JP3330432B2 - How to design vehicle suspension parts - Google Patents
How to design vehicle suspension partsInfo
- Publication number
- JP3330432B2 JP3330432B2 JP22135293A JP22135293A JP3330432B2 JP 3330432 B2 JP3330432 B2 JP 3330432B2 JP 22135293 A JP22135293 A JP 22135293A JP 22135293 A JP22135293 A JP 22135293A JP 3330432 B2 JP3330432 B2 JP 3330432B2
- Authority
- JP
- Japan
- Prior art keywords
- level
- factors
- elongation
- levels
- factor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Forging (AREA)
- Vehicle Body Suspensions (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、例えば車両のアッパア
ーム、ロアアーム等の足廻り部品の設計方法の改良に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a method of designing underbody parts such as an upper arm and a lower arm of a vehicle.
【0002】[0002]
【従来の技術】従来、例えば車両のアッパアーム、ロア
アーム等の足廻り部品をアルミニウム合金から製造する
ような場合、鍛造性に優れ且つ必要な引張り強度、耐
力、伸び、硬度等の機械的特性を備えたアルミ合金製の
丸棒から鍛造で成形するような方法が知られている。と
ころで、このような足廻り部品の製造を丸棒から鍛造成
形しようとすると工程が多くて複雑になるため、工程の
一部に鋳造工程を採り入れ、鋳造と鍛造を組合せるよう
にすれば工程の短縮化を図ることが出来るが、このよう
な部品の製造にあたり、まず合金成分を設計した後、鋳
造条件等の製造条件を設計し、次いで熱処理条件等の製
造条件を設計するといった各工程毎に最適化を図るよう
なやり方で行っている。2. Description of the Related Art Conventionally, in the case where undercarriage parts such as an upper arm and a lower arm of a vehicle are manufactured from an aluminum alloy, they are excellent in forgeability and have required mechanical properties such as tensile strength, proof stress, elongation and hardness. A method of forming a round bar made of aluminum alloy by forging is known. By the way, the production of such undercarriage parts requires a lot of complicated processes when it is attempted to forge from a round bar, so if a casting process is adopted as a part of the process and casting and forging are combined, Although it is possible to shorten the time, in the production of such parts, after designing the alloy components, first design the production conditions such as casting conditions, and then design the production conditions such as heat treatment conditions, for each process. It works in a way that optimizes it.
【0003】[0003]
【発明が解決しようとする課題】ところが、このように
工程毎に最適化を図るような方法の場合、目標値に対し
て平均値でクリアする条件の追及であることから、実験
結果等が実際の現場での製品品質に再現されないことが
多く、最適条件のバラツキが大きいという問題があっ
た。However, in the case of such a method in which optimization is performed for each process, conditions for clearing the target value with an average value are pursued. There is a problem that the product quality is often not reproduced in the field at the site, and the dispersion of the optimum conditions is large.
【0004】[0004]
【課題を解決するための手段】かかる課題を解決するた
め請求項1は、車両の足廻り部品に必要な機械的特性の
目標値を設定する工程と、この目標値に関連する合金成
分、鋳造条件、熱処理条件を少なくとも含む複数の因子
を選定する工程と、これら因子の許容範囲内で夫々複数
の水準を設定する工程と、これら水準の組合せに基づい
て実験を計画し実施する工程と、実験データを解析し最
適値を決定する工程からなる車両の足廻り部品の設計方
法であって、前記実験を実施する工程では、前記複数の
因子と複数の水準との組合わせに基づいて決めた種類の
鋳造品を製造し、これらの鋳造品から得たテストピース
を伸び試験にかけ、伸びが大きいほど良いとの判断基準
により、前記因子ごとに最適な水準を選び、これを鋳造
材における最適水準とし、この鋳造材における最適水準
にて定めた複数の因子と1つの水準からなる複数種類の
鋳造品を、複数の鍛練比の分だけ新たに複数個製造し、
これに鍛造を施し、得られた鍛造品から得たテストピー
スを伸び試験にかけ、前記最適値を決定する工程では、
前記鍛造品から得た伸びから前記因子ごとに 最適な水準
を選び、これを鋳造−鍛造材における最適水準に決定す
ることを特徴とする。 SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, a first aspect of the present invention is to provide a vehicle which has a mechanical property required for a suspension component.
The process of setting the target value and the alloy composition related to this target value
Multiple factors, including at least minute, casting and heat treatment conditions
The process of selecting
The process of setting the levels of
The process of planning and performing experiments, and analyzing and
How to design vehicle suspension parts consisting of the process of determining appropriate values
The step of performing the experiment comprises:
Of a type determined based on a combination of factors and multiple levels
Manufacture of castings and test pieces obtained from these castings
Is subjected to an elongation test.
By selecting the optimal level for each of the above factors,
The optimal level for the cast material
Multiple types consisting of multiple factors and one level determined in
Newly manufactured multiple castings for multiple training ratios,
This was forged, and the test piece obtained from the forged product was obtained.
In the elongation test to determine the optimal value,
Optimal level for each of the above factors from the elongation obtained from the forged product
And determine this as the optimal level for casting-forging.
It is characterized by that.
【0005】[0005]
【作用】車両の足廻り部品を、鋳造と鍛造との組合わせ
法で製造しようとすると、鋳造に係る多数の因子と、鍛
造に係る多数の因子が絡みあって製造条件を容易に決定
することができない。そこで、請求項1では鋳造テスト
ピースを対象に伸びを指標にして因子ごとの最適水準を
決める。次に、この決定に基づいて製造した鋳造−鍛造
テストピースを対象に伸びを指標にして因子ごとの最適
水準を決める。すなわち、最適水準の決定を、第1段階
(鋳造テストピース)を経て第2段階(鋳造−鍛造テス
トピース)で決定した。この結果、最小限の実験で再現
性の高い最適値を決定することができた。 [Function] Combination of casting and forging of vehicle suspension parts
When manufacturing by the method, many factors related to casting and forging
Numerous factors related to fabrication make it easy to determine manufacturing conditions
Can not do it. Therefore, in claim 1, the casting test
Optimum level for each factor using growth as an index for pieces
Decide. Next, cast-forged manufactured based on this decision
Optimal for each factor using elongation as an index for test pieces
Determine the standard. That is, the determination of the optimal level is performed in the first stage
(Casting test piece) and the second stage (casting-forging test)
Topies). This results in a minimal experiment
The most suitable optimal value could be determined.
【0006】[0006]
【実施例】本発明の車両の足廻り部品の設計方法の実施
例について説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a method for designing a vehicle suspension part according to the present invention will be described.
【0007】従来、車両の足廻り部品であるアッパアー
ム、ロアアーム等のサスペンションアームは、軽量化の
ため例えばJIS規格の6061材のような展伸性のあ
るアルミニウム合金から鍛造によって成形されている。Conventionally, suspension arms such as an upper arm and a lower arm, which are suspension parts of a vehicle, are formed by forging an extensible aluminum alloy such as JIS 6061 material for weight reduction.
【0008】つまり、例えば押出し成形等によって製造
した丸棒を3ヒート、3ブローからなる3工程の熱間鍛
造によって所望の形状に成形し、最後にトリミング加工
を行って製品としている。That is, for example, a round bar manufactured by extrusion molding or the like is formed into a desired shape by hot forging in three steps of three heats and three blows, and is finally trimmed to obtain a product.
【0009】しかしながら、このような鍛造方式による
成形は、製品の強度的要件を満足するものであっても、
工程数が多くて生産性、コスト性に問題があった。[0009] However, such a forging method, which satisfies the strength requirements of the product,
There were many processes and there were problems in productivity and cost.
【0010】一方、例えばJIS規格のAC4CH材等
は鋳造に適したアルミニウム合金として知られている
が、このような鋳造用アルミニウム合金は足廻り部品の
ような製品とした場合には機械的特性の面で問題があ
る。[0010] On the other hand, for example, JIS standard AC4CH material is known as an aluminum alloy suitable for casting. However, such a casting aluminum alloy has poor mechanical properties when it is made into a product such as a suspension component. There is a problem in terms.
【0011】そこで、従来の車両の足廻り部品の製造工
程に鋳造工程を採り入れて工程の短縮化を図ろうとする
と、合金成分の設計、鋳造条件の設計、熱処理条件の設
計等を適切に行って、必要な機械的特性を備えた部品を
製造する必要があるが、かかる総合的な条件を加味しつ
つ最小の実験によって現場での品質の再現性の良い設計
値を求める必要がある。In order to shorten the process by adopting a casting process in the conventional manufacturing process of the vehicle suspension parts, the design of alloy components, the design of casting conditions, the design of heat treatment conditions, and the like are appropriately performed. It is necessary to manufacture parts having the required mechanical characteristics, but it is necessary to obtain design values with good reproducibility of the quality in the field by minimum experiments while taking such comprehensive conditions into consideration.
【0012】そこで、本発明は図1に示すような方法に
よって車両の足廻り部品を設計するようにした。Accordingly, the present invention is designed to design the suspension parts of the vehicle by the method shown in FIG.
【0013】すなわち、まず足廻り部品に必要な機械的
特性の目標値として、JIS規格のアルミ合金の606
1材と同程度の特性を設定し、具体的には引張強度(σ
B)31.5kgf/mm2、耐力(σ0.2)28.0kgf/mm2、
伸び12.0%、硬度(HRF)90.9を目標とし
た。That is, first, as a target value of mechanical properties required for underbody parts, 606 of aluminum alloy of JIS standard is used.
The same properties as those of one material are set, and specifically, the tensile strength (σ
B ) 31.5 kgf / mm 2 , proof stress (σ 0.2 ) 28.0 kgf / mm 2 ,
The target was an elongation of 12.0% and a hardness (HRF) of 90.9.
【0014】そして、かかる目標値を満足するために関
連する因子として、溶湯処理、合金成分としてSi量、
Mg量、Cu量、溶体化温度、時効温度、時効時間、自
然時効の8つの因子を選定した。Factors related to satisfying the target values are molten metal treatment, Si content as an alloy component,
Eight factors of Mg amount, Cu amount, solution heat temperature, aging temperature, aging time, and natural aging were selected.
【0015】因みに、Al―Mg―Si系の合金は耐食
性と適度な強度を有し、且つ鋳造性にも優れたアルミ合
金として知られており、Mg、Cuを添加することで強
度を増すことが出来、Siを添加することで鋳造欠陥を
防止することが出来る。[0015] Incidentally, Al-Mg-Si alloys are known as aluminum alloys having corrosion resistance and moderate strength, and also excellent in castability, and the strength is increased by adding Mg and Cu. And casting defects can be prevented by adding Si.
【0016】次に、かかる因子の条件を変化させて許容
範囲内で2及至3水準を設定する。Next, two to three levels are set within the allowable range by changing the conditions of such factors.
【0017】つまり、図2に示すように、例えば溶湯処
理については有り、無しの2水準、Si量については
2.5wt%、3.5wt%、4.5wt%の3水準、その他に
ついても夫々表中に示すように3水準である。That is, as shown in FIG. 2, for example, there are two levels of the presence or absence of the molten metal treatment, three levels of the Si content of 2.5 wt%, 3.5 wt%, and 4.5 wt%, and the others. There are three levels as shown in the table.
【0018】次にこの水準の組合せを図3に示すような
直交表によって18種類の実験に割り付ける。つまり、
例えばNo1の実験は全ての因子(横列)の水準を1に
して行い、No2の実験では因子1(溶湯処理)、因子
2(Si量)を水準1にし、その他の因子の水準を2に
して行う等である。そして、この割り付けた実験計画に
基づいて実験を行い、鋳造品から製造したテストピース
の引張強度(σB)、耐力(σ0.2)、伸び%、硬度(H
RF)を測定して、例えば図4に示すように直交表にS
N比を組合せる。SN比は安定性を示す品質工学用語で
あり、その数式は後述する。ここで、図4は引張強度
(σB)のSN比の平均を1例として示すもので、その
他の耐力(σ0.2)、伸び%、硬度(HRF)について
も、不図示ではあるが同様に求められる。Next, the combinations of these levels are assigned to 18 types of experiments using an orthogonal table as shown in FIG. That is,
For example, in the experiment of No. 1, the level of all the factors (rows) was set to 1, and in the experiment of No. 2, the factor 1 (the molten metal treatment) and the factor 2 (the amount of Si) were set to the level 1, and the levels of the other factors were set to 2. And so on. An experiment is performed based on the allocated experimental plan, and the tensile strength (σ B ), proof stress (σ 0.2 ), elongation%, and hardness (H) of the test piece manufactured from the cast product are obtained.
RF) and, for example, as shown in FIG.
Combine N ratios. SN ratio is a quality engineering term indicating stability
Yes, and the formula will be described later. Here, FIG. 4 shows an average of the SN ratio of the tensile strength (σ B ) as an example. The other proof stress (σ 0.2 ), elongation%, and hardness (HRF) are also not shown but similarly. Desired.
【0019】ここで、SN比=10×log(m2/
σ2)(logは対数、mは平均値、σは標準偏差)で
表わされるものであり、SN比の大きいものが安定性の
高い条件を示す。Here, SN ratio = 10 × log (m 2 /
σ 2 ) ( log is a logarithm , m is an average value, and σ is a standard deviation), and a condition with a high SN ratio indicates a condition with high stability.
【0020】また、図4の縦方向は前述の因子の順序に
対応し、1列が溶湯処理、2列がSi量、3列がMg量
等である。また、横方向には前記水準が対応し、1列の
左側は水準1で溶湯処理有り、右側は水準2で溶湯処理
なし、2列のSi量は左側が水準1で2.5%、真中が
水準2で3.5%、右側が水準3で4.5%等である。
因子No1では水準1が水準2よりも引張強度(σB)
が大きいので、水準1を選択する。因子No2では水準
2が水準1,3よりも引張強度(σB)が大きいので、
水準2を選択する。同様にして、因子No3では水準
1、因子No4では水準3、因子No5では水準2、因
子No6では水準3、因子No7では水準1、因子No
8では水準1を選択する。 The vertical direction in FIG. 4 corresponds to the order of the factors described above. One row indicates the molten metal treatment, the second row indicates the amount of Si, and the third row indicates the amount of Mg. In the horizontal direction, the levels correspond to each other. The left side of one row has the molten metal treatment at the level 1 and the right side has the molten metal treatment at the level 2 at the left side. Is 3.5% at level 2 and 4.5% at level 3 on the right side.
With factor No1, level 1 is higher than level 2 in tensile strength (σB)
Is large, so level 1 is selected. Level for factor No2
Since 2 has a higher tensile strength (σB) than levels 1 and 3,
Select level 2. Similarly, for factor No. 3, the level
1, Level 3 for Factor No. 4, Level 2 for Factor No. 5, Factor
Level 3 for factor No. 6, level 1 for factor No. 7, factor No.
At step 8, level 1 is selected.
【0021】以上の因子と水準との組合わせを、図5の
テーブルに表記する。すなわち、縦軸に特性値(σ
B)、横軸に因子No1〜8を配列し、これらの因子N
o1〜8の下に、1、2、1、3、2、3、1、1のご
とく水準1〜3を記載する。なお、水準1〜3に付した
(括弧)については後述する。 詳しい説明は省略する
が、その他の特性値(σ 0.2 、伸び、硬度)についても
各々図4と同様のテーブルを作り、SN比の平均から、
各列ごと一番数値の大きい水準を選び出すと図5の通り
となる。 The combination of the above factors and levels is shown in FIG.
Write in the table. That is, the characteristic value (σ
B), factor Nos. 1 to 8 are arranged on the horizontal axis, and these factors N
Under o1-8, 1, 2, 1, 3, 2, 3, 1, 1, etc.
In particular, levels 1 to 3 are described. In addition, it attached to level 1-3
(Parentheses) will be described later. Detailed description is omitted.
However, other characteristic values (σ 0.2 , elongation, hardness)
Create the same table as Fig. 4 for each, and from the average of the SN ratio,
When picking out large levels of most numerical each column ing and as FIG.
【0022】また、表中の括弧と無括弧は重み付けの結
果の下位、上位を示すもので、括弧のないのが重み付け
の上位にあるもの、括弧があるのが重み付けの下位にあ
るものである。因みに、かかる重み付けは各特性値(σ
B、σ0.2、伸び、硬度)ごと、直交表L1列目から8列
目のそれぞれの総平方和(S)を求め、この総平方和
(S)を自由度(f)で除して分散(V)を求めて決定
したものである。The parentheses and non-parentheses in the table indicate the lower and higher ranks of the weighting result. Those without parentheses are those with higher weighting, and those with parentheses are those with lower weighting. . Incidentally, the weighting is performed by each characteristic value (σ
B , σ 0.2 , elongation, hardness), the total sum of squares (S) in the 1st to 8th columns of the orthogonal table L is obtained, and the total sum of squares (S) is divided by the degree of freedom (f) for dispersion. (V).
【0023】そして、図の特性値のうちから伸び(%)
の行を図の下欄に転記し、これを「鋳造材における最適
水準」とする。ここで、特性値のうち伸びに着目してい
るのは、鋳造後の鍛造工程での塑性加工性を重視する必
要があるからである。 Then, the elongation (%) of the characteristic values shown in FIG.
Line in the lower column of the figure,
Level ”. Here, the reason why attention is paid to elongation among the characteristic values is that it is necessary to emphasize plastic workability in a forging process after casting.
【0024】次に、以上の実験の結果に基づいて新たな
鋳造品を製造し、この鋳造品を実際に各種鍛練比で鍛造
し、得られた鍛造品からテストピースを作って最適条件
を確認する。Next, a new on the basis of the results of the above experiment
A cast product is manufactured, the cast product is actually forged at various forging ratios, a test piece is made from the obtained forged product, and the optimum conditions are confirmed.
【0025】そして、各種鍛練比で鍛造して各特性値
(σB、σ0.2、伸び、硬度)を測定し、SN比を求めて
表にしたのが図6の通りである。図の縦軸に特性値(伸
び、σ B 、σ 0.2 、硬度)、最下段に因子1,2,3,5
及び6、最上段に水準1,2又は1〜3を示す。ここ
で、鍛練比とは鍛造前の素材の厚みをHと鍛造後の素材
の厚みをhの関係を示すものであり、鍛練比1は鍛練成
形率0%、鍛練比2は同50%、鍛練比3は同67%、
鍛練比4は同75%、鍛練比5は同80%に該当する。FIG. 6 shows a table obtained by measuring various characteristic values (σ B , σ 0.2 , elongation, hardness) by forging at various forging ratios, and obtaining the SN ratio. The vertical axis of the figure shows the characteristic value (increase
, Σ B , σ 0.2 , hardness), factors 1, 2, 3, 5 at the bottom
And 6, the levels 1, 2, or 1-3 are shown at the top. Here, the forging ratio indicates the relationship between the thickness of the material before forging H and the thickness of the material after forging h, where the forging ratio 1 is 0% forging ratio, the forging ratio 2 is 50%, The training ratio 3 is 67%,
The training ratio 4 corresponds to 75%, and the training ratio 5 corresponds to 80%.
【0026】尚、同表では特に伸び(%)に効く因子で
あるNo.1(溶湯処理)、No.2(Si量)、N
o.3(Mg量)、No.5(溶体化温度)、No.6
(時効温度)の5つの因子について記載し、伸び(%)
に効かないその他の因子、すなわちNo.4(Cu
量)、No.7(時効時間)、No.8(自然時効)の
3つの因子については記載していないが特に意味はな
い。そして図から次の手順で最適水準を読取る。左の因
子No.1の列において、伸びについては水準1(最上
段の水準1,2を参照)が大で、水準2が小さい。そこ
で、伸びに対しては水準1を選択する。その下のσ B で
は水準1、σ 0.2 では水準1、硬度では水準1を選択す
る。すなわち、因子No.1については、σ B は水準
1、σ 0.2 は水準1、伸びは水準1、硬度は水準1に決
定し、次図で一覧表にする。 It should be noted that in the table, No. 1 is a factor particularly effective for elongation (%) . No. 1 ( melt treatment ), 2 ( Si content ), N
o. 3 ( Mg content ), No. 5 ( solution temperature ), 6
( Aging temperature ) , elongation (%)
Other factors that do not affect 4 ( Cu
No.), No. 7 ( aging time ), The three factors of 8 ( natural aging ) are not described, but have no particular meaning. Then, the optimum level is read from the figure by the following procedure. Left factor
Child No. In column 1, growth is level 1 (top
(See levels 1 and 2 in the column) is large and level 2 is small. There
Then, select level 1 for growth. In σ B under the
Selects level 1, level 1 for σ 0.2 , level 1 for hardness
You. That is, the factor No. For 1, σ B is the level
1, σ 0.2 is set to level 1, elongation is set to level 1, hardness is set to level 1.
And make a list in the following figure.
【0027】図7は縦軸に特性値(σ B 、σ 0.2 、伸び、
硬度)、横軸に因子No.1〜8を列記したテーブルで
あり、因子No.1の列に、σ B は1、σ 0.2 は1、伸び
は1、硬度は1を列記する。同様にして、図6の因子N
o.2,3,5,6について特性値(σ B 、σ 0.2 、伸
び、硬度)ごとの水準を決定し、図7に転記する。な
お、因子No.4,7,8については図6と同内容の図
表(図示せず)から特性値(σ B 、σ 0.2 、伸び、硬度)
ごとの水準を決定し、図7に転記した。 FIG . 7 shows characteristic values (σ B , σ 0.2 , elongation,
Hardness), and the horizontal axis represents factor No. In the table listing 1-8
Yes, Factor No. In the row of 1, σ B is 1, σ 0.2 is 1, elongation
Is 1 and hardness is 1. Similarly, the factor N in FIG.
o. The characteristic values (σ B , σ 0.2 ,
And hardness) and transcribed to FIG. What
The factor No. Figures 4, 7, and 8 have the same contents as FIG.
From the table (not shown), the characteristic values (σ B , σ 0.2 , elongation, hardness)
Each level was determined and transcribed in FIG.
【0028】そして、前記要領と同様に伸び(%)の行
を下段に転記し、これを「鋳造−鍛造材における最適水
準」とする。 Then, in the same manner as described above , the row of elongation (%)
At the bottom of the table, which is referred to as "Optimal water
“Associative”.
【0029】従って、図7下段から溶湯処理は水準1
(有り)、Si量は水準2(3.5%)、Mg量は水準
1(0.5%)、Cu量は水準3(0.2%)、溶体化
温度は水準1(520℃)、時効温度は水準1(170
℃)、時効時間は水準1又は3(6時間又は10時
間)、時効温度は水準1(0日)という条件が求まる。Therefore, from the lower part of FIG.
(Yes), Si content is level 2 (3.5%), Mg content is level 1 (0.5%), Cu content is level 3 (0.2%), solution temperature is level 1 (520 ° C) Aging temperature is level 1 (170
C), aging time is level 1 or 3 (6 hours or 10 hours), and aging temperature is level 1 (0 days).
【0030】尚、因子No.7の時効時間については、
最適条件として2種類が求められたが、特に伸びに効く
因子でもなく水準1でも水準3でも大差ない。The factor No. About the aging time of 7 ,
Although two types were found as the optimum conditions, they were not particularly effective factors for elongation, and there was no significant difference between Level 1 and Level 3.
【0031】以上の説明した本発明方法を次の様にまと
めることができる。本発明方法は、車両の足廻り部品に
必要な機械的特性の目標値を設定する工程と、この目標
値に関連する合金成分、鋳造条件、熱処理条件を少なく
とも含む複数の因子を図2を参照しつつ選定する工程
と、これら因子の許容範囲内で夫々複数の水準を図2を
参照しつつ設定する工程と、図3に示すような水準の組
合せに基づいて実験を計画し実施する工程と、実験デー
タを解析し最適値を決定する工程からなる車両の足廻り
部品の設計方法である。そして、実験を実施する工程で
は、複数の因子と複数の水準との組合わせに基づいて決
めた種類の鋳造品を製造し、これらの鋳造品から得たテ
ストピースを伸び試験にかけ、伸びが大きいほど良いと
の判断基準により、因子ごとに最適な水準を選び、これ
を鋳造材における最適水準(図5の最下段参照)とす
る。次に、鋳造材における最適水準にて定めた複数の因
子と1つの水準からなる複数種類の鋳造品を、複数の鍛
練比の分だけ新たに複数個製造し、これに鍛造を施し、
得られた鍛造品から得たテストピースを伸び試験にかけ
て図6の様な試験結果を得る。そして、前記最適値を決
定する工程では、前記鍛造品から得た伸びから前記因子
ごとに最適な水準を選び、これを鋳造−鍛造材における
最適水準に決定する(図7の最下段参照)ことを特徴と
する。 The above-described method of the present invention is summarized as follows.
Can be The method of the present invention can be applied to underbody parts of vehicles.
The process of setting the desired mechanical properties and the target
Fewer alloy components, casting conditions and heat treatment conditions
For selecting a plurality of factors including the above with reference to FIG.
Figure 2 shows several levels within the allowable range of these factors.
A step of setting while referring to a set of levels as shown in FIG.
The process of planning and conducting experiments based on
Of the vehicle consisting of the process of analyzing the data and determining the optimum value
It is a method of designing parts. And in the process of conducting the experiment
Is determined based on a combination of multiple factors and multiple levels.
Of castings of the type
Perform the elongation test on the piece, and the larger the elongation, the better
The optimal level for each factor,
Is the optimum level in the cast material (see the bottom of FIG. 5).
You. Next, several factors determined at the optimum level
A plurality of types of castings consisting of a single
Newly manufactured multiple parts for the mixing ratio, forged,
A test piece obtained from the obtained forged product is subjected to an elongation test.
Thus, a test result as shown in FIG. 6 is obtained. Then, the optimum value is determined.
Determining the factor from the elongation obtained from the forged product.
Choose the optimal level for each case
Determine the optimal level (see the bottom of FIG. 7)
I do.
【0032】車両の足廻り部品を、鋳造と鍛造との組合
わせ法で製造しようとすると、鋳造に係る多数の因子
と、鍛造に係る多数の因子が絡みあって製造条件を容易
に決定することができない。そこで、本発明では鋳造テ
ストピースを対象に伸びを指標にして因子ごとの最適水
準を決める。次に、この決定に基づいて製造した鋳造−
鍛造テストピースを 対象に伸びを指標にして因子ごとの
最適水準を決める。すなわち、最適水準の決定を、第1
段階(鋳造テストピース)を経て第2段階(鋳造−鍛造
テストピース)で決定した。この結果、最小限の実験で
再現性の高い最適値を決定することができた。 Combination of casting and forging of undercarriage parts of a vehicle
Many factors associated with casting
And many factors related to forging make manufacturing conditions easy
Cannot be determined. Therefore, in the present invention, the casting
Optimum water for each factor using growth as an index for the stoppiece
Determine the standard. Next, the casting manufactured based on this decision
Of each factor in the index growth forging test piece to the target
Determine the optimal level. That is, the determination of the optimal level is determined by the first
After the stage (casting test piece), the second stage (casting-forging)
Test piece). As a result, with minimal experimentation
The optimum value with high reproducibility could be determined.
【0033】[0033]
【発明の効果】以上のように、本発明の車両の足廻り部
品の設計方法は、足廻り部品に必要な機械的特性を目標
値として設定し、目標値に関連する因子を総合的に選定
して合理的に各水準の組合せを行い、最小限の実験で総
合的に検討出来るようにしたので、現場における再現性
のよい条件を合理的に且つ効率良く求めることが出来
る。As described above, the method for designing underbody parts of a vehicle according to the present invention sets the mechanical characteristics necessary for underbody parts as target values and comprehensively selects factors related to the target values. Then, each level is rationally combined and comprehensively examined with a minimum number of experiments, so that conditions with good reproducibility in the field can be rationally and efficiently obtained.
【図1】本発明の設計方法の工程図FIG. 1 is a process diagram of a design method of the present invention.
【図2】因子と水準の設定例図FIG. 2 is a diagram showing an example of setting factors and levels.
【図3】直交表の1例図FIG. 3 is an example of an orthogonal table.
【図4】引張強度のSN比FIG. 4 SN ratio of tensile strength
【図5】ばらつきに影響する因子と最適条件の組合せFIG. 5: Combination of factors affecting variation and optimal conditions
【図6】各鍛練比における因子(伸びに効く因子)のS
N比FIG. 6 shows the S of the factor (factor for elongation) at each training ratio.
N ratio
【図7】各鍛練比の平均値に影響する因子と最適条件の
組合せFIG. 7: Combination of factors affecting the average value of each training ratio and optimal conditions
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI // C22F 1/00 630 C22F 1/00 630A 690 690 審査官 山口 直 (56)参考文献 特開 昭62−166044(JP,A) 実開 平2−25305(JP,U) (58)調査した分野(Int.Cl.7,DB名) B60G 7/00 B22D 46/00 ────────────────────────────────────────────────── 7 Continued on the front page (51) Int.Cl. 7 Identification symbol FI // C22F 1/00 630 C22F 1/00 630A 690 690 Examiner Nao Yamaguchi (56) References JP-A-62-166044 (JP, A) Japanese Utility Model Hei 2-25305 (JP, U) (58) Field surveyed (Int. Cl. 7 , DB name) B60G 7/00 B22D 46/00
Claims (1)
目標値を設定する工程と、この目標値に関連する合金成
分、鋳造条件、熱処理条件を少なくとも含む複数の因子
を選定する工程と、これら因子の許容範囲内で夫々複数
の水準を設定する工程と、これら水準の組合せに基づい
て実験を計画し実施する工程と、実験データを解析し最
適値を決定する工程からなる車両の足廻り部品の設計方
法であって、 前記実験を実施する工程では、前記複数の因子と複数の
水準との組合わせに基づいて決めた種類の鋳造品を製造
し、これらの鋳造品から得たテストピースを伸び試験に
かけ、伸びが大きいほど良いとの判断基準により、前記
因子ごとに最適な水準を選び、これを鋳造材における最
適水準とし、 この鋳造材における最適水準にて定めた複数の因子と1
つの水準からなる複数種類の鋳造品を、複数の鍛練比の
分だけ新たに複数個製造し、これに鍛造を施し、得られ
た鍛造品から得たテストピースを伸び試験にかけ、 前記最適値を決定する工程では、前記鍛造品から得た伸
びから前記因子ごとに最適な水準を選び、これを鋳造−
鍛造材における最適水準に決定することを特徴とする車
両の足廻り部品の設計方法。 1. A step of setting a target value of mechanical properties required for a suspension component of a vehicle, and a step of selecting a plurality of factors including at least an alloy component, a casting condition, and a heat treatment condition related to the target value. The steps of setting a plurality of levels within the permissible range of these factors, planning and executing an experiment based on a combination of these levels, and analyzing the experimental data to determine an optimum value. a method of designing around part, in the step of performing said experiments, the plurality of factors and a plurality of
Manufactures castings of the type determined based on combinations with standards
Test pieces obtained from these castings for elongation tests.
The criterion that the larger the elongation is, the better the
Choose the optimal level for each factor and use this as the
And suitable levels, a plurality of factors determined by the optimal level of the cast material 1
Of multiple types of castings with different training ratios
Newly manufactured several pieces, forged them, and obtained
Subjecting the test piece obtained from the forged product to an elongation test to determine the optimum value,
The optimum level is selected for each of the above factors, and this is cast-
Vehicles characterized by determining the optimum level in forgings
How to design both suspension parts.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22135293A JP3330432B2 (en) | 1993-09-06 | 1993-09-06 | How to design vehicle suspension parts |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22135293A JP3330432B2 (en) | 1993-09-06 | 1993-09-06 | How to design vehicle suspension parts |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0769021A JPH0769021A (en) | 1995-03-14 |
JP3330432B2 true JP3330432B2 (en) | 2002-09-30 |
Family
ID=16765461
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22135293A Expired - Fee Related JP3330432B2 (en) | 1993-09-06 | 1993-09-06 | How to design vehicle suspension parts |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3330432B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6632143B2 (en) | 2000-03-31 | 2003-10-14 | Ntn Corporation | Constant velocity universal joint |
EP1724716B1 (en) * | 2005-05-20 | 2019-11-06 | MAGMA Giessereitechnologie GmbH | Optimization process of a metal casting production process |
JP4871228B2 (en) * | 2006-10-05 | 2012-02-08 | 株式会社神戸製鋼所 | Forging process design method |
JP6149807B2 (en) * | 2014-06-12 | 2017-06-21 | トヨタ自動車株式会社 | Determination of metal heat treatment conditions |
-
1993
- 1993-09-06 JP JP22135293A patent/JP3330432B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0769021A (en) | 1995-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5723192B2 (en) | Aluminum alloy forging and method for producing the same | |
US3046108A (en) | Age-hardenable nickel alloy | |
KR101356243B1 (en) | Process for producing brake piston | |
US8157932B2 (en) | Al-Zn-Mg-Cu-Sc high strength alloy for aerospace and automotive castings | |
US6056835A (en) | Superplastic aluminum alloy and process for producing same | |
US4863528A (en) | Aluminum alloy product having improved combinations of strength and corrosion resistance properties and method for producing the same | |
US9481920B2 (en) | Aluminium alloy forging and method of manufacture for same | |
US20060191609A1 (en) | Al-Zn-Cu-Mg aluminum base alloys and methods of manufacture and use | |
JP2008163445A (en) | Automobile chassis parts and its manufacturing method | |
JP2018524468A (en) | High strength and easily moldable AlMg strip and method for producing the same | |
US5690758A (en) | Process for the fabrication of aluminum alloy sheet having high formability | |
US20040045638A1 (en) | Safety component moulded in a1-si alloy | |
US20050115645A1 (en) | Al/cu/mg/ag alloy with si, semi-finished product made from such an alloy and method for production of such a semi-finished product | |
JPWO2011129431A1 (en) | Method for producing aluminum alloy forged member | |
US6241831B1 (en) | Copper alloy | |
JP3330432B2 (en) | How to design vehicle suspension parts | |
US5383986A (en) | Method of improving transverse direction mechanical properties of aluminum-lithium alloy wrought product using multiple stretching steps | |
US5415712A (en) | Method of forging in 706 components | |
JPS61163233A (en) | Non-heat treatment type free-cutting aluminum alloy | |
JPH09125184A (en) | Welding structural material made of aluminum alloy and its production | |
JPH09268342A (en) | High strength aluminum alloy | |
JPH0673482A (en) | Aluminum alloy member and its production | |
JPH06330264A (en) | Production of aluminum alloy forged material excellent in strength and toughness | |
JPH1112675A (en) | Production of aluminum alloy for hot forging and hot forged product | |
US4264360A (en) | Chromium modified silicon-tin containing copper base alloys |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20020709 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080719 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090719 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |