JP3332163B2 - Method for producing catalyst for hydrorefining treatment and its carrier - Google Patents

Method for producing catalyst for hydrorefining treatment and its carrier

Info

Publication number
JP3332163B2
JP3332163B2 JP28946491A JP28946491A JP3332163B2 JP 3332163 B2 JP3332163 B2 JP 3332163B2 JP 28946491 A JP28946491 A JP 28946491A JP 28946491 A JP28946491 A JP 28946491A JP 3332163 B2 JP3332163 B2 JP 3332163B2
Authority
JP
Japan
Prior art keywords
titania
alumina
solution
carrier
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28946491A
Other languages
Japanese (ja)
Other versions
JPH0596161A (en
Inventor
秀雄 田中
文夫 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP28946491A priority Critical patent/JP3332163B2/en
Publication of JPH0596161A publication Critical patent/JPH0596161A/en
Application granted granted Critical
Publication of JP3332163B2 publication Critical patent/JP3332163B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、石油、石炭液化油、或
いはシェールオイル等、特にはその重質油の脱硫及び脱
窒素等を行うための水素化精製処理用触媒及びその担体
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst for hydrorefining treatment for desulfurization and denitrification of petroleum, coal liquefied oil, shale oil and the like, especially heavy oil thereof, and a method for producing a carrier thereof. About.

【0002】[0002]

【従来の技術】水素化精製処理用触媒としては、アルミ
ナ担体上に第VI族金属(Mo、W)及び第VIII族金属(Co、N
i)を担持したものが広く用いられている。このような触
媒の強度を向上させるためにアルミナ担体にチタンを担
持させる方法(特公昭57-40088号公報)、及び脱
窒素活性の改善及び触媒の耐摩耗性の向上を目的として
アルミナ担体にチタニヤを添加する方法(特開昭54-8
1187号公報、特公昭54-19491号公報)が提案
されている。しかし、これらの触媒はいまだ脱硫活性等
の面において満足できるものではなかった。
2. Description of the Related Art As catalysts for hydrorefining treatment, Group VI metals (Mo, W) and Group VIII metals (Co, N
Those carrying i) are widely used. In order to improve the strength of such a catalyst, a method of supporting titanium on an alumina carrier (Japanese Patent Publication No. 57-40088), and titania on an alumina carrier for the purpose of improving the denitrification activity and the abrasion resistance of the catalyst. (JP-A-54-8)
No. 1187, Japanese Patent Publication No. 54-19491) have been proposed. However, these catalysts have not been satisfactory in terms of desulfurization activity and the like.

【0003】本発明者は、上記問題を解決すべく、鋭意
研究を重ねた結果、アルミニウムイオンとチタニウムイ
オンとの共沈により得られたアルミナチタニア水和物中
のアルミナが実質的に擬ベーマイト構造を有するもので
あれば脱硫活性を高くできることを見出した。
The inventor of the present invention has conducted intensive studies in order to solve the above problems. As a result, the alumina in the alumina titania hydrate obtained by coprecipitation of aluminum ions and titanium ions has a substantially pseudo-boehmite structure. It has been found that the desulfurization activity can be increased as long as it has the following.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記知見に基
づきなされたもので、本発明の目的はアルミナチタニア
を用いた脱硫活性の高い水素化精製処理用触媒及びその
担体を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made based on the above findings, and an object of the present invention is to provide a catalyst for hydrorefining treatment having high desulfurization activity using alumina titania and a carrier thereof. .

【0005】[0005]

【課題を解決するための手段】本発明は、アルミニウム
イオンとして0.1〜10重量%濃度のアルミニウム含
有溶液とチタニウムイオンとして0.1〜10重量%濃
度のチタニウム含有溶液とを混合液のpHを6〜7にな
るように混合撹拌して、バイヤライトによるX線回折ピ
ークが擬ベーマイトによるX線回折ピークより弱いアル
ミナチタニア水和物を得、これを焼成して5〜40重量
%のチタニヤを含有するアルミナチタニアを得ることを
特徴とする水素化精製処理用触媒担体の製造方法であ
り、また、その担体に第VI族金属及び第VIII族金
属を担持する水素化精製用触媒の製造方法である。
SUMMARY OF THE INVENTION The present invention relates to a method for preparing a mixture of an aluminum-containing solution having a concentration of 0.1 to 10% by weight as aluminum ions and a titanium-containing solution having a concentration of 0.1 to 10% by weight as titanium ions. Is mixed and stirred so as to be 6 to 7 to obtain an alumina titania hydrate having an X-ray diffraction peak due to bayerite weaker than an X-ray diffraction peak due to pseudoboehmite, which is calcined to obtain 5 to 40% by weight of titania. A method for producing a catalyst carrier for hydrorefining treatment, characterized by obtaining alumina titania containing the same, and a method for producing a catalyst for hydrotreating wherein the carrier carries a Group VI metal and a Group VIII metal It is.

【0006】本発明の上記アルミニウムイオンとチタニ
ウムイオンとの共沈とは、アルミニウムイオン含有液と
チタニウム含有液とを混合させて、pHを調整すること
により行われる。この場合、アルミニウムイオン含有液
としては、アルミン酸ナトリウム、硫酸アルミニウム、
硝酸アルミニウム、塩化アルミニウム等のアルミニウム
化合物の水溶液を用いることが好適である。この溶液
は、アルミニウム化合物の溶解度にもよるが、アルミニ
ウムイオンとして0.1〜10重量%濃度のものを用い
る。また、チタニウムイオン含有液としては、四塩化チ
タン、三塩化チタン、硫酸チタン、硝酸チタン等のチタ
ン化合物の水溶液を用いることが好適である。この溶液
は、チタン化合物の溶解度にもよるが、チタニウムイオ
ンとして0.1〜10重量%濃度のものを用いる。この
アルミニウムイオン含有液とチタニウム含有液とを混合
し、これに必要に応じて、硝酸、塩酸、硫酸等の酸若し
くは苛性ソーダ、アンモニア水等のアルカリを添加して
共沈させることができる。アルミニウムイオン含有液と
チタニウム含有液の混合割合は、共沈して得られた水和
物を乾燥、焼成後、担体としたときにチタニヤとしてそ
の含有量が5〜40重量%となるように調整する。
[0006] The coprecipitation of aluminum ion and titanium ion of the present invention is carried out by mixing an aluminum ion-containing liquid and a titanium-containing liquid and adjusting the pH. In this case, as the aluminum ion-containing liquid, sodium aluminate, aluminum sulfate,
It is preferable to use an aqueous solution of an aluminum compound such as aluminum nitrate or aluminum chloride. This solution has a concentration of 0.1 to 10% by weight as aluminum ions, depending on the solubility of the aluminum compound. Further, as the titanium ion-containing liquid, it is preferable to use an aqueous solution of a titanium compound such as titanium tetrachloride, titanium trichloride, titanium sulfate, and titanium nitrate. This solution has a titanium ion concentration of 0.1 to 10% by weight, depending on the solubility of the titanium compound. The aluminum ion-containing liquid and the titanium-containing liquid are mixed, and if necessary, an acid such as nitric acid, hydrochloric acid, sulfuric acid or the like, or an alkali such as caustic soda or aqueous ammonia can be added for coprecipitation. The mixing ratio of the aluminum ion-containing liquid and the titanium-containing liquid is adjusted such that the content of the hydrate obtained by coprecipitation is 5 to 40% by weight as titania when used as a carrier after drying and firing. I do.

【0007】上述の共沈物は、脱水した後、所望により
混練、成形し、80〜150℃の温度で、0.1〜20
時間、乾燥することによりアルミナチタニヤの水和物が
得られる。このときの水和物中のアルミナは実質的に擬
ベーマイトで、バイヤライトは10重量%以下であるこ
とが必要である。この擬ベーマイトはアルミナチタニヤ
の水和物をX線回折分析することにより測定でき、2θ
で、14.5°、28.2°、38.4°、49.0°の角
度に比較的ブロードな回折ピークを見ることができる。
また、バイヤライトは2θで、18.8°、20.3°、
27.8°、40.5°、53.1°の角度に比較的シャ
ープな回折ピークが見られる。本発明にいう実質的に擬
ベーマイトで、バイヤライトは10重量%以下とは、3
0KVの測定条件におけるX線回折分析で、上記擬ベー
マイトのピークのみが見られて、バイヤライトのブロー
ドなピークが存在しない状態である。この条件でのX線
回折分析のバイヤライトの検出限界は10重量%であ
る。
The above-mentioned coprecipitate is dewatered, kneaded and molded as required, and is dried at a temperature of 80 to 150 ° C. for 0.1 to 20 minutes.
After drying for a period of time, a hydrate of alumina titania is obtained. The alumina in the hydrate at this time is substantially pseudo-boehmite, and the content of bayerite needs to be 10% by weight or less. This pseudo-boehmite can be measured by X-ray diffraction analysis of a hydrate of alumina titania, and 2θ
Thus, relatively broad diffraction peaks can be seen at angles of 14.5 °, 28.2 °, 38.4 °, and 49.0 °.
Bayerite is 2θ, 18.8 °, 20.3 °,
Relatively sharp diffraction peaks are observed at angles of 27.8 °, 40.5 ° and 53.1 °. The term "substantially boehmite" as used in the present invention means that the content of bayerite is 10% by weight or less.
In the X-ray diffraction analysis under the measurement conditions of 0 KV, only the pseudo-boehmite peak was observed, and no broad peak of bayerite was present. Under these conditions, the detection limit of bayerite in X-ray diffraction analysis is 10% by weight.

【0008】この実質的に擬ベーマイトで、バイヤライ
トは10重量%以下とする一つの方法は、アルミニウム
イオン含有液、チタニウムイオン含有液及び中和に要す
る酸あるいはアルカリ液を急速に混合し、撹拌すること
により得られる。理由は分からないが、こうした方法で
調製したものは、バイヤライトが10%以下となり、最
終的に得られる触媒の活性が特に優れている。また、こ
れらの溶液を混合するとき、溶液を40〜80℃に加温
するとバイヤライトの含有量の低いものが得られる。
[0008] One method of reducing the content of bayerite to 10% by weight or less in this substantially pseudo-boehmite is to rapidly mix a solution containing aluminum ions, a solution containing titanium ions and an acid or alkali solution required for neutralization, and stir. It is obtained by doing. Although the reason is not known, those prepared by such a method have 10% or less of bayerite, and the activity of the finally obtained catalyst is particularly excellent. When these solutions are mixed, if the solution is heated to 40 to 80 ° C., a low content of bayerite can be obtained.

【0009】以上のようにして得られる水和物は、40
0〜800℃の温度で、0.1〜20時間焼成すること
により触媒担体とすることができる。この触媒担体中の
チタニアは5〜40重量%である。5重量%以下では、
十分な脱硫活性の向上効果が見られず、また40重量%
以上となると脱硫活性ばかりでなく、触媒の機械的強度
も低下してしまう。
The hydrate obtained as described above is 40
By calcining at a temperature of 0 to 800 ° C. for 0.1 to 20 hours, a catalyst carrier can be obtained. The titania in the catalyst carrier is 5 to 40% by weight. Below 5% by weight,
No sufficient effect of improving desulfurization activity was found, and 40% by weight
If it becomes above, not only a desulfurization activity but the mechanical strength of a catalyst will fall.

【0010】このような本発明の担体に第VI族金属(M
o、W)及び第VIII族金属(Co、Ni)等を担持することによ
り、水素化精製処理用触媒とすることができる。
[0010] Such a carrier of the present invention may contain a Group VI metal (M
By supporting o, W) and Group VIII metals (Co, Ni), etc., a catalyst for hydrorefining treatment can be obtained.

【0011】[0011]

【実施例】(参考例) アルミン酸ソーダ700gを2
0lの水に溶解して、A液とし、四塩化チタン64.6g
を1.3lの水に溶解し、これに1重量%濃度の塩酸水
溶液16.6lを添加して、B液とした。
[Example] (Reference example) 700 g of sodium aluminate was added to 2
Dissolved in 0 l of water to make solution A, 64.6 g of titanium tetrachloride
Was dissolved in 1.3 liters of water, and 16.6 liter of a 1% by weight aqueous hydrochloric acid solution was added thereto to obtain a solution B.

【0012】60℃に加温した水2lを容器に入れ、激
しく撹拌しながら、60℃に加温した上記A液とB液を
同時に約10秒間で加え、60分間撹拌した。撹拌停止
時のPHは10.5であった。このヒドロゲルスラリー
を1晩放置した後、濾過し、得られた固形分を、ナトリ
ウムイオンや塩素イオンが認められなくなるまで水で洗
浄し、130℃で濃縮した。これをニーダーで、90分
間混練した後、孔径1.8mmのダイスで押出し成形し
た。この成形物を乾燥器にて、130℃の温度で、一晩
乾燥し、アルミナチタニア水和物を得た。この水和物に
ついてX線回折分析を行い、この結果を表1に示した。
次に、このアルミナチタニア水和物を600℃の温度
で、1時間焼成し、担体とした。この担体の組成及び細
孔特性を測定した。細孔特性の比表面積、細孔容積およ
びメジアン径(細孔容積が50%となる細孔径)は、窒素
吸着法による測定器デジソープ2500(マイクロメリティ
クス社製)を用いて測定した。
2 liters of water heated to 60 ° C. was placed in a container, and while vigorously stirring, the above solution A and solution B heated to 60 ° C. were added simultaneously for about 10 seconds and stirred for 60 minutes. The pH when stirring was stopped was 10.5. After leaving this hydrogel slurry overnight, it was filtered, and the obtained solid was washed with water until no sodium ion or chloride ion was observed, and concentrated at 130 ° C. This was kneaded in a kneader for 90 minutes, and then extruded with a 1.8 mm hole die. This molded product was dried in a dryer at a temperature of 130 ° C. overnight to obtain an alumina titania hydrate. X-ray diffraction analysis was performed on this hydrate, and the results are shown in Table 1.
Next, this alumina titania hydrate was fired at a temperature of 600 ° C. for 1 hour to obtain a carrier. The composition and pore characteristics of this carrier were measured. The specific surface area, the pore volume, and the median diameter (pore diameter at which the pore volume becomes 50%) of the pore characteristics were measured using a Digisorp 2500 measuring instrument (manufactured by Micromeritics Co., Ltd.) by a nitrogen adsorption method.

【0013】上記担体150gにヘプタモリブデン酸ア
ンモニウム34.0g及び硝酸コバルト27.4gを含む水
溶液を用いて、モリブデンを金属として10重量%、コ
バルトを金属として3重量%含浸担持した。この担持物
を130℃で一晩乾燥した後、500℃で1時間焼成
し、触媒を得た。
An aqueous solution containing 34.0 g of ammonium heptamolybdate and 27.4 g of cobalt nitrate was impregnated and supported on 150 g of the above-mentioned carrier with 10% by weight of molybdenum as a metal and 3% by weight of cobalt as a metal. After drying this support at 130 ° C. overnight, it was calcined at 500 ° C. for 1 hour to obtain a catalyst.

【0014】(実施例) 参考例と同様のA液を調製
した。四塩化チタン64.6gを1.3lの水に溶解さ
せ、C液を得た。
Example A solution A similar to the reference example was prepared. 64.6 g of titanium tetrachloride was dissolved in 1.3 l of water to obtain solution C.

【0015】2lの水を60℃に加温し、激しく撹拌さ
せつつ、これに60℃に加温したA液を約800ml/mi
n、同様に60℃に加温したC液を約52ml/minの流速
で同時に加え、ここに3.3%塩酸水溶液を装入し生成
するチタニア-アルミナヒドロゲルスラリーのpHが常
に6となるように調整した。A液とC液のすべて装入す
るのに要した時間は24分であった。その後60分間撹
拌した。撹拌停止時のチタニア-アルミナヒドロゲルス
ラリーのpHは5.9であった。こうして得られたヒド
ロゲルスラリーを1晩放置した後、順次参考例と同様の
処理を行い、チタニア-アルミナ水和物、さらにはチタ
ニア-アルミナ担体を得た。このチタニア-アルミナ水和
物のX線回折測定結果ならびにチタニア-アルミナ担体
の組成および細孔特性を表1に示した。
2 liters of water was heated to 60 ° C., and while stirring vigorously, the solution A heated to 60 ° C. was added thereto at about 800 ml / mi.
n, Solution C, which was also heated to 60 ° C., was simultaneously added at a flow rate of about 52 ml / min, and a 3.3% hydrochloric acid aqueous solution was charged therein so that the pH of the titania-alumina hydrogel slurry formed always became 6. Was adjusted. The time required for charging all of the liquids A and C was 24 minutes. Thereafter, the mixture was stirred for 60 minutes. When the stirring was stopped, the pH of the titania-alumina hydrogel slurry was 5.9. After the hydrogel slurry thus obtained was left overnight, the same treatment as in Reference Example was successively performed to obtain a titania-alumina hydrate and further a titania-alumina carrier. Table 1 shows the results of X-ray diffraction measurement of the titania-alumina hydrate, and the composition and pore characteristics of the titania-alumina carrier.

【0016】このチタニア-アルミナ担体に参考例と同
様にしてモリブデンを10重量%、コバルトを3重量%
担持して、触媒を調製した。
In the titania-alumina carrier, 10% by weight of molybdenum and 3% by weight of cobalt were used in the same manner as in Reference Example.
Supported to prepare a catalyst.

【0017】(比較例1) 実施例と同様のA液及び
C液を調製した。
(Comparative Example 1) A liquid A and a liquid C similar to those in the example were prepared.

【0018】2lの水を60℃に加温し、激しく撹拌さ
せながら、これに60℃に加温したA液を約800ml/m
in、同様に60℃に加温したC液を約52ml/minの流速
で同時に添加し、さらに3.3%塩酸水溶液を装入して
生成するチタニア-アルミナヒドロゲルスラリーのpH
が常に9.5〜10.5となるようにした。A液とC液を
すべて装入するのに要した時間は25分であった。その
後60分間撹拌した。撹拌停止時のチタニア-アルミナ
ヒドロゲルスラリーのpHは9.8であった。こうして
得られたヒドロゲルスラリーを1晩放置した後、順次参
考例と同様の処理を行い、チタニア-アルミナ水和物、
さらにはチタニア-アルミナ担体を得た。このチタニア-
アルミナ水和物のX線回折測定結果ならびにチタニア-
アルミナ担体の組成および細孔特性を表1に示した。
2 liters of water was heated to 60 ° C., and while stirring vigorously, about 800 ml / m of solution A heated to 60 ° C. was added thereto.
In, a solution C, which was also heated to 60 ° C., was simultaneously added at a flow rate of about 52 ml / min, and a pH of a titania-alumina hydrogel slurry formed by charging a 3.3% hydrochloric acid aqueous solution was further added.
Was always 9.5 to 10.5. The time required for charging all of the liquids A and C was 25 minutes. Thereafter, the mixture was stirred for 60 minutes. When the stirring was stopped, the pH of the titania-alumina hydrogel slurry was 9.8. After leaving the hydrogel slurry thus obtained overnight, the same treatment as in Reference Example was performed sequentially, and titania-alumina hydrate,
Further, a titania-alumina carrier was obtained. This titania-
X-ray diffraction measurement results and titania of alumina hydrate
Table 1 shows the composition and pore characteristics of the alumina carrier.

【0019】このチタニア-アルミナ担体に参考例と同
様にしてモリブデンを10重量%、コバルトを3重量%
担持して、触媒を調製した。
In the titania-alumina carrier, 10% by weight of molybdenum and 3% by weight of cobalt were used in the same manner as in Reference Example.
Supported to prepare a catalyst.

【0020】(比較例2) 実施例と同様のA液及び
C液を調製した。
(Comparative Example 2) A liquid A and a liquid C similar to those in the example were prepared.

【0021】2lの水を張り込み60℃に加温し、激し
く撹拌させつつ、ここへ30℃に加温したA液を約80
0ml/min、C液を約52ml/minの流速で同時に添加し、
さらに3.3%塩酸水溶液を装入して、生成するチタニ
ア-アルミナヒドロゲルスラリーのpHが常に9.5〜1
0.5となるようにした。A液とC液をすべて装入する
のに要した時間は20分であった。その後60分間撹拌
した。撹拌停止時のチタニア-アルミナヒドロゲルスラ
リーのpHは10.2であった。こうして得られたヒド
ロゲルスラリーを1晩放置した後、参考例と同様の処理
を行い、順次チタニア-アルミナ水和物、チタニア-アル
ミナ担体を得た。これらのX線回折測定結果ならびに組
成および細孔特性を表1に示す。
2 liters of water was poured in, and the mixture was heated to 60 ° C. While stirring vigorously, the solution A heated to 30 ° C was added thereto for about 80 hours.
0 ml / min, solution C was simultaneously added at a flow rate of about 52 ml / min,
Further, a 3.3% hydrochloric acid aqueous solution is charged, and the pH of the resulting titania-alumina hydrogel slurry is always 9.5 to 1
It was set to 0.5. The time required for charging all of the solution A and the solution C was 20 minutes. Thereafter, the mixture was stirred for 60 minutes. When the stirring was stopped, the pH of the titania-alumina hydrogel slurry was 10.2. After leaving the hydrogel slurry thus obtained to stand overnight, the same treatment as in Reference Example was performed to obtain a titania-alumina hydrate and a titania-alumina carrier in this order. Table 1 shows the X-ray diffraction measurement results, the composition, and the pore characteristics.

【0022】チタニア-アルミナ担体に参考例と同様に
して10%Mo-3%Coの金属を担持し触媒とした。
A 10% Mo-3% Co metal was supported on a titania-alumina carrier in the same manner as in the Reference Example to prepare a catalyst.

【0023】(実施例) 参考例と同様にしてA液を
得た。四塩化チタン145.5gを2.9lの水に溶解さ
せD溶液を得た。
Example A liquid A was obtained in the same manner as in the reference example. 145.5 g of titanium tetrachloride was dissolved in 2.9 l of water to obtain solution D.

【0024】2lの水を60℃に加温し、激しく撹拌さ
せつつ、ここへ60℃に加温したA液を約800ml/mi
n、同様に60℃に加温したD液を約116ml/minの流
速で同時に添加し、さらに3.3%塩酸水溶液を装入し
て、生成するチタニア-アルミナヒドロゲルスラリーの
pHが常に7となるようにpHを調整した。A液とD液
とをすべて装入するのに要した時間は22分であった。
その後、60分間撹拌した。撹拌終了時のチタニア-ア
ルミナヒドロゲルスラリーのpHは6.6であった。こ
うして得られたヒドロゲルスラリーを1晩放置した後、
参考例と同様の処理を行い、順次チタニア-アルミナ水
和物、チタニア-アルミナ担体を得た。これらのチタニ
ア-アルミナのX線回折測定結果ならびに組成および細
孔特性を表1に示す。
While heating 2 l of water to 60 ° C. and stirring vigorously, the solution A heated to 60 ° C. was added thereto at about 800 ml / mi.
n, Solution D, which was also heated to 60 ° C., was simultaneously added at a flow rate of about 116 ml / min, and a 3.3% hydrochloric acid aqueous solution was further charged, so that the pH of the resulting titania-alumina hydrogel slurry was always 7 The pH was adjusted to be as follows. The time required for charging all of the solution A and the solution D was 22 minutes.
Thereafter, the mixture was stirred for 60 minutes. The pH of the titania-alumina hydrogel slurry at the end of the stirring was 6.6. After leaving the hydrogel slurry thus obtained to stand overnight,
The same treatment as in the Reference Example was performed to obtain a titania-alumina hydrate and a titania-alumina carrier in this order. Table 1 shows the results of X-ray diffraction measurement, composition and pore characteristics of these titania-aluminas.

【0025】チタニア-アルミナ担体に参考例と同様に
して10%Mo-3%Coの金属を担持し触媒とした。
In the same manner as in Reference Example, a metal of 10% Mo-3% Co was supported on a titania-alumina carrier to obtain a catalyst.

【0026】(比較例3)比較例2と同様にしてA液
を、実施例と同様にしてE液を得た。
Comparative Example 3 Liquid A was obtained in the same manner as in Comparative Example 2, and Liquid E was obtained in the same manner as in the Example.

【0027】2lの水を30℃に加温し、激しく撹拌さ
せつつ、ここへ30℃に加温したA液を約800ml/mi
n、同様に30℃に加温したE液を約116ml/minの流
速で同時に添加し、さらに3.3%塩酸水溶液を装入
し、生成するチタニア-アルミナヒドロゲルスラリーの
pHが常に9.5〜10.5となるようにpHを調整し
た。A液とE液とをすべて装入するのに要した時間は2
3分であった。その後60分間撹拌した。撹拌停止時の
チタニア-アルミナヒドロゲルスラリーのpHは10.1
であった。こうして得られたヒドロゲルスラリーを1晩
放置した後、参考例と同様の処理を行い、順次チタニア
-アルミナ水和物、チタニア-アルミナ担体を得た。これ
らのチタニア-アルミナのX線回折測定結果ならびに組
成および細孔特性を表1に示す。
While heating 2 liters of water to 30 ° C. and stirring vigorously, the solution A heated to 30 ° C. was added thereto at about 800 ml / mi.
n, Solution E, which was also heated to 30 ° C., was simultaneously added at a flow rate of about 116 ml / min, and 3.3% hydrochloric acid aqueous solution was further charged. The pH of the resulting titania-alumina hydrogel slurry was constantly 9.5. The pH was adjusted to be 〜1010.5. The time required to charge all of solution A and solution E is 2
3 minutes. Thereafter, the mixture was stirred for 60 minutes. The pH of the titania-alumina hydrogel slurry when stirring was stopped was 10.1
Met. After leaving the hydrogel slurry thus obtained to stand overnight, the same treatment as in the reference example was carried out, and
-Alumina hydrate and titania-alumina carrier were obtained. Table 1 shows the results of X-ray diffraction measurement, composition and pore characteristics of these titania-aluminas.

【0028】チタニア-アルミナ担体に参考例と同様に
して10%Mo-3%Coの金属を担持し触媒とした。
A 10% Mo-3% Co metal was carried on a titania-alumina carrier in the same manner as in the Reference Example to prepare a catalyst.

【0029】[0029]

【表1】 [Table 1]

【0030】(触媒活性試験)上記実施例及び比較例で
得た触媒の水素化脱硫活性を固定床流通式高圧反応装置
を使用して評価した。実験に使用した原料油の性状と試
験条件を次に示した。原料油性状 油種 減圧軽油 硫黄分 2.16wt% 窒素分 570wtppm 比重 0.8974試験条件 水素圧力 80kg/cm2 LHSV 3.0hr-1 水素/オイル比 400l/l 反応温度 360℃
(Catalytic activity test) In the above Examples and Comparative Examples
The hydrodesulfurization activity of the obtained catalyst was measured using a fixed bed flow type high pressure reactor.
Was evaluated using Properties and trials of feedstock oil used in experiments
The test conditions are shown below.Raw material properties  Oil type Vacuum gas oil Sulfur 2.16wt% Nitrogen 570wtppm Specific gravity 0.8974Test condition  Hydrogen pressure 80kg / cmTwo  LHSV 3.0hr-1  Hydrogen / oil ratio 400l / l Reaction temperature 360 ℃

【0031】得られた各生成油に含まれる硫黄分を測定
し、脱硫率を比較した結果を、触媒の充填密度とともに
表2に示した。
Table 2 shows the results of measuring the sulfur content in each of the obtained product oils and comparing the desulfurization rates together with the packing density of the catalyst.

【0032】[0032]

【表2】 [Table 2]

【0033】この結果から本発明のチタニア-アルミナ
担体から調製された触媒が優れた脱硫性能を有すること
がわかる。
The results show that the catalyst prepared from the titania-alumina carrier of the present invention has excellent desulfurization performance.

【0034】[0034]

【発明の効果】本発明は、脱硫活性に優れた触媒を調製
できるものである。
According to the present invention, a catalyst excellent in desulfurization activity can be prepared.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B01J 21/00 - 38/74 C10G 45/04 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 7 , DB name) B01J 21/00-38/74 C10G 45/04

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 アルミニウムイオンとして0.1〜10
重量%濃度のアルミニウム含有溶液とチタニウムイオン
として0.1〜10重量%濃度のチタニウム含有溶液と
を混合液のpHを6〜7になるように混合撹拌して、
イヤライトによるX線回折ピークが擬ベーマイトによる
X線回折ピークより弱いアルミナチタニア水和物を得、
これを焼成して5〜40重量%のチタニヤを含有するア
ルミナチタニアを得ることを特徴とする水素化精製処理
用触媒担体の製造方法。
1. An aluminum ion of 0.1 to 10
Are stirred together and the pH of the titanium-containing solution and a mixture of 0.1 to 10 wt% concentration as an aluminum-containing solution and titanium ions wt% concentration so as to 6-7, Ba
X-ray diffraction peak due to earlite due to pseudo-boehmite
Obtaining alumina titania hydrate weaker than the X-ray diffraction peak ,
A method for producing a catalyst carrier for hydrorefining treatment, comprising calcining this to obtain alumina titania containing 5 to 40% by weight of titania.
【請求項2】 請求項1記載の水素化精製処理用触媒担
体の製造方法による担体に第VI族金属及び第VIII
族金属を担持する水素化精製用触媒の製造方法。
2. A catalyst for hydrorefining treatment according to claim 1.
Group VI metal and VIII
A method for producing a hydrotreating catalyst carrying a group III metal.
JP28946491A 1991-10-09 1991-10-09 Method for producing catalyst for hydrorefining treatment and its carrier Expired - Fee Related JP3332163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28946491A JP3332163B2 (en) 1991-10-09 1991-10-09 Method for producing catalyst for hydrorefining treatment and its carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28946491A JP3332163B2 (en) 1991-10-09 1991-10-09 Method for producing catalyst for hydrorefining treatment and its carrier

Publications (2)

Publication Number Publication Date
JPH0596161A JPH0596161A (en) 1993-04-20
JP3332163B2 true JP3332163B2 (en) 2002-10-07

Family

ID=17743612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28946491A Expired - Fee Related JP3332163B2 (en) 1991-10-09 1991-10-09 Method for producing catalyst for hydrorefining treatment and its carrier

Country Status (1)

Country Link
JP (1) JP3332163B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5599212B2 (en) 2010-03-30 2014-10-01 千代田化工建設株式会社 Hydrocarbon oil hydrotreating catalyst, method for producing the same, and hydrotreating method for hydrocarbon oil using the same
US10071370B2 (en) 2012-07-19 2018-09-11 Chiyoda Corporation Method for reactivating used hydrogenation treatment titania catalyst, and regenerated hydrogenation treatment titania catalyst

Also Published As

Publication number Publication date
JPH0596161A (en) 1993-04-20

Similar Documents

Publication Publication Date Title
US5888380A (en) Hydroprocessing catalyst and use thereof
JP4303820B2 (en) Hydrotreating catalyst and hydrotreating method
JP2002204959A (en) Catalyst for hydrogenation and hydrogenation treatment
EP2938433B1 (en) Preparation of a hydrocarbon conversion catalyst
JPS594182B2 (en) Catalyst for hydrotreating heavy hydrocarbon oil and method for producing the same
JP2002363575A (en) Method for two step hydrogenating heavy hydrocarbon oil
US4786404A (en) Process for hydrotreating hydrocarbon feeds
US4717705A (en) Hydrotreating catalysts prepared from hydrogels
US4880524A (en) Process for hydrotreating hydrocarbon feeds
US3846286A (en) Hydrodesulfurization catalyst
JP3332163B2 (en) Method for producing catalyst for hydrorefining treatment and its carrier
US4717707A (en) Hydrotreating catalysts prepared from hydrogels
US4820679A (en) Hydrotreating catalysts prepared from hydrogels
US4716141A (en) Hydrotreating catalysts prepared from hydrogels
US4786403A (en) Process for hydrotreating hydro carbon feeds
US4717704A (en) Hydrotreating catalysts prepared from hydrogels
AU602794B2 (en) Process for the preparation of hydrotreating catalysts from hydrogels
US4716140A (en) Hydrotreating catalysts prepared from hydrogels
JP2567260B2 (en) Method for producing hydrotreating catalyst from hydrogel
US3376106A (en) Boehmite alumina products
US4717698A (en) Hydrotreating catalysts prepared from hydrogels
US4880526A (en) Hydrotreating catalysts prepared from hydrogels
US4738945A (en) Hydrotreating catalysts prepared from hydrogels
EP0266010B1 (en) Process for the preparation of hydrotreating catalysts from hydrogels
JP2556343B2 (en) Method for producing hydrogenated catalyst from hydrogel

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees