、下記の式で表わされる。
The shape of this aspherical surface is such that the optical axis is the x-axis,
Assuming that the direction of the image is positive and the values of the coordinates taken in the direction orthogonal to the x-axis with the intersection of the y-axis as the origin and the intersection point of the surface and the optical axis are x and y, the following expression is used.

【0011】ただしrは光軸近傍でこの非球面と接する
円の曲率半径、Pは非球面の形状をあらわすパラメータ
ー、B,E,F,G,…は夫々2次,4次,6次,8
次,…の非球面の係数である。又P=1でE,F,G,
H…のすべてが0である場合上記の式は球面を表わす。
Where r is the radius of curvature of a circle in contact with the aspheric surface near the optical axis, P is a parameter representing the shape of the aspheric surface, and B, E, F, G,. 8
The following are the coefficients of the aspheric surface. Also, if P = 1, E, F, G,
If all of H ... are 0, the above equation represents a spherical surface.

【0012】尚以下の説明では、B=0,P=1とす
る。
In the following description, it is assumed that B = 0 and P = 1.

【0013】本発明では、非点収差(非点隔差)を補正
するために次の式を満足する非球面を用いることが好ま
しい。 (1) A2sp +A3As ≒0 ここでA2sp は、第2群の球面によるザイデルの収差係
数のうち、非点収差の3次の係数を対物レンズのFナン
バーで割った値、A3As は、第3群の非球面による非点
収差の3次係数を対物レンズのFナンバーで割った値で
ある。
In the present invention, it is preferable to use an aspherical surface which satisfies the following expression in order to correct astigmatism (astigmatic difference). (1) A2sp + A3As ≒ 0 where A2sp is a value obtained by dividing a third-order coefficient of astigmatism by the F-number of the objective lens among Seidel aberration coefficients of the spherical surface of the second group, and A3As is a third group. Is the value obtained by dividing the third-order coefficient of astigmatism due to the aspherical surface by the F number of the objective lens.

【0014】条件(1)は、実用的には次の条件
(2),(3)を満足するものでも良い。 (2)0.05<|A2sp/A3As |<20 (3)A2sp <0 かつ A3As >0 またザイデルの収差係数を次の式のように定義する。こ
れは汎用レンズ設計プログラムACCOS−Vで用いら
れているものと同じものである。ただしACCOS−V
では、物体距離をOB,マージナル光線の開口数をN
A,第1面より物体側の媒質の屈折率をn0 とした時、
近軸光線の第1面における光線高H0 が H0 =OB×tan {sin-1(NA/n0 )} にて決まるのに対して、本願においては H0 =OB×(NA/n0 ) にて決まる。したがって本願においては後者で決まるH
0 をもとにして近軸追跡を行なって各収差係数を求めて
いる。
The condition (1) may practically satisfy the following conditions (2) and (3). (2) 0.05 <| A2sp / A3As | <20 (3) A2sp <0 and A3As> 0 Further, Seidel's aberration coefficient is defined by the following equation. This is the same as that used in the general-purpose lens design program ACCOS-V. However, ACCOS-V
Let the object distance be OB and the marginal ray numerical aperture be N
A, when the refractive index of the medium on the object side from the first surface is n0,
The ray height H0 of the paraxial ray on the first surface is determined by H0 = OB × tan {sin-1 (NA / n0)}, whereas in the present application, it is determined by H0 = OB × (NA / n0). . Therefore, in the present application, H determined by the latter
Each aberration coefficient is obtained by performing paraxial tracking based on 0.

【0015】メリジオナル光線(X=0)に対して ΔY=(SA3) 3+(CMA3)Y 12 +{3(AST3)+(PTZ3)}Y 2H+(DIS3)Y 3 +(SA5)H 5+(CMA5)YH 4+(TOBSA)Y 23 +(ELCMA)Y 32+{5(AST5)+(PTZ5)}Y 4H +(DIS5)Y 5+(SA7)H 7…………… サジタル光線(Y=0)に対して ΔZ=(SA3)H 3+{(AST3)+(PTZ3)}Z 2H +(SA5)H5+(SOBSA)Z23 +{(AST5)+(PTZ5)}Z 4H+(SA7)H 7……… 上記の式はメリディオナル光線に対して近軸像点(収差
がない時の像点)と実際の像点とのずれをΔYとしたも
ので、Yは最大像高で規格化した像面における近軸主光
線の入射位置、Hは瞳面における瞳径で規格化したマー
ジナル光線の入射位置である。またSA3,SA5,S
A7は夫々3次,5次,7次の球面収差、CMA3,C
MA5は夫々3次,5次のタンジェンシャルコマ、AS
T3,AST5は夫々3次,5次の非点収差、PTZ
3,PTZ5は夫々3次,5次のペッツバール和、DI
S3,DIS5は夫々3次,5次の歪曲収差、TOBS
Aは5次の斜方向のタンジェンシャル球面収差、ELC
MAは5次の楕円コマ、SOBSAは5次の斜方向のサ
ジタル球面収差である。
ΔY = (SA3) for a meridional ray (X = 0) HThree+ (CMA3) Y1HTwo + {3 (AST3) + (PTZ3)} YTwoH + (DIS3) YThree + (SA5) HFive+ (CMA5) YHFour+ (TOBSA) YTwoHThree + (ELCMA) YThreeHTwo+ {5 (AST5) + (PTZ5)} YFourH + (DIS5) YFive+ (SA7) H7………… ΔZ = (SA3) H with respect to the sagittal ray (Y = 0)Three+ {(AST3) + (PTZ3)} ZTwoH + (SA5) HFive+ (SOBSA) ZTwoHThree + {(AST5) + (PTZ5)} ZFourH + (SA7) H7……… The above equation gives the paraxial image point (aberration
The difference between the actual image point and the image point when there is no
Therefore, Y is the paraxial principal light at the image plane standardized by the maximum image height.
The incident position of the line, H is the marker normalized by the pupil diameter in the pupil plane.
This is the incident position of the signal beam. SA3, SA5, S
A7 is the third-order, fifth-order, and seventh-order spherical aberration, respectively, CMA3, C
MA5 is the third and fifth order tangential coma, AS respectively
T3 and AST5 are third and fifth order astigmatism, PTZ
3, PTZ5 is 3rd and 5th order Petzval sum, DI
S3 and DIS5 are third-order and fifth-order distortions, respectively, TOBS
A is the fifth-order oblique tangential spherical aberration, ELC
MA is the fifth-order elliptical frame, SOBSA is the fifth-order oblique support.
It is digital spherical aberration.

【0016】上記の式で非点収差の3次の係数ASTは
対物レンズが球面と非球面を含む場合、次のように表わ
される。 AST3=(A1sp +A2sp +A3sp +A1As +A2As
+A3As )×F ただしAjsp はj群の球面部分の非点収差の3次係数、
AjAs はJ群の非球面による非点収差の3次係数であ
る。ここで球面部分の収差係数とは、その面が球面であ
る場合は、その面自身の収差係数であるが、その面が非
球面の場合には、いわゆる参照球面(光軸上で非球面に
接する球面)の収差係数を指すものとする。又非球面部
分の収差係数とは、非球面自身の収差係数から参照球面
の収差係数を差し引いたものである。上記のAST3を
示す式では、各群についての球面成分と非球面成分がす
べて含まれているが非球面を含まない群のAAsの値は0
である。
In the above equation, the third order coefficient AST of astigmatism is expressed as follows when the objective lens includes a spherical surface and an aspherical surface. AST3 = (A1sp + A2sp + A3sp + A1As + A2As
+ A3As) × F where Ajsp is a cubic coefficient of astigmatism of the spherical portion of the j group,
AjAs is a third-order coefficient of astigmatism due to the aspheric surface of the J group. Here, the aberration coefficient of the spherical portion is the aberration coefficient of the surface itself when the surface is a spherical surface. However, when the surface is an aspheric surface, the so-called reference spherical surface (aspherical surface on the optical axis) is used. (Spherical surface in contact). Further, the aberration coefficient of the aspherical surface portion is obtained by subtracting the aberration coefficient of the reference spherical surface from the aberration coefficient of the aspherical surface itself. In the above equation showing AST3, the value of AAs of the group that includes all the spherical and aspherical components for each group but does not include the aspherical surface is 0.
It is.

【0017】本発明の対物レンズは、A2sp とA3As の
値が大であるので、これらが互いに打消し合うようにす
ることによって、非点収差を補正することが出来る。そ
のために必要な条件が前掲の条件(2),(3)であ
る。
Since the objective lens of the present invention has large values of A2sp and A3As, astigmatism can be corrected by canceling each other. The conditions necessary for that are the above-mentioned conditions (2) and (3).

【0018】これら条件のうち条件(2)の上限を越え
ると、子午像面(Δm)に対して球欠像面が大きくプラ
ス側に倒れ非点隔差が大になる。下限を越えると逆の傾
向になり、同様に非点隔差が大になる。
If the upper limit of the condition (2) is exceeded among these conditions, the sphere lacking image plane becomes large to the plus side with respect to the meridional image plane (Δm), and the astigmatic difference becomes large. When the lower limit is exceeded, the opposite tendency occurs, and the astigmatic difference similarly increases.

【0019】更にA2sp とA3As とをレンズの構成要素
つまり各面の近軸光線高、近軸入射角、近軸出射角、屈
折率、4次の非球面係数で表わすと次の通りである。 A3As =Σ8(hai)2 (hbi)2 Ei (Ni -Ni+1 ) ただしhaiはi面の近軸マージナル光線高、hbiはi面の
主光線高、Ei はi面の非球面の4次係数、Ni はi面
の物体側の屈折率、Ni+1 はi面の像側の屈折率、Σは
3群中の非球面についての和を意味する。 又A2sp =ΣA2spi=ΣSi (I’l)2 Si =Ni (Ki −1)hai(Ii +ui ) 又Ki =Ni /Ni+1 ここでA2spi=Si(Ii)2と定義する。
Further, A2sp and A3As are expressed by the following components of the lens, that is, paraxial ray height, paraxial incident angle, paraxial exit angle, refractive index, and fourth-order aspherical coefficient of each surface. A3As = Σ8 (hai) 2 (hbi) 2 Ei (N i -N i + 1 ) where hai is the paraxial marginal ray height on the i plane, hbi is the principal ray height on the i plane, and Ei is the aspherical surface on the i plane. The fourth-order coefficient, Ni is the refractive index of the i-side on the object side, Ni + 1 is the refractive index of the i-side on the image side, and Σ is the sum of aspherical surfaces in the three lens units. The A2sp = ΣA2spi = ΣSi (I'l) 2 Si = N i (Ki -1) hai (Ii + ui) The Ki = N i / N i + 1 where A2spi = Si (Ii) 2 and defined.

【0020】ただしIi はi面への近軸マージナル光線
の入射角、ui はi面から出射する近軸マージナル光線
の光軸に対する傾角、I’はi面への近軸主光線の入射
角である。又Σは2群の球面についての和をとることを
意味する。尚Ii ,ui ,Ii ’,ui ’は、いずれも
光軸に対して時計まわりを正とする。
Where Ii is the angle of incidence of the paraxial marginal ray on the i-plane, ui is the angle of inclination of the paraxial marginal ray emitted from the i-plane with respect to the optical axis, and I 'is the angle of incidence of the paraxial principal ray on the i-plane. is there. Σ means that the sum of the two groups of spherical surfaces is taken. Note that Ii, ui, Ii ', and ui' are all positive clockwise with respect to the optical axis.

【0021】次に歪曲収差を一層良好に補正するには、
第1群にも非球面を用いることが望ましい。ここで用い
る非球面は、Ni <Ni+1 のとき、yが増大するにつれ
て光線の収束作用が徐々に強くなる部分を含む面であ
り、又Ni >Ni+1 のときはyが増大するにつれて光線
の発散作用が徐々に弱くなる部分又は光線の収束作用が
徐々に強くなる部分を含む面であることが望ましい。こ
の非球面は、4次の非球面項を含む場合、絞りの前の非
球面の面番をlとするとA1As ,A3As は夫々次のよう
に表わせる。 A1As =Σ8(ha l)2 (hbl)2 El(Nl−Nl+1) A3As =Σ8(hai)2(hbi)2 Ei(Ni −Ni+1 ) A1As <0 A3As >0 この場合には、条件(2)の代りに次の条件(4)を満
する必要がある。 (4)0.005<|A1As/A3As |<5 もしもこの条件(4)を満足しないと、|A1As +A3A
s +A2sp |の値が大きくなり、非点収差の除去がむず
かしくなる。
Next, in order to better correct the distortion,
It is desirable to use an aspheric surface also for the first lens unit. Used here
Aspheric surface is Ni <Ni + 1 , As y increases
Is a surface that includes the part where the convergence of light rays gradually increases.
And Ni > Ni + 1 In the case of, as y increases
Where the divergence of light gradually weakens or the convergence of light
It is desirable that the surface includes a portion that gradually becomes stronger. This
If the aspheric surface of 含 む includes a fourth-order aspherical term,
If the surface number of the spherical surface is l, A1As and A3As are as follows, respectively.
Can be expressed as A1As = $ 8 (hall)Two  (Hbl)Two El (Nl-Nl + 1A3As = $ 8 (hai)Two(Hbi)Two Ei (Ni -Ni + 1 A1As <0 A3As> 0 In this case, the following condition (4) is satisfied instead of the condition (2).
There is a need to. (4) 0.005 <| A1As / A3As | <5 If this condition (4) is not satisfied, | A1As + A3A
s + A2sp | increases, it is difficult to remove astigmatism
It will be strange.

【0022】以上のことから、本発明において第1群と
第3群に非球面を含む場合は、非点収差の補正のために
次の条件(5)を満足することが好ましい。 (5)0.055<|(A2sp +A1As )/A3As |<
25
From the above, when the first and third units include aspheric surfaces in the present invention, it is preferable that the following condition (5) is satisfied for correcting astigmatism. (5) 0.055 <| (A2sp + A1As) / A3As | <
25

【0023】[0023]

【実施例】次に本発明の内視鏡撮像装置用対物レンズの
各実施例を示す。 実施例1 f=1.000 ,F/2.649 ,IH=1.0535,物体距離=-13.8169, レンズ最終面から像までの距離=0.016 r1 =86.3558 (非球面)d1 =0.5181 n1 =1.51633 ν1 =64.15 r2 =0.8152 d2 =0.7761 r3 =∞(絞り) d3 =0.0010 r4 =3.9092 d4 =2.0862 n2 =1.72916 ν2 =54.68 r5 =-1.7392 d5 =0.2591 r6 =1.6792(非球面) d6 =2.7813 n3 =1.51633 ν3 =64.15 r7 =∞ 非球面係数 (第1面)P=1.0000,E=0.39580 ×10-1,F=-0.29530×10-2, G=-0.19633×10-2 (第6面)P=1.0000,E=-0.60922×10-1,F=-0.91382×10-2, G=0.47341 ×10-2、H=0.42571 ×10-2、I=-0.49067×10-2 f2 =1.955 ,f12=2.223 ,|A2sp/A3As |=0.55072 , |A1As/A3As |=0.15580 ,|(A2sp+A1As)/ A3As |=0.70652 実施例2 f=1.000 ,F/2.646 ,IH=1.0517,物体距離=-13.7931, レンズ最終面から像までの距離=0.001 r1 =86.2069 (非球面)d1 =0.5172 n1 =1.51633 ν1 =64.15 r2 =0.8655 d2 =0.8655 r3 =∞(絞り) d3 =0.0050 r4 =4.2005 d4 =2.0518 n2 =1.72916 ν2 =54.68 r5 =-1.7829 d5 =0.2586 r6 =1.6724(非球面) d6 =2.7953 n3 =1.51633 ν3 =64.15 r7 =∞ 非球面係数 (第1面)P=1.0000,E=0.39785 ×10-1,F=-0.29785×10-2, G=-0.19872×10-2 (第6面)P=1.0000,E=-0.56047×10-1,F=-0.57663×10-2, G=-0.88319×10-3 f2 =2.007 ,f12=2.224 ,|A2sp/A3As |=0.5806, |A1As/A3As |=0.2092,|(A2sp+A1As)/ A3As |=0.7815 実施例3 f=1.000 ,F/2.424 ,IH=1.0535,物体距離=-17.2712, レンズ最終面から像までの距離=0.016 r1 =86.3558 (非球面)d1 =0.5181 n1 =1.51633 ν1 =64.15 r2 =0.8152 d2 =0.8619 r3 =∞(絞り) d3 =0.0010 r4 =3.9655 d4 =1.9313 n2 =1.72916 ν2 =54.68 r5 =-1.7392 d5 =0.4318 r6 =1.6538(非球面) d6 =2.6598 n3 =1.51633 ν3 =64.15 r7 =∞ 非球面係数 (第1面)P=1.0000,E=0.39580 ×10-1,F=-0.29530×10-2, G=-0.19633×10-2 (第6面)P=1.0000,E=-0.26822×10-1,F=-0.57910×10-1, G=0.12977 ×10-1,H=0.28091 ×10-1,I=-0.16645×10-1 f2 =1.934 ,f12=2.163 ,|A2sp/A3As |=1.3296, |A1As/A3As |=0.4527 ,|(A2sp+A1As)/ A3As |=0.7824 実施例4 f=1.000 ,F/2.726 ,IH=0.9472,物体距離=-15.5280, レンズ最終面から像までの距離=0.225 r1 =77.6398 (非球面)d1 =0.4659 n1 =1.51633 ν1 =64.15 r2 =0.7329 d2 =0.7749 r3 =∞(絞り) d3 =0.0009 r4 =3.5652 d4 =1.7364 n2 =1.72916 ν2 =54.68 r5 =-1.5637 d5 =0.3882 r6 =1.4869(非球面) d6 =1.5528 n3 =1.51633 ν3 =64.15 r7 =-1.7081 d7 =0.7764 n4 =1.84666 ν4 =23.78 r8 =∞ 非球面係数 (第1面)P=1.0000,E=0.54462 ×10-1,F=-0.50268×10-2, G=-0.41347×10-2 (第6面)P=1.0000,E=-0.36908×10-1,F=-0.98580×10-1, G=0.27330 ×10-1,H=0.73187 ×10-1,I=-0.53649×10-1 f2 =1.739 ,f12=1.944 ,|A2sp/A3As |=1.328 , |A1As/A3As |=0.4525 ,|(A2sp+A1As)/ A3As |=1.781 実施例5 f=1.000 ,F/2.483 ,IH=1.0167,物体距離=-16.6667, レンズ最終面から像までの距離=0.000 r1 =8.3333 d1 =0.5000 n1 =1.51633 ν1 =64.15 r2 =1.0267 d2 =1.1018 r3 =∞(絞り) d3 =0.0000 r4 =2.6261 d4 =1.8908 n2 =1.72916 ν2 =54.68 r5 =-1.8039 d5 =0.2770 r6 =1.6010(非球面) d6 =2.0458 n3 =1.51633 ν3 =64.15 r7 =∞ 非球面係数 P=1.0000,E=-0.39548×10-1,F=-0.51667×10-1,G=0.26459 ×10-1, H=0.39158 ×10-1,I=-0.34342×10-1 f2 =1.788 ,f12=1.746 ,|A2sp/A3As |=1.3607, |A1As/A3As |=0 ,|(A2sp+A1As)/ A3As |=1.3607 実施例6 f=1.000 ,F/2.417 ,IH=1.0535,物体距離=-17.2712, レンズ最終面から像までの距離=0.018 r1 =17.2712 d1 =0.5181 n1 =1.51633 ν1 =64.15 r2 =0.8047(非球面) d2 =0.9121 r3 =∞(絞り) d3 =0.0010 r4 =4.4820 d4 =1.9981 n2 =1.72916 ν2 =54.68 r5 =-1.7701 d5 =0.4425 r6 =1.6446(非球面) d6 =2.7040 n3 =1.51633 ν3 =64.15 r7 =∞ 非球面係数 (第2面)P=1.0000,E=-0.11598,F=-0.40346, G=-0.38855 (第6面)P=1.0000,E=-0.31119×10-1,F=-0.58652×10-1, G=0.12859 ×10-1,H=0.27636 ×10-1,I=-0.16595×10-1 f2 =2.011 ,f12=2.223 ,|A2sp/A3As |=1.003 , |A1As/A3As |=0.4540 ,|(A2sp+A1As)/ A3As |=1.457 ただしr1 ,r2 ,・・・ は各レンズ面の曲率半径、d1 ,d2 ,・・・ は各レ ンズの肉厚およびレンズ間隔、n1 ,n2 ,・・・ は各レンズの屈折率、ν1 ,ν 2 ,・・・ は各レンズのアッベ数である。
Next, embodiments of the objective lens for an endoscope imaging apparatus according to the present invention will be described. Example 1 f = 1.000, F / 2.649, IH = 1.0535, object distance = 13.8169, distance from the last lens surface to the image = 0.016 r1 = 86.3558 (aspherical surface) d1 = 0.5181 n1 = 1.51633 v1 = 64.15 r2 = 0.8152 d2 = 0.7761 r3 = ∞ (aperture) d3 = 0.0010 r4 = 3.9092 d4 = 2.0862 n2 = 1.72916 ν2 = 54.68 r5 = -1.7392 d5 = 0.2591 r6 = 1.6792 (aspherical surface) d6 = 2.7813 = 1.53 n3 = 1.53 Aspheric coefficient (first surface) P = 1.0000, E = 0.39580 × 10 −1 , F = −0.29530 × 10 −2 , G = −0.19633 × 10 −2 (Sixth surface) P = 1.0000, E = −0.60922 × 10 −1 , F = −0.91382 × 10 −2 , G = 0.47341 × 10 −2 , H = 0.42571 × 10 −2 , I = −0.49067 × 10 −2 f2 = 1.955, f12 = 2.223, | A2sp / A3As | = 0.55072, | A1As / A3As | = 0.15580, | (A2sp + A1As) /A3As|=0.70652 Example 2 f = 1.000, F / 2.646, IH = 1.0517, object distance = -13.7931, from the last lens surface to the image Distance = 0.001 r1 = 86.2069 (aspherical surface) d1 = 0.5172 n1 = 1.51633 ν1 = 64.15 r2 = 0.8655 d2 = 0.8655 r3 = ∞ (aperture) d3 = 0.0050 r4 = 4.2005 d4 = 2.0518 n2 = 1.75416 7802 d5 = 0.2586 r6 = 1.6724 (aspherical surface) d6 = 2.7953 n3 = 1.51633 ν3 = 64.15 r7 = ∞ aspherical surface coefficient (first surface) P = 1.0000, E = 0.39785 × 10 −1 , F = −0.29785 × 10 −2 , G = -0.19872 × 10 −2 (Sixth surface) P = 1.0000, E = −0.56047 × 10 −1 , F = −0.57663 × 10 −2 , G = −0.88319 × 10 −3 f2 = 2.007, f12 = 2.224, | A2sp / A3As | = 0.5806, | A1As / A3As | = 0.2092, | (A2sp + A1As) /A3As|=0.7815 Example 3 f = 1.000, F / 2.424, IH = 1.0535, object distance = -17.2712, Distance from the last lens surface to the image = 0.016 r1 = 86.3558 (aspheric surface) d1 = 0.5181 n1 = 1.51633 v1 = 64.15 r2 = 0.8152 d2 = 0.8619 r3 = ∞ (aperture) d3 = 0.0010 r4 = 3.9655 d 4 = 1.9313 n2 = 1.72916 v2 = 54.68 r5 = -1.7392 d5 = 0.4318 r6 = 1.6538 (aspheric surface) d6 = 2.6598 n3 = 1.51633 v3 = 64.15 r7 = ∞ aspheric surface coefficient (first surface) P = 1.0000, E = 0.39580 × 10 −1 , F = −0.29530 × 10 −2 , G = −0.19633 × 10 −2 (Sixth surface) P = 1.0000, E = −0.26822 × 10 −1 , F = −0.57910 × 10 −1 , G = 0.12977 × 10 -1 , H = 0.28091 × 10 -1 , I = -0.16645 × 10 -1 f2 = 1.934, f12 = 2.163, | A2sp / A3As | = 1.3296, | A1As / A3As | = 0.4527, | (A2sp + A1As) /A3As|=0.7824 Example 4 f = 1.000, F / 2.726, IH = 0.9472, object distance = -15.5280, distance from the last lens surface to the image = 0.225 r1 = 77.6398 (aspherical surface) d1 = 0.46559 n1 = 1.51633 v1 = 64.15 r2 = 0.7329 d2 = 0.7749 r3 = ∞ (aperture) d3 = 0.0009 r4 = 3.5652 d4 = 1.7364 n2 = 1.72916 v2 = 54.68 r5 = -1.5637 d5 = 0.3882 r6 = 1.4869 (non-spherical) = 1. 51633 ν3 = 64.15 r7 = −1.7081 d7 = 0.7764 n4 = 1.84666 ν4 = 23.78 r8 = ∞ Aspherical coefficient (first surface) P = 1.0000, E = 0.54462 × 10 −1 , F = −0.50268 × 10 −2 , G = −0.41347 × 10 −2 (Sixth surface) P = 1.0000, E = −0.36908 × 10 −1 , F = −0.998580 × 10 −1 , G = 0.27330 × 10 −1 , H = 0.73187 × 10 −1 , I = −0.53649 × 10 −1 f2 = 1.739, f12 = 1.944, | A2sp / A3As | = 1.328, | A1As / A3As | = 0.525, | (A2sp + A1As) /A3As|=1.789 Example 5 f = 1.000, F / 2.483, IH = 1.0167, object distance = -16.6667, distance from the last lens surface to the image = 0.000 r1 = 8.3333 d1 = 0.5000 n1 = 1.51633 v1 = 64.15 r2 = 1.0267 d2 = 1.1018 r3 = ∞ (aperture) d3 = 0.0000 r4 = 2.6261 d4 = 1.8908 n2 = 1.72916 v2 = 54.68 r5 = -1.8039 d5 = 0.2770 r6 = 1.6010 (aspherical surface) d6 = 2.0458 n3 = 1.51633 v3 = 64.15 r7 = ∞ aspherical surface coefficient P = 1.095, E = 0.300 × 10 -1 , F = −0.51667 × 10 −1 , G = 0.26459 × 10 −1 , H = 0.39158 × 10 −1 , I = −0.34342 × 10 −1 f2 = 1.788, f12 = 1.746, | A2sp / A3As | = 1.607, | A1As / A3As | = 0, | (A2sp + A1As) /A3As|=1.3607 Example 6 f = 1.000, F / 2.417, IH = 1.0535, object distance = -17.2712, distance from lens final surface to image = 0.018 r1 = 17.17212 d1 = 0.5181 n1 = 1.51633 v1 = 64.15 r2 = 0.8047 (aspherical surface) d2 = 0.9121 r3 = ∞ (aperture) d3 = 0.0010 r4 = 4.4820 d4 = 1.9981 n2 = 1.72916 = 54.61 = 54.75 r6 = 1.6446 (aspherical surface) d6 = 2.7040 n3 = 1.51633 v3 = 64.15 r7 = ∞ aspherical surface coefficient (second surface) P = 1.0000, E = -0.11598, F = -0.40346, G = -0.38855 (sixth surface) P = 1.0000, E = −0.31119 × 10 −1 , F = −0.58652 × 10 −1 , G = 0.12859 × 10 −1 , H = 0.27636 × 10 −1 , I = −0.16595 × 10 −1 f2 = 2.011, f12 = 2.223, | A2sp / A3As | = 1.003, | A1As / A3As | = 0.4540, | (A2sp + A1As) /A3As|=1.457 where r1, r2,... Are the radii of curvature of the respective lens surfaces, and d1, d2,. .. Are the refractive indices of the lenses, .nu.1, .nu.2,... Are the Abbe numbers of the lenses.

【0024】尚各実施例のhai,hbi,u'i,I
i,I'i,の値は下記の通りである。 実施例1 近軸マージナル光線 k hai ui Ii 0 0.000000 -0.012906 1 0.178322 -0.007808 0.014971 2 0.182368 -0.127348 0.231518 3 0.281205 -0.127348 0.127348 4 0.281336 -0.043300 0.199315 5 0.371670 0.080950 -0.170401 6 0.350698 0.124500 0.127895 7 0.004423 0.120717 -0.124500 8 0.003105 0.188783 -0.120717 近軸主光線 k hbi u'i I'i 0 -15.410584 -1.049522 1 -0.909416 -0.695732 1.038991 2 -0.548933 -0.707277 0.022359 3 0.000000 -0.707277 0.707277 4 0.000726 -0.408951 0.707463 5 0.853892 -0.349148 -0.082016 6 0.944344 -0.038765 0.911517 7 1.052163 -0.037587 0.038765 8 1.052574 -0.058781 0.037587実施例2 近軸マージナル光線 k hai ui Ii 0 0.000000 -0.012906 1 0.178015 -0.007808 0.014971 2 0.182054 -0.120445 0.218150 3 0.286301 -0.120445 0.120445 4 0.286903 -0.040854 0.188747 5 0.370728 0.080974 -0.167079 6 0.349787 0.124622 0.128183 7 0.001431 0.120836 -0.124622 8 0.000114 0.188968 -0.120836 近軸主光線 k hbi u'i I'i 0 -15.399097 -1.046844 1 -0.959871 -0.694171 1.035709 2 -0.600817 -0.694171 -0.000001 3 0.000000 -0.694171 0.694171 4 0.003471 -0.401101 0.694997 5 0.826462 -0.355571 -0.062442 6 0.918420 -0.047493 0.904745 7 1.051179 -0.046051 0.047493 8 1.051681 -0.072016 0.046051 実施例3 近軸マージナル光線 k hai ui Ii 0 0.000000 -0.011395 1 0.196813 -0.006739 0.013675 2 0.200304 -0.137087 0.252452 3 0.318462 -0.137087 0.137087 4 0.318603 -0.045400 0.217432 5 0.406285 0.091831 -0.188204 6 0.366634 0.136049 0.129857 7 0.004776 0.131916 -0.136049 8 0.003336 0.206295 -0.131916 近軸主光線 k hbi u'i I'i 0 -19.072572 -1.049370 1 -0.948742 -0.695787 1.038383 2 -0.588230 -0.682469 -0.025792 3 0.000000 -0.682469 0.682469 4 0.000701 -0.394608 0.682646 5 0.762822 -0.362528 -0.043995 6 0.919354 -0.049794 0.918423 7 1.051792 -0.048281 0.049794 8 1.052320 -0.075503 0.048281 実施例4 近軸マージナル光線 k hai ui Ii 0 0.000000 -0.011395 1 0.176948 -0.006739 0.013675 2 0.180087 -0.137087 0.252452 3 0.286319 -0.137087 0.137087 4 0.286446 -0.045400 0.217432 5 0.365278 0.091831 -0.188204 6 0.329629 0.136049 0.129857 7 0.118373 0.099316 -0.205351 8 0.041264 0.117277 -0.099316近軸主光線 k hbi u'i I'i 0 -15.245533 -0.932973 1 -0.758370 -0.618610 0.923205 2 -0.470198 -0.606770 -0.022932 3 0.000000 -0.606770 0.606770 4 0.000560 -0.350838 0.606927 5 0.609756 -0.322317 -0.039115 6 0.734879 -0.044270 0.816551 7 0.803622 -0.120511 -0.426214 8 0.897187 -0.142306 0.120511 実施例5 近軸マージナル光線 k hai ui Ii 0 0.000000 -0.011395 1 0.189924 0.000245 0.034186 2 0.189802 -0.095078 0.184617 3 0.294554 -0.095078 0.095078 4 0.294554 -0.007687 0.207243 5 0.309088 0.111647 -0.163658 6 0.278156 0.132791 0.062097 7 0.001357 0.128757 -0.132791 8 0.000001 0.201356 -0.128757 近軸主光線 k hbi u'i I'i 0 -17.965483 -1.010614 1 -1.121921 -0.712330 0.875983 2 -0.765756 -0.695034 -0.033499 3 0.000000 -0.695034 0.695034 4 0.000000 -0.401949 0.695034 5 0.759994 -0.387832 -0.019360 6 0.867441 -0.071271 0.929659 7 1.016004 -0.069106 0.071271 8 1.016732 -0.108071 0.069106 実施例6 近軸マージナル光線 k hai ui Ii 0 0.000000 -0.011395 1 0.196813 -0.003635 0.022791 2 0.198696 -0.132996 0.250540 3 0.320006 -0.132996 0.132996 4 0.320143 -0.046793 0.204425 5 0.413640 0.089478 -0.186888 6 0.374047 0.136455 0.137957 7 0.005069 0.132309 -0.136455 8 0.003624 0.206910 -0.132309 近軸主光線 k hbi u'i I'i 0 -19.130935 -1.050336 1 -0.990415 -0.712210 0.992991 2 -0.621395 -0.681255 -0.059951 3 0.000000 -0.681255 0.681255 4 0.000700 -0.393915 0.681411 5 0.787783 -0.356629 -0.051135 6 0.945590 -0.039412 0.931587 7 1.052160 -0.038214 0.039412 8 1.052578 -0.059761 0.038214 実施例1,2,3は夫々図1,2,3に示すもので、い
ずれも各群が1枚のレンズにて構成されている例であ
る。又第1群と第3群とに非球面が設けられこれにより
歪曲収差を補正している。
Note that hai, hbi, u i, I
The values of i and I'i are as follows. Example 1 Paraxial marginal ray k hai ui Ii 0 0.000000 -0.012906 1 0.178322 -0.007808 0.014971 2 0.182368 -0.127348 0.231518 3 0.281205 -0.127348 0.127348 4 0.281336 -0.043300 0.199315 5 0.371670 0.080950 -0.170401 6 0.3506980.124500 0.003105 0.188783 -0.120717 Paraxial chief ray khbi u'i I'i 0 -15.410584 -1.049522 1 -0.909416 -0.695732 1.038991 2 -0.548933 -0.707277 0.022359 3 0.000000 -0.707277 0.707277 4 0.000726 -0.408951 0.707463 5 0.853892 -0.349148 0.944344 -0.038765 0.911517 7 1.052163 -0.037587 0.038765 8 1.052574 -0.058781 0.037587 Example 2 Paraxial marginal ray k hai ui Ii 0 0.000000 -0.012906 1 0.178015 -0.007808 0.014971 2 0.182054 -0.120445 0.218150 3 0.286301 -0.1204450.12044520 0.370728 0.080974 -0.167079 6 0.349787 0.124622 0.128183 7 0.001431 0.120836 -0.124622 8 0.000114 0.18 8968 -0.120836 Paraxial chief ray khbi u'i I'i 0 -15.399097 -1.046844 1 -0.959871 -0.694171 1.035709 2 -0.600817 -0.694171 -0.000001 3 0.000000 -0.694171 0.694171 4 0.003471 -0.401101 0.694997 5 0.826462 -0.355571 -0.0624426 0.918420 -0.047493 0.904745 7 1.051179 -0.046051 0.047493 8 1.051681 -0.072016 0.046051 Example 3 Paraxial marginal ray k hai ui Ii 0 0.000000 -0.011395 1 0.196813 -0.006739 0.013675 2 0.200304 -0.137087 0.252452 3 0.318462 -0.137017 0.1 0.406285 0.091831 -0.188204 6 0.366634 0.136049 0.129857 7 0.004776 0.131916 -0.136049 8 0.003336 0.206295 -0.131916 Paraxial chief ray khbi u'i I'i 0 -19.072572 -1.049370 1 -0.948742 -0.695787 1.038383 2 -0.588230 -0.682469 -0.07920000 -0.682469 0.682469 4 0.000701 -0.394608 0.682646 5 0.762822 -0.362528 -0.043995 6 0.919354 -0.049794 0.918423 7 1.051792 -0.048281 0.049794 8 1.052320 -0.075503 0 .048281 Example 4 Paraxial Marginal Ray k hai ui Ii 0 0.000000 -0.011395 1 0.176948 -0.006739 0.013675 2 0.180087 -0.137087 0.252452 3 0.286319 -0.137087 0.137087 4 0.286446 -0.045400 0.217432 5 0.365278 0.091831 -0.188204 469.3031 0.205351 8 0.041264 0.117277 -0.099316 Paraxial chief ray khbi u'i I'i 0 -15.245533 -0.932973 1 -0.758370 -0.618610 0.923205 2 -0.470198 -0.606770 -0.022932 3 0.000000 -0.606770 0.606770 4 0.000560 -0.350838 0.606927 5 0.609756 -0.3 -0.039115 6 0.734879 -0.044270 0.816551 7 0.803622 -0.120511 -0.426214 8 0.897187 -0.142306 0.120511 Example 5 Paraxial marginal ray k hai ui Ii 0 0.000000 -0.011395 1 0.189924 0.000245 0.034186 2 0.189802 -0.095078 0.184617 395045 0.007687 0.207243 5 0.309088 0.111647 -0.163658 6 0.278156 0.132791 0.062097 7 0.001357 0.128757 -0.132791 8 0.00 0001 0.201356 -0.128757 Paraxial chief ray k hbi u'i I'i 0 -17.965483 -1.010614 1 -1.121921 -0.712330 0.875983 2 -0.765756 -0.695034 -0.033499 3 0.000000 -0.695034 0.695034 4 0.000000 -0.401949 0.695034 5 0.759994 -0.3878320.0 6 0.867441 -0.071271 0.929659 7 1.016004 -0.069106 0.071271 8 1.016732 -0.108071 0.069106 Example 6 Paraxial marginal ray k hai ui Ii 0 0.000000 -0.011395 1 0.196813 -0.003635 0.022791 2 0.198696 -0.132996 0.250540 0.30.320006 -0.396 5 0.413640 0.089478 -0.186888 6 0.374047 0.136455 0.137957 7 0.005069 0.132309 -0.136455 8 0.003624 0.206910 -0.132309 Paraxial chief ray k hbi u'i I'i 0 -19.130935 -1.050336 1 -0.990415 -0.712210 0.992991 2 -0.621395 -0.681 -0.0521 0.000000 -0.681255 0.681255 4 0.000700 -0.393915 0.681411 5 0.787783 -0.356629 -0.051135 6 0.945590 -0.039412 0.931587 7 1.052160 -0.038214 0.039412 8 1.052578 -0 .059761 0.038214 Embodiments 1, 2, and 3 are shown in FIGS. 1, 2, and 3, respectively, and are each examples in which each group is constituted by one lens. The first and third lens units have aspherical surfaces to correct distortion.

【0025】これら実施例では、第2群と第3群の間隔
を変化させてピント調整が行なわれる。第2群を出射す
るマージナル光線が光軸に平行であると上記のピント調
整が出来なくなるので、第1群と第2群の合成焦点距離
f12は下記の条件を満足する必要がある。 |f12|<10f ただしfは全系の焦点距離である。
In these embodiments, focus adjustment is performed by changing the distance between the second lens unit and the third lens unit. If the marginal rays emitted from the second lens group are parallel to the optical axis, the focus adjustment described above cannot be performed. Therefore, the combined focal length f12 of the first lens group and the second lens group must satisfy the following condition. | F12 | <10f where f is the focal length of the entire system.

【0026】また前記条件(2),(3)を満足するた
めに、第2群の最も物体側の面のSi は負でなければな
らない。そのために第2群の面R2 は次の条件を満足す
る必要がある。 15f>R2 >0 R2 が上限を越えると球面収差を補正しにくくなり又第
2群の凸のパワーが後方によるためレンズ系の全長が大
になる。
In order to satisfy the above conditions (2) and (3), Si of the surface closest to the object in the second lens unit must be negative. Therefore, the second group surface R2 must satisfy the following condition. If 15f>R2> 0 R2 exceeds the upper limit, it becomes difficult to correct spherical aberration, and the overall length of the lens system becomes large because the convex power of the second unit is rearward.

【0027】又レンズ系の最終面から像面までの距離S
kは、対物レンズの最終面とイメ−ジガイドとを接着す
る等の理由から、小さい値になっている。また下記条件
(6)を満足することが望ましい。 (6) 0≦Sk ≦f fよりSk が大きいと枠構造上第3群の構成が複雑にな
る。Sk が上記条件の範囲内であると第3群を撮像素子
と一体化でき便利である。
The distance S from the last surface of the lens system to the image plane
k is a small value because, for example, the final surface of the objective lens is bonded to the image guide. It is desirable that the following condition (6) is satisfied. (6) If Sk is larger than 0 ≦ Sk ≦ ff, the configuration of the third lens unit becomes complicated due to the frame structure. When Sk is within the above range, the third lens unit can be integrated with the image sensor, which is convenient.

【0028】又上記の条件を満足するためには、第3群
の最終レンズの厚さ(このレンズが接合レンズの場合そ
の全体の厚さ)D3 は次の条件(7)を満足する必要が
ある。 (7) D3 >0.5f 更に、コマ収差を補正しレンズ系の全長を短くするため
には、第2群を物体側の凸のパワーより像側の凸のパワ
ーの方が強い両凸レンズにし、その焦点距離f2 が次の
条件を満足することが好ましい。 0<f2 <7f また第3群の焦点距離f3 は、第1群の強い凹のパワー
による全長の伸びを防ぐために、次の条件を満足するこ
とが好ましい。 0<f3 <12f また第3群の形状は、物体側の面の凸のパワーが像側の
面の凸のパワーより強い方が非点収差とコマ収差を補正
する上で好ましい。
In order to satisfy the above condition, the thickness D3 of the final lens of the third group (the total thickness when this lens is a cemented lens) must satisfy the following condition (7). is there. (7) D3> 0.5f Further, in order to correct coma and shorten the overall length of the lens system, the second group should be a biconvex lens in which the convex power on the image side is stronger than the convex power on the object side. , The focal length f2 preferably satisfies the following condition. 0 <f2 <7f The focal length f3 of the third lens group preferably satisfies the following condition in order to prevent the total length from being extended by the strong concave power of the first lens group. 0 <f3 <12f In the shape of the third lens group, it is preferable that the convex power of the object-side surface is stronger than the convex power of the image-side surface in order to correct astigmatism and coma.

【0029】又実施例4は、図4に示す通りで、倍率色
収差を補正するために第3群中のレンズを接合レンズに
した。尚第2群中のレンズを接合レンズにして倍率色収
差を補正してもよい。
In Example 4, as shown in FIG. 4, the lenses in the third group were cemented in order to correct chromatic aberration of magnification. Incidentally, the chromatic aberration of magnification may be corrected by using the lens in the second group as a cemented lens.

【0030】実施例5は、図5に示す構成で、第1群に
は非球面を設けず第3群にのみ非球面を設けた例で、コ
ストを低減したことが特徴である。
The fifth embodiment is an example in which the first lens unit is not provided with an aspherical surface but the third lens unit is provided with an aspherical surface in the structure shown in FIG. 5, which is characterized in that the cost is reduced.

【0031】実施例6は、図6に示すもので第1群の像
側の面をyの増加とともに徐々に光束の発散力が弱くな
る部分を含む非球面にした例である。このように凹面を
非球面にすれば、非球面レンズをガラスプレスやプラス
チック等で作る場合、金型が凸面であるので、加工しや
すいメリットがある。
The sixth embodiment shown in FIG. 6 is an example in which the image-side surface of the first lens unit is formed into an aspherical surface including a portion where the divergence of a light beam gradually decreases as y increases. If the concave surface is made aspheric as described above, when the aspheric lens is made of glass press, plastic, or the like, there is an advantage that processing is easy because the mold is convex.

【0032】[0032]

【発明の効果】本発明によれば、全長の短い歪曲収差の
除去された撮像装置用の対物レンズを得ることが出来
る。
According to the present invention, it is possible to obtain an objective lens for an image pickup device having a short overall length and free of distortion.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施例1の断面図。FIG. 1 is a sectional view of a first embodiment of the present invention.

【図2】 本発明の実施例2の断面図。FIG. 2 is a sectional view of a second embodiment of the present invention.

【図3】 本発明の実施例3の断面図。FIG. 3 is a sectional view of a third embodiment of the present invention.

【図4】 本発明の実施例4の断面図。FIG. 4 is a sectional view of a fourth embodiment of the present invention.

【図5】 本発明の実施例5の断面図。FIG. 5 is a sectional view of a fifth embodiment of the present invention.

【図6】 本発明の実施例6の断面図。FIG. 6 is a sectional view of a sixth embodiment of the present invention.

【図7】 本発明の実施例1の収差曲線図。FIG. 7 is an aberration curve diagram according to the first embodiment of the present invention.

【図8】 本発明の実施例2の収差曲線図。FIG. 8 is an aberration curve diagram according to the second embodiment of the present invention.

【図9】本発明の実施例3の収差曲線図。FIG. 9 is an aberration curve diagram according to the third embodiment of the present invention.

【図10】本発明の実施例4の収差曲線図。FIG. 10 is an aberration curve diagram according to the fourth embodiment of the present invention.

【図11】本発明の実施例5の収差曲線図。FIG. 11 is an aberration curve diagram according to the fifth embodiment of the present invention.

【図12】本発明の実施例1の収差曲線図。FIG. 12 is an aberration curve diagram according to the first embodiment of the present invention.

フロントページの続き (56)参考文献 特開 平1−319009(JP,A) 特開 平2−208617(JP,A) 特開 平2−293709(JP,A) 特開 平1−113714(JP,A) 特開 平1−314216(JP,A) 特開 平4−238312(JP,A) 特開 平4−238313(JP,A) 特開 平4−246606(JP,A) 特開 平4−261510(JP,A) 特開 平4−261511(JP,A) 特開 平5−173067(JP,A) 特開 平4−275514(JP,A) 特開 昭61−162021(JP,A) 特開 昭63−163317(JP,A) 特開 昭50−137729(JP,A) 特開 昭58−58515(JP,A) 特開 昭60−37514(JP,A) 特開 昭61−116315(JP,A) 特開 昭61−144616(JP,A) 特開 昭62−173415(JP,A) 特開 昭63−61213(JP,A) 特開 昭63−61214(JP,A) 特開 昭63−149618(JP,A) 特開 昭63−161421(JP,A) 特公 昭49−20215(JP,B1) (58)調査した分野(Int.Cl.7,DB名) G02B 13/04 Continuation of the front page (56) References JP-A 1-319009 (JP, A) JP-A 2-208617 (JP, A) JP-A 2-293709 (JP, A) JP-A 1-1113714 (JP) JP-A-1-314216 (JP, A) JP-A-4-23812 (JP, A) JP-A-4-238313 (JP, A) JP-A-4-246606 (JP, A) JP-A-4-261510 (JP, A) JP-A-4-261511 (JP, A) JP-A-5-173067 (JP, A) JP-A-4-275514 (JP, A) JP-A-61-162021 (JP, A A) JP-A-63-163317 (JP, A) JP-A-50-137729 (JP, A) JP-A-58-58515 (JP, A) JP-A-60-37514 (JP, A) JP-A-116315 (JP, A) JP-A-61-144616 (JP, A) JP-A-62-173415 (JP, A) JP-A-63-61213 (JP, A) JP-A-63-61214 (JP, A) JP-A-63-149618 (JP, A) JP-A-63-161421 (JP, A) JP-B-49-20215 (JP, A) B1) (58) Field surveyed (Int. Cl. 7 , DB name) G02B 13/04

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】物体側から順に、負の屈折力を持つ第1群
と、正の屈折力を持つ第2群と、正の屈折力を持ちかつ
非球面を含む第3群とからなり、各群が有するレンズは
1つであって、以下の条件(2)、(3)、(6)を満
足する対物レンズ。 (2) 0.05<|A2sp/A3As|<20 (3) A2sp <0 かつ A3As >0 (6) 0≦Sk ≦f ただし、A2sp は第2群の球面による非点収差の3次の
係数をFナンバーで割った値、A3As は第3群の非球面
による非点収差の3次の係数をFナンバーで割った値、
Sk はレンズ系の最終面から像面までの距離、fは全系
の焦点距離である。
A first group having a negative refractive power, a second group having a positive refractive power, and a third group having a positive refractive power and including an aspherical surface, in order from the object side, Each group has one lens and satisfies the following conditions (2), (3) and (6). (2) 0.05 <| A2sp / A3As | <20 (3) A2sp <0 and A3As> 0 (6) 0 ≦ Sk ≦ f where A2sp is a third-order coefficient of astigmatism due to the spherical surface of the second lens unit. A3As is a value obtained by dividing the third-order coefficient of astigmatism by the aspheric surface of the third group by the F-number.
Sk is the distance from the last surface of the lens system to the image plane, and f is the focal length of the entire system.
【請求項2】物体側から順に、負の屈折力を持つ第1群
と、正の屈折力を持つ第2群と、正の屈折力を持ちかつ
非球面を含む第3群とからなり、各群が有するレンズは
1つであって、以下の条件(2)、(3)、(7)を満
足する対物レンズ。 (2) 0.05<|A2sp/A3As|<20 (3) A2sp <0 かつ A3As >0 (7) D3>0.5f ただし、A2sp は第2群の球面による非点収差の3次の
係数をFナンバーで割った値、A3As は第3群の非球面
による非点収差の3次の係数をFナンバーで割った値、
D3は第3レンズの厚さ、fは全系の焦点距離である。
2. In order from the object side, there are a first group having a negative refractive power, a second group having a positive refractive power, and a third group having a positive refractive power and including an aspheric surface, Each group has one lens and satisfies the following conditions (2), (3) and (7). (2) 0.05 <| A2sp / A3As | <20 (3) A2sp <0 and A3As> 0 (7) D3> 0.5f where A2sp is a third-order coefficient of astigmatism due to the spherical surface of the second group. A3As is a value obtained by dividing the third-order coefficient of astigmatism by the aspheric surface of the third group by the F-number.
D3 is the thickness of the third lens, and f is the focal length of the entire system.
JP29338699A 1999-10-15 1999-10-15 Objective lens Expired - Fee Related JP3337666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29338699A JP3337666B2 (en) 1999-10-15 1999-10-15 Objective lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29338699A JP3337666B2 (en) 1999-10-15 1999-10-15 Objective lens

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP3062394A Division JP3044578B2 (en) 1991-03-05 1991-03-05 Objective lens

Publications (2)

Publication Number Publication Date
JP2000089102A JP2000089102A (en) 2000-03-31
JP3337666B2 true JP3337666B2 (en) 2002-10-21

Family

ID=17794106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29338699A Expired - Fee Related JP3337666B2 (en) 1999-10-15 1999-10-15 Objective lens

Country Status (1)

Country Link
JP (1) JP3337666B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5668818B2 (en) * 2013-09-19 2015-02-12 株式会社リコー Imaging lens and imaging apparatus
EP3401718A4 (en) * 2016-01-06 2019-09-04 Olympus Corporation Objective optical system
JP2018112677A (en) * 2017-01-12 2018-07-19 ソニーセミコンダクタソリューションズ株式会社 Imaging unit and electronic device

Also Published As

Publication number Publication date
JP2000089102A (en) 2000-03-31

Similar Documents

Publication Publication Date Title
JP3769373B2 (en) Bright wide-angle lens
JP3559623B2 (en) Imaging lens
US20060001985A1 (en) Fisheye lens system
JP2017068164A (en) Wide angle optical system and image capturing device having the same
JP3662105B2 (en) Imaging optical system
JP2004085600A (en) Wide angle zoom lens system
JP4233062B2 (en) Imaging lens
JP3206930B2 (en) Endoscope objective lens
JP2007322839A (en) Imaging lens and personal digital assistant
JP5725967B2 (en) Imaging lens
JP2018092184A (en) Optical system, optical instrument and optical system manufacturing method
JP4098586B2 (en) Zoom lens
JPH10288736A (en) Endoscope objective lens system
JP3397447B2 (en) Large aperture super wide angle lens system
JP3044578B2 (en) Objective lens
JP2000035533A (en) Image pickup lens
JP2750775B2 (en) Compact zoom lens
JP3540349B2 (en) Wide angle lens with long back focus
JP3337666B2 (en) Objective lens
JP3076098B2 (en) Large aperture wide angle lens
CN115104055B (en) Optical system and optical apparatus
JP2010237430A (en) Finder optical system of single lens reflex camera
JP3426378B2 (en) Endoscope objective lens
JP5006627B2 (en) Optical system and optical apparatus having the same
JP2719839B2 (en) Compact zoom lens

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080809

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090809

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees