JP3331691B2 - Positive electrode for lithium secondary battery - Google Patents

Positive electrode for lithium secondary battery

Info

Publication number
JP3331691B2
JP3331691B2 JP21659893A JP21659893A JP3331691B2 JP 3331691 B2 JP3331691 B2 JP 3331691B2 JP 21659893 A JP21659893 A JP 21659893A JP 21659893 A JP21659893 A JP 21659893A JP 3331691 B2 JP3331691 B2 JP 3331691B2
Authority
JP
Japan
Prior art keywords
positive electrode
substrate
crystal
lithium
limn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21659893A
Other languages
Japanese (ja)
Other versions
JPH06187994A (en
Inventor
覚 鈴木
博文 磯山
小島  久尚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP21659893A priority Critical patent/JP3331691B2/en
Publication of JPH06187994A publication Critical patent/JPH06187994A/en
Application granted granted Critical
Publication of JP3331691B2 publication Critical patent/JP3331691B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、リチウム二次電池用正
極、特に大電流放電時の放電エネルギー密度の高いリチ
ウム二次電池用正極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive electrode for a lithium secondary battery, and more particularly to a positive electrode for a lithium secondary battery having a high discharge energy density during large current discharge.

【0002】[0002]

【従来の技術】電位が一番卑であり、単位重量および単
位体積あたりのエネルギー密度が最大となるリチウム金
属が、高エネルギー密度化を目指す二次電池系の負極活
物質として注目されている。また、負極に対する正極活
物質としては、高いエネルギー密度を与えるLiMn2
4 等のリチウムを含む金属酸化物特にスピネル型化合
物が注目を集めている。かかるリチウム二次電池は、例
えば特開平2−139860号公報に報告されている。
2. Description of the Related Art Lithium metal, which has the lowest potential and the highest energy density per unit weight and unit volume, has attracted attention as a negative electrode active material for secondary batteries aiming at higher energy density. As a positive electrode active material for the negative electrode, LiMn 2 giving a high energy density is used.
Attention has been paid to metal oxides containing lithium such as O 4 , especially spinel compounds. Such a lithium secondary battery is reported, for example, in JP-A-2-139860.

【0003】[0003]

【発明が解決しようとする課題】リチウム二次電池の正
極を構成するLiMn2 4 は、MnO2 とLiOHと
を混合し、焼成したLiMn2 4 粉末を使用してい
る。そしてこのLiMn24 粉末に結着剤と導電剤と
を混合し板状に成形して正極としている。このようにし
て作られた正極は、LiMn2 4 粉末自体に結晶欠
陥、多数の結晶粒界を持つとともに、LiMn2 4
末に配合される結着剤と導電剤とからなる非晶質領域が
リチウムの移動を抑制する。このため正極におけるリチ
ウムイオンの見掛けの移動度は低くなっている。特に、
大電流放電を行おうとしても、結晶欠陥、結晶粒界およ
び非晶質領域が大きくリチウムイオンの移動速度を律速
し、大電流放電ができなず、充電時に正極に導入された
リチウムイオンの一部しか取り出せなくなる。本発明者
は、従来の上記した正極を使用し、放電電流密度を大き
くすると放電電流密度が低下するという現象を観測して
いる。
As the LiMn 2 O 4 constituting the positive electrode of the lithium secondary battery, LiMn 2 O 4 powder obtained by mixing MnO 2 and LiOH and firing the mixture is used. Then, a binder and a conductive agent are mixed with the LiMn 2 O 4 powder and formed into a plate to form a positive electrode. The positive electrode thus prepared has a crystal defect in the LiMn 2 O 4 powder itself, a large number of crystal grain boundaries, and an amorphous material comprising a binder and a conductive agent mixed in the LiMn 2 O 4 powder. The region inhibits lithium migration. Therefore, the apparent mobility of lithium ions at the positive electrode is low. In particular,
Even if a high-current discharge is attempted, crystal defects, crystal grain boundaries, and amorphous regions are large and the rate of movement of lithium ions is limited, and high-current discharge cannot be performed. Only parts can be taken out. The present inventor has observed a phenomenon that the discharge current density decreases as the discharge current density increases, using the above-described conventional positive electrode.

【0004】このような問題は放電時ばかりでなく、充
電時においても問題となる。例えば急速充電ができない
という問題がある。本発明はかかる問題を解決しうと
するもので、正極におけるリチウムイオンの見掛けの移
動度を高め、大電流放電時の放電エネルギー密度の高い
リチウム二次電池用正極を提供することを目的とする。
[0004] Such a problem occurs not only at the time of discharging but also at the time of charging. For example, there is a problem that quick charging cannot be performed. The present invention has I to solve such problems Utosuru increases the mobility of the apparent lithium ions in the positive electrode, and an object thereof is to provide a positive electrode for a high lithium secondary battery discharge energy density at the time of large current discharge .

【0005】[0005]

【課題を解決するための手段】正極におけるリチウムイ
オンの見かけの移動度を高める手段として、見掛けの正
極面積を広くすること、非晶質領域を少なくもしくは無
くすこと、結晶欠陥、結晶粒界を無くすことである。本
発明はかかる手段を具体化したものである。すなわち、
本第一発明のリチウム二次電池用正極は、導電性基板
、該基板の表面に突起したリチウムを含む金属酸化物
からなる正極活物質と、を具備し、該正極活物質は該基
板表面法線方向となす角が0≦θ<90°となるように
突起し柱状に成長していることを特徴とする
Means for increasing the apparent mobility of lithium ions at the positive electrode include increasing the apparent positive electrode area, reducing or eliminating amorphous regions, and eliminating crystal defects and crystal grain boundaries. That is. The present invention embodies such means. That is,
The positive electrode for a lithium secondary battery of the first invention includes a conductive substrate and a metal oxide containing lithium protruding on the surface of the substrate.
A positive electrode active material comprising:
The angle between the plate surface normal direction and the normal direction should be 0 ≦ θ <90 °
It is characterized by being projected and growing in a columnar shape .

【0006】そして本第二発明のリチウム二次電池用正
極は、導電性基板と該基板表面の厚さ方向に1個の単結
晶で構成されたLiMn2 4 結晶からなる正極活物質
とを具備することを特徴とする。本第一発明および第二
発明とも正極の基板としてはNi、Al、Cu等の金属
板あるいはその他導電性材料で形成された板材を使用す
ることができる。基板の大きさ形状は用途に応じ任意の
ものとすることができる。
The positive electrode for a lithium secondary battery according to the second aspect of the present invention comprises a conductive substrate and a positive electrode active material composed of LiMn 2 O 4 crystal composed of one single crystal in the thickness direction of the substrate surface. It is characterized by having. In both the first invention and the second invention, a metal plate of Ni, Al, Cu or the like or a plate material formed of other conductive material can be used as the substrate of the positive electrode. The size and shape of the substrate can be arbitrary depending on the application.

【0007】本第一発明の正極は、この基板と、基板の
表面に突起したリチウムを含む金属酸化物からなる正極
活物質と、を具備し、正極活物質は基板表面法線方向と
なす角θが、0≦θ<90°となるように突起し柱状に
成長したものである。リチウムを含む金属酸化物として
は、LiMn2 4 、LiX WO3 、LiCoO2 、L
iNi0.4 Co0.6 2 、Li0.5 MnO2 、LiV2
5 等を挙げることができる。
The positive electrode according to the first aspect of the present invention comprises the substrate
Positive electrode made of metal oxide containing lithium protruding on the surface
And the positive electrode active material is formed by projecting so that an angle θ with respect to the normal direction of the substrate surface satisfies 0 ≦ θ <90 ° and growing in a columnar shape . Examples of lithium-containing metal oxides include LiMn 2 O 4 , Li X WO 3 , LiCoO 2 , L
iNi 0.4 Co 0.6 O 2 , Li 0.5 MnO 2 , LiV 2
O 5 and the like can be mentioned.

【0008】これら金属酸化物を基板表面法線方向とな
す角θが、0≦θ<90°である柱状に成長したものと
する手段として、真空蒸着成膜における斜め入射蒸着を
採用できる。この方法は、図1にその概略を示すよう
に、真空槽1内で基板2の法線と蒸着粒子の入射方向の
なす角θが、0≦θ<90°となるように基板2とター
ゲット3との相対位置を規定し、次にターゲット3にイ
オンビーム等のエネルギーを照射し、ターゲット3の構
成元素粒子を叩き出して基板2に付着させるものであ
る。この斜め入射蒸着により直径数ナノメートル程度の
円柱状の突起が基板上に林立して形成される。突起の伸
びる方向は入射方向と一致する。従って、法線と蒸着粒
子の入射方向のなす角θが大きくなるにつれ形成される
柱状突起は基板表面に対してより傾斜する。また、θが
大きくなるにつれ、隣接する柱状突起の間隔が開く傾向
にある。しかしθが大きくなりすぎると基板表面への均
質な蒸着が困難になる。このため好ましいθの角度は5
〜80度程度である。
[0008] and that these metal oxides substrate surface normal direction and the angle theta has grown into columnar is 0 ≦ θ <90 °
As means for performing this, oblique incidence evaporation in vacuum evaporation film formation can be employed. As shown schematically in FIG. 1, this method uses the substrate 2 and the target 2 so that the angle θ between the normal line of the substrate 2 and the incident direction of the vapor deposition particles in the vacuum chamber 1 satisfies 0 ≦ θ <90 °. The target 3 is irradiated with energy such as an ion beam, and the constituent element particles of the target 3 are beaten out and adhered to the substrate 2. By this oblique incidence evaporation, columnar projections having a diameter of about several nanometers are formed on the substrate. The direction in which the protrusion extends coincides with the incident direction. Therefore, as the angle θ between the normal and the incident direction of the vapor deposition particles increases, the columnar projections formed become more inclined with respect to the substrate surface. Further, as θ increases, the interval between adjacent columnar projections tends to increase. However, if θ is too large, it becomes difficult to perform uniform deposition on the substrate surface. Therefore, the preferable angle of θ is 5
About 80 degrees.

【0009】ターゲットとしては正極活物質を構成する
金属酸化物をそのまま使用できる。また、リチウムを除
く金属の酸化物のみを真空蒸着し、基板上に突起を形成
したのち、リチウムを吸収させてもよい。また、柱状突
起間の間隔を広くするため、適当なエツチング剤でエツ
チングし、柱状突起間の間隔を広くすることも好まし
い。
As a target, a metal oxide constituting the positive electrode active material can be used as it is. Alternatively, only a metal oxide except lithium may be vacuum-deposited to form a projection on the substrate, and then lithium may be absorbed. In order to widen the interval between the columnar projections, it is also preferable to perform etching with an appropriate etching agent to widen the interval between the columnar projections.

【0010】具体例として、Lix WO3 を正極活物質
とした正極の製造方法を説明する。基板としては導電板
を用いた。また、ターゲットとしてはWO3 をもちい
た。この基板およびターゲットを真空槽内に入れ、基板
の法線とターゲットより入射される粒子の入射方向の角
度θを75°とした。そして真空槽内を6.66×10
-6mbarとし、かつ基板の温度を26℃に保ち、電子
ビームをターゲットにら照射してスパッタリングを行
い、蒸着速度10Å/secでWO3 を蒸着した。これ
により基板上にWO3 の柱状突起が密集して林立してい
る図2に示す金属酸化物薄膜を得た。この柱状突起の高
さは約0.3μm、直径0.04μmであった。この柱
状WO3 にリチウムを吸着させることにより、陽極活物
質Lix WO 3 が基板表面に林立して柱状に突出した本
第一発明のリチウム二次電池用正極が得られる。
As a specific example, LixWOThreeThe positive electrode active material
A method for manufacturing a positive electrode will be described. Conductive plate as substrate
Was used. The target is WOThreeWith
Was. Put this substrate and target in a vacuum chamber,
Between the normal of the target and the direction of incidence of the particle incident from the target
The degree θ was 75 °. Then, 6.66 × 10
-6mbar, and the temperature of the substrate is kept at 26 ° C.
The target is irradiated with a beam and sputtering is performed.
WO at a deposition rate of 10se / secThreeWas deposited. this
WO on the substrate byThreeThe columnar projections are densely forested
The metal oxide thin film shown in FIG. Height of this columnar projection
The length was about 0.3 μm and the diameter was 0.04 μm. This pillar
WOThreeAnode active material by adsorbing lithium on
Quality LixWO ThreeIs a book protruding in a columnar shape standing on the substrate surface
The positive electrode for a lithium secondary battery of the first invention is obtained.

【0011】本第一発明のリチウム二次電池用正極はそ
の正極活物質が基板表面に林立した突起で構成されてい
る。当然、突起と突起の間には空間が形成される。この
空間にリチウムイオンを運ぶ電解液が浸透する。すなわ
ち、正極の表面より離れた深い部分にまで電解液が進入
することになる。これにより見掛けの正極表面と電解液
とが接触する接触面積が飛躍的に増大する。このため正
極活物質と電解液との間のリチウムイオンの伝達が極め
て容易となる。
The positive electrode for a lithium secondary battery according to the first aspect of the present invention has a positive electrode active material composed of protrusions protruding from the substrate surface. Naturally, a space is formed between the protrusions. The electrolyte that carries lithium ions penetrates into this space. In other words, the electrolytic solution penetrates into a deep part away from the surface of the positive electrode. As a result, the contact area between the apparent positive electrode surface and the electrolytic solution is dramatically increased. Therefore, the transfer of lithium ions between the positive electrode active material and the electrolyte becomes extremely easy.

【0012】また、柱状の正極活物質には結着剤とか導
電剤を使用していない。このためかかる結着剤、導電剤
でリチウムイオンの伝達が阻害されることはない。な
お、問題点は、正極活物質が真空蒸着で形成されるため
リチウム含有金属酸化物の結晶が比較的小さく、多くの
を結晶粒界を含む。この結晶粒界がリチウムイオンの移
動を妨害する。この問題は柱状突起を単結晶化すること
により克服できる。
Further, no binder or conductive agent is used for the columnar positive electrode active material. Therefore, the transfer of lithium ions is not hindered by the binder and the conductive agent. The problem is that since the positive electrode active material is formed by vacuum evaporation, the crystals of the lithium-containing metal oxide are relatively small, and many of them contain crystal grain boundaries. The grain boundaries hinder the movement of lithium ions. This problem can be overcome by making the columnar projections single crystallized.

【0013】本第二発明のリチウム二次電池用正極は、
その正極活物質として基板表面に形成されたLiMn2
4 結晶を用いる。この結晶は単結晶であるのが好まし
いが、正極活物質を構成する薄膜の厚さ方向は1個の結
晶で構成され、基板の表面に広がる方向には複数の結晶
で構成されていてもよい。LiMn2 4 の単結晶は図
3に示すように、白い球で示す酸素原子11と黒い球で
示すマンガン原子12と破線を付した球で示すリチウム
原子13で構成され、図4に示すような八面体が連な
り、図5に示す八面体のフレームを構成している。そし
て八面体の各頂点を酸素原子が占め、八面体の中心にマ
ンガン原子が存在する。リチウム原子はこの八面体のフ
レームの3次元方向に伸びる空間に存在する。図3に示
す矢印はこれら空間を示している。リチウム原子はこれ
ら3次元方向に伸びるトンネル状の空間を通って移動す
る。そして充電時には電解液中のリチウム原子がこの結
晶のトンネル状空間に入り、結晶の内部に進む。逆に、
放電時にはこれら空間から電解液中にリチウム原子が放
出される。
The positive electrode for a lithium secondary battery according to the second aspect of the present invention comprises:
LiMn 2 formed on the substrate surface as the positive electrode active material
O 4 crystals are used. This crystal is preferably a single crystal, but may be composed of one crystal in the thickness direction of the thin film constituting the positive electrode active material, and may be composed of a plurality of crystals in the direction of spreading on the surface of the substrate. . As shown in FIG. 3, the single crystal of LiMn 2 O 4 is composed of oxygen atoms 11 shown by white spheres, manganese atoms 12 shown by black spheres, and lithium atoms 13 shown by dashed spheres, as shown in FIG. Various octahedrons are connected to form an octahedral frame shown in FIG. Oxygen atoms occupy each vertex of the octahedron, and manganese atoms exist at the center of the octahedron. Lithium atoms exist in a space extending in the three-dimensional direction of the octahedral frame. The arrows shown in FIG. 3 indicate these spaces. Lithium atoms move through these three-dimensionally extending tunnel-like spaces. Then, at the time of charging, lithium atoms in the electrolyte enter the tunnel-like space of the crystal and advance into the crystal. vice versa,
At the time of discharge, lithium atoms are released into the electrolyte from these spaces.

【0014】なお、本明細書で中ではLiMn2 4
単結晶と表現しているがリチウム原子は電池の充電、放
電により結晶から出たり入ったりする。このため厳密に
はLiMn2 4 の単結晶の表現は正確ではない。ここ
では図5に示す八面体のフレームが3次元的に伸びてい
るものを1個の単結晶、1個のLiMn2 4 の単結晶
としている。
In this specification, the term “LiMn 2 O 4 single crystal” is used, but lithium atoms enter and exit the crystal by charging and discharging the battery. Therefore, the expression of a single crystal of LiMn 2 O 4 is not strictly accurate. Here, one in which the octahedral frame shown in FIG. 5 extends three-dimensionally is defined as one single crystal and one LiMn 2 O 4 single crystal.

【0015】1個のLiMn2 4 の単結晶の中に存在
するトンネル状の空間は3次元的に連続して伸びている
ため、リチウム原子は容易に結晶の深い部分にまで到達
保持され、また逆に結晶の深い部分より容易に結晶表面
まで移動できる。本第二発明のリチウム二次電池用正極
の薄膜状活物質は、薄膜の厚さ方向に対して1個の単結
晶が存在するのみであるから、電解液と接する薄膜の表
面で保持されたリチウム原子は容易に単結晶のトンネル
状空間を伝って薄膜の反対側の基板に近い薄膜の深い部
分に容易に移動できる。
Since the tunnel-like space existing in one LiMn 2 O 4 single crystal extends continuously three-dimensionally, lithium atoms can easily reach and be held deep in the crystal, and Conversely, it can move to the crystal surface more easily from the deep part of the crystal. Since the thin-film active material of the positive electrode for a lithium secondary battery of the second invention has only one single crystal in the thickness direction of the thin film, it is held on the surface of the thin film in contact with the electrolyte. Lithium atoms can easily travel through the tunnel-like space of the single crystal to a deep portion of the thin film near the substrate on the opposite side of the thin film.

【0016】なお、LiMn2 4 のMnを他の元素で
一部置換したり、LiMn2 4 の積層構造中にLiM
2 4 と格子定数のことなる物質の層を導入すること
により、意識的にLiMn2 4 の結晶に歪みを与え、
トンネル状空間を広げてリチウム原子の移動度を向上さ
せることも考えられる。また、薄膜状結晶の電解液と接
する最表面層のみをアモルファス化した傾斜構造とする
ことにより薄膜状結晶の疲労破壊強度を向上させること
も考えられる。
[0016] Incidentally, LiM a Mn of LiMn 2 O 4 or partially substituted by another element, during lamination structure of LiMn 2 O 4
By introducing a layer of a substance having a different lattice constant from n 2 O 4 , the crystal of LiMn 2 O 4 is intentionally strained,
It is also conceivable to increase the mobility of lithium atoms by expanding the tunnel-like space. Further, it is conceivable to improve the fatigue fracture strength of the thin-film crystal by forming an inclined structure in which only the outermost surface layer in contact with the electrolyte of the thin-film crystal is made amorphous.

【0017】本第二発明のリチウム二次電池用正極の薄
膜状活物質を作るには次の方法がある。この方法はアト
ミック マニプレーションの考えに基づくもので、図6
に示すように、基板2の表面にLiMn2 4 のMn層
の格子定数に一致するようにMn原子12を配置する。
次にこれらMn原子12の上にLi原子13、O原子1
1を独立に積層する。その後熱処理することにより基板
上にLiMn2 4 の単結晶が基板一面にかつ一様に形
成された種結晶が出来る。その後この種結晶を基に、L
iMn2 4 を基板の厚さ方向に成長させ、薄膜状の結
晶とする。
There are the following methods for producing the thin film active material for the positive electrode for a lithium secondary battery of the second invention. This method is based on the idea of atomic manipulation,
As shown in FIG. 2, Mn atoms 12 are arranged on the surface of the substrate 2 so as to match the lattice constant of the Mn layer of LiMn 2 O 4 .
Next, on these Mn atoms 12, Li atoms 13 and O atoms 1
1 are independently laminated. Thereafter, a heat treatment is performed to form a seed crystal in which a single crystal of LiMn 2 O 4 is uniformly formed on the entire surface of the substrate. Then, based on this seed crystal, L
iMn 2 O 4 is grown in the thickness direction of the substrate to form a thin film crystal.

【0018】LiMn2 4 を基板の厚さ方向に成長さ
せる一つの方法とは、帯溶融法による単結晶成長の概念
を取り入れた固相エピタキシー成長である。この方法で
は前記した単結晶ができた基板の単結晶の上に、リチウ
ム、マンガンおよび酸素の各原子層を実用の正極の厚さ
まで積層する。この後基板の一端側よりヒータで帯状に
加熱し積層された各原子層を帯状に熱処理する。そして
ヒータを他端側にゆっくり移動し加熱部分がヒータに合
わせて帯状に他端側に移動させる。このようにして一端
側より他端側に結晶を成長させる。なお、積層された各
原子層に存在していた欠陥はヒータによる加熱で他端側
に集められる。この他端側部分を除去することにより基
板全面にLiMn2 4 の単結晶を成長させることがで
きる。
One method for growing LiMn 2 O 4 in the thickness direction of the substrate is solid phase epitaxy employing the concept of single crystal growth by a zone melting method. In this method, each atomic layer of lithium, manganese, and oxygen is laminated on the single crystal of the substrate on which the single crystal has been formed to a thickness of a practical positive electrode. Thereafter, the substrate is heated in a belt shape from one end side of the substrate, and each of the laminated atomic layers is heat-treated in a belt shape. Then, the heater is slowly moved to the other end side, and the heated portion is moved to the other end side in a belt shape in accordance with the heater. Thus, the crystal is grown from one end to the other end. The defects existing in each of the stacked atomic layers are collected at the other end by heating by the heater. By removing the other end, a LiMn 2 O 4 single crystal can be grown on the entire surface of the substrate.

【0019】もう一つの方法は原料溶融物浸漬引き上げ
法とも称するべきもので、前記基板表面に1層のLiM
2 4 単結晶を作ったのと同じ方法で数原子層のLi
Mn 2 4 単結晶からなる種結晶を作る。この種結晶を
LiMn2 4 の原料溶融物に浸漬し、その後ゆつくり
引き上げることによりLiMn2 4 の単結晶を成長さ
せ、正極の厚さの単結晶とするものである。
Another method is immersion pulling of the raw material melt.
Method, a single layer of LiM
nTwoOFourSeveral atomic layers of Li are formed in the same manner as when a single crystal is made.
Mn TwoOFourMake a seed crystal consisting of a single crystal. This seed crystal
LiMnTwoOFourImmersion in the raw material melt, then relax
LiMnTwoOFourGrown single crystal
And a single crystal having a thickness of the positive electrode.

【0020】[0020]

【発明の作用・効果】本第一発明のリチウム二次電池用
正極は、正極を形成する基板の表面に正極活物質を構成
するリチウムを含む金属酸化物が林立して柱状に突出し
ている。このため柱状に突出している正極活物質の間に
は空間ができる。この空間を電解液が満たす。このため
この正極の電解液と接する接触面積がきわめて広い。従
って電解液と正極活物質との間にリチウムイオンの移動
を阻害する電気二重層が存在しても接触面積の広さで補
うことができる。また、柱状の突起はその断面が極めて
小さい。このため柱状突起の表面に保持されたリチウム
原子は比較的容易に柱状突起の中心部分まで移動でき
る。
In the positive electrode for a lithium secondary battery according to the first aspect of the present invention, a metal oxide containing lithium constituting a positive electrode active material is protruding in a columnar shape on the surface of a substrate forming the positive electrode. Therefore, a space is formed between the positive electrode active materials protruding in a columnar shape. This space is filled with the electrolyte. Therefore, the contact area of the positive electrode in contact with the electrolytic solution is extremely large. Therefore, even if there is an electric double layer between the electrolytic solution and the positive electrode active material that inhibits the transfer of lithium ions, the electric double layer can be compensated for by the large contact area. Further, the columnar projection has an extremely small cross section. Therefore, the lithium atoms held on the surface of the columnar projection can relatively easily move to the center of the columnar projection.

【0021】これらの作用により、本第一発明のリチウ
ム二次電池用正極は見掛けのリチウムイオンの移動度が
高く、大電流の放電、充電が容易となる。また、大電流
を流した場合でもエネルギー密度の低下が少ない。本第
二発明のリチウム二次電池用正極は、その正極活物質が
基板の表面に形成された薄膜状LiMn2 4 結晶から
なる。この薄膜状LiMn2 4 結晶は、薄膜の厚さ方
向に対して1個の単結晶で構成されている。即ち複数の
単結晶が厚さ方向に積層したものではない。このため、
正極の表面で保持されたリチウムイオンは容易に結晶の
トンネル状空間をとおって結晶内を移動できる。このた
めリチウムイオンの見掛けの移動度が高い。
By these effects, the positive electrode for a lithium secondary battery according to the first aspect of the present invention has a high apparent lithium ion mobility and can easily discharge and charge a large current. In addition, even when a large current flows, the energy density does not decrease much. The positive electrode for a lithium secondary battery according to the second aspect of the present invention comprises a thin film LiMn 2 O 4 crystal having a positive electrode active material formed on the surface of a substrate. This thin film LiMn 2 O 4 crystal is composed of one single crystal in the thickness direction of the thin film. That is, a plurality of single crystals are not stacked in the thickness direction. For this reason,
Lithium ions held on the surface of the positive electrode can easily move in the crystal through the tunnel-like space of the crystal. Therefore, the apparent mobility of lithium ions is high.

【0022】リチウムイオンの移動度が高いため、大電
流の放電、充電が容易となる。また、大電流を流した場
合でもエネルギー密度の低下が少ない。さらに、薄膜状
活物質の厚さ方向には単結晶であるから、厚さ方向に結
晶粒界とか粒子内の欠陥も存在しない。また当然に結着
剤等のリチウムイオンの移動を妨げる物質も存在しな
い。これらもリチウムイオンの移動度を高める作用をし
ている。また、LiMn2 4 粒子内に欠陥があると電
池の充電、放電に伴うリチウムイオンの出入りによる結
晶の膨張収縮により、結晶の欠陥部分に歪みエネルギー
が蓄積され、結晶構造の破壊や微粉化が起こる。そして
これが原因で電池の正極の寿命が短くなる。本発明の薄
膜状結晶は単結晶であるためかかる欠陥もない。したが
つて結晶構造の破壊も生じにくい。また微粉化も起こり
にくい。このため本第二発明の正極は500回程度の充
放電寿命が期待できる。
The high mobility of lithium ions makes it easy to discharge and charge a large current. In addition, even when a large current flows, the energy density does not decrease much. Further, since the thin film active material is a single crystal in the thickness direction, there are no crystal grain boundaries or defects in the grains in the thickness direction. In addition, there is naturally no substance such as a binder that hinders the movement of lithium ions. These also act to increase the mobility of lithium ions. Also, if there is a defect in the LiMn 2 O 4 particles, strain energy is accumulated in the crystal defect due to the expansion and contraction of the crystal due to the inflow and out of lithium ions accompanying the charging and discharging of the battery, and the crystal structure is destroyed and finely divided. Occur. As a result, the life of the positive electrode of the battery is shortened. Since the thin film crystal of the present invention is a single crystal, there is no such a defect. Therefore, destruction of the crystal structure hardly occurs. Also, pulverization is unlikely to occur. Therefore, the positive electrode of the second invention can be expected to have a charge / discharge life of about 500 times.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本第一発明のリチウム二次電池用正極の柱状突
起を形成する斜め入射真空蒸着を説明する蒸着装置の概
略図
FIG. 1 is a schematic view of a vapor deposition apparatus illustrating oblique incidence vacuum vapor deposition for forming columnar projections of a positive electrode for a lithium secondary battery according to the first invention.

【図2】斜め入射真空蒸着で得られたWO3 の柱状結晶
構造をしめす電子顕微鏡写真図
FIG. 2 is an electron micrograph showing the columnar crystal structure of WO 3 obtained by oblique incidence vacuum deposition.

【図3】本第二発明のLiMn2 4 単結晶の原子の配
列を示す図
FIG. 3 is a view showing an arrangement of atoms in a LiMn 2 O 4 single crystal of the second invention.

【図4】LiMn2 4 単結晶の酸素及びマンガンの配
置を説明する八面体の斜視図
FIG. 4 is a perspective view of an octahedron illustrating an arrangement of oxygen and manganese in a LiMn 2 O 4 single crystal.

【図5】LiMn2 4 単結晶の八面体の配列を示す斜
視図
FIG. 5 is a perspective view showing an octahedral arrangement of a LiMn 2 O 4 single crystal.

【図6】基板上に1層のLiMn2 4 単結晶を形成す
る方法を説明する概念図
FIG. 6 is a conceptual diagram illustrating a method for forming a single layer of LiMn 2 O 4 single crystal on a substrate.

【符号の説明】[Explanation of symbols]

1…真空槽 2…基板 3…
ターゲット 11…酸素原子 12…マンガン原子 13
…リチウム原子
1. Vacuum chamber 2. Substrate 3.
Target 11: oxygen atom 12: manganese atom 13
... Lithium atom

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−328245(JP,A) 特開 平4−328244(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/58 H01M 4/02 H01M 10/40 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-4-328245 (JP, A) JP-A-4-328244 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/58 H01M 4/02 H01M 10/40

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】導電性基板と、該基板の表面に突起したリ
チウムを含む金属酸化物からなる正極活物質と、を具備
し、 該正極活物質は該基板表面法線方向となす角が0≦θ<
90°となるように突起し柱状に成長していることを特
徴とするリチウム二次電池用正極。
1. A conductive substrate and a projecting rib on the surface of the substrate.
A positive electrode active material comprising a metal oxide containing titanium.
And, positive electrode active material is the substrate surface normal direction and the angle is 0 ≦ theta <
It is noted that it is projected at 90 ° and grown in a columnar shape.
The positive electrode for lithium secondary batteries.
【請求項2】導電性基板と該基板表面の厚さ方向に1個
の単結晶で構成されたLiMn24結晶からなる正極活
物質とを具備することを特徴とするリチウム二次電池用
正極。
2. A lithium secondary battery comprising a conductive substrate and a positive electrode active material comprising a LiMn 2 O 4 crystal composed of one single crystal in a thickness direction of the substrate surface. Positive electrode.
JP21659893A 1992-09-01 1993-08-31 Positive electrode for lithium secondary battery Expired - Fee Related JP3331691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21659893A JP3331691B2 (en) 1992-09-01 1993-08-31 Positive electrode for lithium secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP23385792 1992-09-01
JP4-233857 1992-09-01
JP21659893A JP3331691B2 (en) 1992-09-01 1993-08-31 Positive electrode for lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH06187994A JPH06187994A (en) 1994-07-08
JP3331691B2 true JP3331691B2 (en) 2002-10-07

Family

ID=26521523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21659893A Expired - Fee Related JP3331691B2 (en) 1992-09-01 1993-08-31 Positive electrode for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3331691B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1231654A4 (en) * 1999-10-22 2007-10-31 Sanyo Electric Co Electrode for lithium cell and lithium secondary cell
KR20060083233A (en) 1999-10-22 2006-07-20 산요덴키가부시키가이샤 Electrode for lithium secondary cell and lithium secondary cell
JP3733066B2 (en) 1999-10-22 2006-01-11 三洋電機株式会社 Electrode for lithium secondary battery and lithium secondary battery
US7195842B1 (en) * 1999-10-22 2007-03-27 Sanyo Electric Co., Ltd. Electrode for use in lithium battery and rechargeable lithium battery
AU4885601A (en) 2000-04-26 2001-11-12 Sanyo Electric Co., Ltd. Lithium secondary battery-use electrode and lithium secondary battery
KR100496306B1 (en) * 2003-08-19 2005-06-17 삼성에스디아이 주식회사 Method for preparing of lithium metal anode
TWI311384B (en) 2004-11-25 2009-06-21 Sony Corporatio Battery and method of manufacturing the same
US8080334B2 (en) 2005-08-02 2011-12-20 Panasonic Corporation Lithium secondary battery
KR100904351B1 (en) 2005-11-07 2009-06-23 파나소닉 주식회사 Electrode for lithium secondary battery, lithium secondary battery and method for producing the same
JP5043338B2 (en) 2006-01-19 2012-10-10 パナソニック株式会社 Lithium secondary battery
JP5082714B2 (en) * 2007-09-19 2012-11-28 トヨタ自動車株式会社 Positive electrode body, lithium secondary battery and manufacturing method thereof
WO2011030697A1 (en) 2009-09-11 2011-03-17 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing the same
JP2011150154A (en) * 2010-01-22 2011-08-04 Showa Shinku:Kk Thin film and method of forming thin film
JP6153802B2 (en) * 2012-11-30 2017-06-28 日本碍子株式会社 Electricity storage element

Also Published As

Publication number Publication date
JPH06187994A (en) 1994-07-08

Similar Documents

Publication Publication Date Title
JP3331691B2 (en) Positive electrode for lithium secondary battery
JP3805053B2 (en) Lithium secondary battery
JP4777593B2 (en) Method for producing lithium ion secondary battery
KR101460153B1 (en) Negative electrode, battery using the same, and method of manufacturing negative electrode
KR101500545B1 (en) Negative electrode and secondary cell
JP4910297B2 (en) Negative electrode for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the same
JP2007128766A (en) Negative electrode active substance and battery
US20100159333A1 (en) Plate-like particle for cathode active material of a lithium secondary battery, and a lithium secondary battery
WO2007086411A1 (en) Negative electrode for lithium secondary battery, method for producing same, and lithium secondary battery comprising such negative electrode for lithium secondary battery
US20100159329A1 (en) Plate-like particle for cathode active material of a lithium secondary battery, a cathode active material film of a lithium secondary battery, and a lithium secondary battery
JPH05234621A (en) Nonaqueous electrolyte secondary battery and its manufacture
JP3443227B2 (en) Non-aqueous electrolyte battery
US7556887B2 (en) Nonaqueous electrolyte secondary battery with negative electrode having a La3Co2Sn7 type crystal structure
CN114975863B (en) Black phosphorus cathode, preparation method thereof and lithium ion battery
JP3141362B2 (en) Battery manufacturing method
US11271210B2 (en) Cathode active material with silicon carbide additive
JP3593808B2 (en) Method for manufacturing electrode of lithium battery
JPH05182668A (en) Nonaqueous electrolyte secondary battery
JP2008130427A (en) Manufacturing method of electrode for battery, and manufacturing device of electrode for battery
JPH08329944A (en) Manufacture of positive active material for nonaqueous electrolyte secondary battery
KR102630461B1 (en) Negative electrode for lithium secondary battery and manufacturing method thereof
KR102588919B1 (en) Negative electrode for lithium secondary battery and lithium secondary battery containing the same
JP2000133261A (en) Nonaqueous electrolyte secondary battery and manufacture of same
US20220263120A1 (en) Solid electrolyte material, solid electrolyte including the same, all-solid secondary battery including the solid electrolyte, and method of preparing the solid electrolyte material
JP2005093372A (en) Electrochemical element and its manufacturing method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110726

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees