JP3328181B2 - Non-destructive corrosion diagnostic method for tensile steel in anchors - Google Patents

Non-destructive corrosion diagnostic method for tensile steel in anchors

Info

Publication number
JP3328181B2
JP3328181B2 JP00604298A JP604298A JP3328181B2 JP 3328181 B2 JP3328181 B2 JP 3328181B2 JP 00604298 A JP00604298 A JP 00604298A JP 604298 A JP604298 A JP 604298A JP 3328181 B2 JP3328181 B2 JP 3328181B2
Authority
JP
Japan
Prior art keywords
tensile steel
corrosion
steel material
reference electrode
anchor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00604298A
Other languages
Japanese (ja)
Other versions
JPH11201930A (en
Inventor
聡 小保方
Original Assignee
ライト工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ライト工業株式会社 filed Critical ライト工業株式会社
Priority to JP00604298A priority Critical patent/JP3328181B2/en
Publication of JPH11201930A publication Critical patent/JPH11201930A/en
Application granted granted Critical
Publication of JP3328181B2 publication Critical patent/JP3328181B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Piles And Underground Anchors (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アンカーの引張鋼
材の腐食状況を非破壊で診断する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for non-destructively diagnosing a corrosion state of tensile steel material of an anchor.

【0002】[0002]

【従来の技術】現在、施工完了から20年以上経過し
た、アンカーで補強した構造物が、全国各地に多数存在
している。
2. Description of the Related Art At present, there are many anchor-reinforced structures more than 20 years after the completion of construction, all over the country.

【0003】構造物内部で進行するアンカー引張鋼材の
腐食状態は、これを把握することが極めて難しく腐食に
よる引張鋼材の軸方向のコンクリート等のひび割れの発
生または錆の流出によって始めて問題とされることが多
い。
[0003] The corrosion state of an anchor tensile steel material that progresses inside a structure is extremely difficult to grasp, and it becomes a problem only after cracking of concrete or the like in the axial direction of the tensile steel due to corrosion or the outflow of rust. There are many.

【0004】[0004]

【発明が解決しようとする課題】そのため、これらの構
造物の多くは、補修や補強等がなされることなく放置さ
れる可能性がある。
Therefore, many of these structures may be left without being repaired or reinforced.

【0005】しかし、構造物の外観において変状が認め
られた時点では、危険性が高まっていることが多い。
[0005] However, when the appearance of the structure is deformed, the danger is often increased.

【0006】したがって、ここに提案される本発明の課
題は、非破壊で腐食の状況を適確に把握し、有効な補修
対策の一助とすることにある。
Accordingly, an object of the present invention proposed here is to accurately grasp the state of corrosion in a non-destructive manner and to assist effective repair measures.

【0007】[0007]

【課題を解決するための手段】上記課題を解決した本発
明の請求項1記載の発明は、シース内に挿入した引張鋼
材の先端部を地山と一体化させた引張鋼材定着部と、前
記シースによって地山と縁切りさせた引張鋼材自由長部
と、支圧板を座体として緊張力を与えるアンカー頭部と
を有するアンカーにおいて、前記引張鋼材の腐食状況を
非破壊で診断する診断方法であって、前記支圧板を通し
て、前記シース外において前記引張鋼材の長さ方向に沿
って挿入孔を穿設し、その挿入孔内に、照合電極を挿入
するとともに、電解質の通電材料を注入しておき、かつ
前記照合電極の一端を地表外に配置しておき、前記引張
鋼材と前記照合電極との間を流れる自然電位を測定し、
その自然電位または電流に基づいて腐食状況を診断する
ことを特徴とするアンカーにおける引張鋼材の非破壊腐
食診断方法である。
According to a first aspect of the present invention , there is provided a tension steel inserted in a sheath.
Tensile steel anchoring part with the tip of the material integrated with the ground
Free length section of tensile steel material cut off from ground by sheath
And an anchor head that gives tension using the support plate as a seat
In the anchor having, a diagnostic method for diagnosing a non-destructive corrosion conditions of the tensile steel, through said Bearing plate
Outside the sheath along the length direction of the tensile steel material.
The reference electrode in the hole.
And at the same time, inject the conductive material of the electrolyte, and
One end of the reference electrode is placed off the ground, and the natural potential flowing between the tensile steel material and the reference electrode is measured,
A non-destructive corrosion diagnosis method for a tensile steel material in an anchor, characterized in that a corrosion state is diagnosed based on its natural potential or current.

【0008】請求項2記載の発明は、自然電位の測定
を、照合電極が引張鋼材定着部に達するまでの複数箇所
において行う請求項1記載のアンカーにおける引張鋼材
の非破壊腐食診断方法である。
[0008] The invention according to claim 2 is a method for measuring spontaneous potential.
At multiple locations until the reference electrode reaches the tensile steel material anchoring section.
The non-destructive corrosion diagnostic method for a tensile steel material in an anchor according to claim 1, which is performed in (1) .

【0009】[0009]

【発明の実施の形態】以下の本発明をさらに詳説する。BEST MODE FOR CARRYING OUT THE INVENTION The following invention is described in more detail.

【0010】鋼材の腐食とは、鋼材表面での電気化学的
な反応である。この反応は、図1の(1)および(2)
式で表されるような反応で、反応全体では(3)式で表
現され、鉄イオン(II)(Fe2+) は(4)式のように酸化
され、錆を形成する。(1)式は酸化反応で、(2)式
は還元反応である。腐食は、これらの反応が鋼材表面で
生じて腐食電池を形成し、酸化部と還元部との間の電子
の授受に伴い流れる腐食電流によるとされている。した
がって、腐食電流は、腐食反応の速さおよび腐食の程度
を表す物理量と考えられる。
[0010] The corrosion of steel is an electrochemical reaction on the surface of the steel. This reaction is shown in FIG. 1 (1) and (2)
In the reaction represented by the formula, the entire reaction is represented by the formula (3), and iron ions (II) (Fe 2+ ) are oxidized as shown in the formula (4) to form rust. Equation (1) is an oxidation reaction, and equation (2) is a reduction reaction. Corrosion is attributed to corrosion reactions that occur on the surface of the steel material to form a corrosion cell, and the corrosion current that flows with the transfer of electrons between the oxidized and reduced parts. Therefore, the corrosion current is considered to be a physical quantity indicating the speed of the corrosion reaction and the degree of corrosion.

【0011】そこで、本発明は、この観点に基づいて、
対象の引張鋼材の自然電位を測定し、腐食状況を診断す
るものである。
Therefore, the present invention has been made based on this viewpoint,
The purpose is to measure the natural potential of the target tensile steel material and diagnose the corrosion state.

【0012】第1の実施の形態を図2によって説明する
と、アンカーは、引張鋼材1の先端部をたとえばグラウ
ト2によって地山3と一体化させた引張鋼材定着部X
と、シース4によって地山3と縁切りさせた引張鋼材自
由長部Yと、支圧板5を座体として緊張力を与えるアン
カー頭部とを基本要素とする。
The first embodiment will be described with reference to FIG. 2. An anchor is a tensile steel material fixing portion X in which a tip end portion of a tensile steel material 1 is integrated with a ground 3 by a grout 2, for example.
And a free length portion Y of the tensile steel material cut off from the ground 3 by the sheath 4 and an anchor head for applying tension using the supporting plate 5 as a seat.

【0013】本発明においては、引張鋼材1の長さ方向
に沿って導電性照合電極10を配置しかつその一端を地
表外に配置しておく。この場合、引張鋼材1と照合電極
10との離間距離が短い方が、測定精度が高まるので、
既設のアンカーの支圧板5を穿孔しながら、挿入孔11
を所定深さまで穿設し、その挿入孔11内に照合電極1
0を挿入するとともに、通電のためにたとえば電解質の
液体またはゲルなどからなる通電材料12を注入してお
く。
In the present invention, the conductive reference electrode 10 is arranged along the length direction of the tensile steel material 1, and one end of the electrode 10 is arranged off the ground. In this case, the shorter the distance between the tensile steel material 1 and the reference electrode 10 is, the higher the measurement accuracy is.
While piercing the bearing plate 5 of the existing anchor, the insertion hole 11
Is drilled to a predetermined depth, and the reference electrode 1 is inserted into the insertion hole 11.
0 is inserted, and a current-carrying material 12 made of, for example, an electrolyte liquid or gel is injected for current-carrying.

【0014】かかる状態の下で、引張鋼材1と照合電極
10との間を流れる自然電位を測定器20により測定
し、その自然電位または電流に基づいて腐食状況を診断
する。
Under this condition, the natural potential flowing between the tensile steel material 1 and the reference electrode 10 is measured by the measuring device 20, and the corrosion state is diagnosed based on the natural potential or the current.

【0015】この場合、予め、当該引張鋼材1の非腐食
時点および腐食の程度の変化に基づく自然電位を現場ま
たは実験室的に調査しておく。したがって、測定した自
然電位量または電流量に基づいて、対象の引張鋼材1の
腐食の程度を知ることができる。また、自然電位の測定
は、照合電極10を引張鋼材定着部Xに達するまでの複
数箇所において行うことが望ましく、これによって、引
張鋼材1の腐食箇所を推定できるとともに、腐食状況の
判定精度が高まる。
In this case, the natural potential based on the non-corrosion time and the change in the degree of corrosion of the tensile steel material 1 is previously investigated on site or in a laboratory. Therefore, the degree of corrosion of the target tensile steel material 1 can be known based on the measured natural potential amount or current amount. Further, it is desirable that the measurement of the natural potential is performed at a plurality of locations until the reference electrode 10 reaches the tensile steel material fixing portion X, whereby the corrosion location of the tensile steel material 1 can be estimated, and the accuracy of determination of the corrosion state increases. .

【0016】なお、照合電極10は支圧板5を避けて設
置することも可能である。さらに、若干の困難性を伴う
ものの、シース4内に沿わせて設置することも可能であ
る。
The reference electrode 10 can be installed so as to avoid the support plate 5. Further, it can be installed along the sheath 4 with some difficulty.

【0017】(参考の実施の形態) 図3に示す参考の実施の形態は、本発明の実施の形態よ
り測定が容易である。すなわち、少なくとも2つの引張
鋼材1,1間に対して、種々の異なる周波数の微小な交
流電圧を印加し、そのときの電圧と電流との関係から得
られるインピーダンスに基づいて、腐食の状況を診断す
るものである。測定器20Aは、引張鋼材1,1に対し
て交流電圧を印加するとともに、そのときの電圧と電
流、ならびにこれらの関係から得られるインピーダンス
を測定およびまたは表示可能なものである。
( Reference Embodiment ) The reference embodiment shown in FIG. 3 is easier to measure than the embodiment of the present invention . That is, a minute AC voltage of various different frequencies is applied between at least two tensile steel materials 1 and 1, and the state of corrosion is diagnosed based on the impedance obtained from the relationship between the voltage and the current at that time. Is what you do. The measuring device 20A is capable of applying an AC voltage to the tensile steel materials 1 and 1 and measuring and / or displaying the voltage and current at that time, and the impedance obtained from these relationships.

【0018】前述のとおり、鋼材の腐食とは、鋼材表面
での電気化学的な反応であるので、腐食電流を測定すれ
ば、鋼材の腐食状況を判定できる。しかし、腐食電流は
微弱であり、かつ、金属表面での内部電流であるため直
接測定することはできない。
As described above, corrosion of a steel material is an electrochemical reaction on the surface of the steel material. Therefore, by measuring the corrosion current, the corrosion state of the steel material can be determined. However, the corrosion current is weak and cannot be directly measured because it is an internal current on the metal surface.

【0019】そこで、数種の異なる交流周波数の電圧を
2つの対極から同時に負荷し、各々の電圧を負荷した場
合に得られる位相差がθである同一周波数の各々の電流
を測定し、これらの周波数とそれに対応するインピーダ
ンスと位相差θとの関係の複素数平面表示における軌跡
を導き、この軌跡から分極抵抗Rpを求め、腐食量の定
量化を交流インピーダンス法を用いて行うものである。
Then, voltages of several different AC frequencies are simultaneously loaded from two counter electrodes, and currents of the same frequency having a phase difference θ obtained when each voltage is loaded are measured. The trajectory in the complex plane display of the relationship between the frequency, the corresponding impedance, and the phase difference θ is derived, the polarization resistance Rp is obtained from the trajectory, and the amount of corrosion is quantified using the AC impedance method.

【0020】一般に、腐食している金属に外部から電流
を流すと電位が変化する、あるいは、電位を変化させる
と電流が変化することが知られている。Stern らによれ
ば、鋼材の電位を△Eだけ変化させる際△Iの微小電流
が流れるとすると、△Eが非常に小さい場合には、電圧
と電流との間には(5)式 △E=Rp・△I ……(5) および図4に示すような比例関係が成立し、腐食電流I
corrは直線近似として、(6)式が成立する。
In general, it is known that the potential changes when a current is passed from the outside to a corroding metal, or the current changes when the potential is changed. According to Stern et al., If a small current of ΔI flows when the potential of a steel material is changed by ΔE, if ΔE is very small, the equation (5) is applied between the voltage and the current. = Rp · △ I (5) and the proportional relationship shown in FIG. 4 holds, and the corrosion current I
Equation (6) is established as a linear approximation of corr.

【0021】Icorr=K・(1/Rp) ……(6) (5)式および図4における直線の勾配Rpは、抵抗に
対応する分極抵抗〔Ω・cm2 〕である。また、(6)式
において、Icorrは腐食電流〔A/cm2 〕、Rpは分極
抵抗〔Ω・cm2 〕およびKは換算係数(金属の種類およ
びその周囲環境等によって決まる定数)〔V〕である。
Icorr = K · (1 / Rp) (6) The gradient Rp of the straight line in the equation (5) and FIG. 4 is a polarization resistance [Ω · cm 2 ] corresponding to the resistance. In the equation (6), I corr is a corrosion current [A / cm 2 ], Rp is a polarization resistance [Ω · cm 2 ], and K is a conversion coefficient (a constant determined by the type of metal and its surrounding environment) [V] It is.

【0022】したがって、予め、前記定数Kの値は知る
ことができるから、分極抵抗Rp値を測定することによ
り、(6)式から腐食電流Icorrが求められる。
Therefore, since the value of the constant K can be known in advance, the corrosion current Icorr can be obtained from the equation (6) by measuring the polarization resistance Rp.

【0023】腐食電流Icorrは腐食の程度の指標である
から、結果的に引張鋼材1,1の腐食状況を知ることが
できる。多数の引張鋼材がある場合、順次、適当に組み
合わせて腐食電流を測定することができる。
Since the corrosion current Icorr is an index of the degree of corrosion, the corrosion state of the tensile steel materials 1 and 1 can be known as a result. If there is a large number of tensile steel materials, the corrosion current can be measured in appropriate combination in sequence.

【0024】(実施例)本発明の実施の形態においては、 診断した結果と、アン
カー補修のために崩壊させたアンカーにおける引張鋼材
の腐食の程度とがきわめて酷似したことを知見した。
(Example) In the embodiment of the present invention, it was found that the result of the diagnosis was very similar to the degree of corrosion of the tensile steel material in the anchor collapsed for repairing the anchor.

【0025】[0025]

【発明の効果】上述の内容から明らかなように、本発明
によれば、非破壊で引張鋼材の腐食の状況を適確に把握
でき、もって、有効な補修対策の一助となるなどの利点
がもたらされる。
As is clear from the above description, according to the present invention, it is possible to accurately grasp the state of corrosion of a tensile steel material in a non-destructive manner, and thus to contribute to effective repair measures. Brought.

【図面の簡単な説明】[Brief description of the drawings]

【図1】腐食反応の説明図である。FIG. 1 is an explanatory diagram of a corrosion reaction.

【図2】第1の実施の形態を示す説明図である。FIG. 2 is an explanatory diagram showing a first embodiment.

【図3】第2の実施の形態を示す説明図である。FIG. 3 is an explanatory diagram showing a second embodiment.

【図4】分極抵抗の説明図である。FIG. 4 is an explanatory diagram of polarization resistance.

【符号の説明】[Explanation of symbols]

1…引張鋼材、2…グラウト、3…地山、4…シース、
5…支圧板、10…照合電極、12…通電材料、20,
20A…測定器、X…引張鋼材定着部、Y…引張鋼材自
由長部。
1 ... tensile steel material, 2 ... grout, 3 ... ground pile, 4 ... sheath,
5 ... support plate, 10 ... reference electrode, 12 ... conducting material, 20,
20A: measuring instrument, X: fixing part of tensile steel material, Y: free length part of tensile steel material.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平8−94557(JP,A) 特開 平2−8733(JP,A) 特開 平9−329568(JP,A) 特開 平6−123695(JP,A) 特開 昭59−217147(JP,A) 特開 昭61−111401(JP,A) 実開 平2−81454(JP,U) (58)調査した分野(Int.Cl.7,DB名) G01N 27/26 351 G01N 17/02 G01N 27/00 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-8-94557 (JP, A) JP-A-2-8733 (JP, A) JP-A-9-329568 (JP, A) JP-A-6-329568 123695 (JP, A) JP-A-59-217147 (JP, A) JP-A-61-111401 (JP, A) JP-A-2-81454 (JP, U) (58) Fields investigated (Int. 7 , DB name) G01N 27/26 351 G01N 17/02 G01N 27/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】シース内に挿入した引張鋼材の先端部を地
山と一体化させた引張鋼材定着部と、前記シースによっ
て地山と縁切りさせた引張鋼材自由長部と、支圧板を座
体として緊張力を与えるアンカー頭部とを有するアンカ
ーにおいて、前記引張鋼材の腐食状況を非破壊で診断す
る診断方法であって、前記支圧板を通して、前記シース外において前記引張鋼
材の長さ方向に沿って挿入孔を穿設し、その挿入孔内
に、照合電極を挿入するとともに、電解質の通電材料を
注入しておき、かつ前記照合電極の 一端を地表外に配置
しておき、 前記引張鋼材と前記照合電極との間を流れる自然電位を
測定し、その自然電位または電流に基づいて腐食状況を
診断することを特徴とするアンカーにおける引張鋼材の
非破壊腐食診断方法。
1. A tip end portion of a tensile steel material inserted into a sheath is grounded.
The tension steel anchoring part integrated with the mountain and the sheath
The free length of the tensile steel material cut off from the ground and the bearing plate
Anchor having an anchor head for providing tension as a body
In chromatography, the tension corrosion status of steel a diagnostic method for diagnosing a non-destructive, through the bearing capacity plate, the tension steel outside the said sheath
Drill an insertion hole along the length of the material.
In addition to inserting the reference electrode,
Injected, and one end of the reference electrode is disposed off the ground surface, a natural potential flowing between the tensile steel material and the reference electrode is measured, and a corrosion state is diagnosed based on the natural potential or current. Non-destructive corrosion diagnosis method for tensile steel material in an anchor, characterized in that:
【請求項2】自然電位の測定を、照合電極が引張鋼材定
着部に達するまでの複数箇所において行う請求項1記載
アンカーにおける引張鋼材の非破壊腐食診断方法。
2. The method according to claim 1 , wherein the self-potential is measured by using a reference electrode as a tensile steel.
2. The method according to claim 1, wherein the process is performed at a plurality of locations until the vehicle reaches the attachment portion.
Method for non-destructive corrosion of tensile steel in anchors in Japan.
JP00604298A 1998-01-14 1998-01-14 Non-destructive corrosion diagnostic method for tensile steel in anchors Expired - Fee Related JP3328181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00604298A JP3328181B2 (en) 1998-01-14 1998-01-14 Non-destructive corrosion diagnostic method for tensile steel in anchors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00604298A JP3328181B2 (en) 1998-01-14 1998-01-14 Non-destructive corrosion diagnostic method for tensile steel in anchors

Publications (2)

Publication Number Publication Date
JPH11201930A JPH11201930A (en) 1999-07-30
JP3328181B2 true JP3328181B2 (en) 2002-09-24

Family

ID=11627581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00604298A Expired - Fee Related JP3328181B2 (en) 1998-01-14 1998-01-14 Non-destructive corrosion diagnostic method for tensile steel in anchors

Country Status (1)

Country Link
JP (1) JP3328181B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102628283A (en) * 2012-04-25 2012-08-08 重庆城建控股(集团)有限责任公司 Apparatus for detecting embedment depth of roof bolt sleeve

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59217147A (en) * 1983-05-25 1984-12-07 Nippon Kenchiku Sogo Shikenjo Method and apparatus for inspecting corrosion of steel material in concrete
JPS61111401A (en) * 1984-11-06 1986-05-29 Nippon Sharyo Seizo Kaisha Ltd Method for detecting corrosion of buried pipe or the like
JPH028733A (en) * 1988-04-04 1990-01-12 Nakagawa Boshoku Kogyo Kk Evaluation of corrosion of steel material in concrete
JPH0281454U (en) * 1988-12-13 1990-06-22
JP3105666B2 (en) * 1992-10-09 2000-11-06 東京瓦斯株式会社 Diagnosis method for corrosion of buried metal
JPH0894557A (en) * 1994-09-22 1996-04-12 Tokyo Seiko Co Ltd Method for checking soundness of buried prestressing steel
JP3096240B2 (en) * 1996-06-12 2000-10-10 財団法人鉄道総合技術研究所 Diagnosis method and apparatus for corrosion probability or degree of corrosion of reinforcing steel in concrete structure

Also Published As

Publication number Publication date
JPH11201930A (en) 1999-07-30

Similar Documents

Publication Publication Date Title
US6280603B1 (en) Electrochemical noise technique for corrosion
US5259944A (en) Corrosion detecting probes for use with a corrosion-rate meter for electrochemically determining the corrosion rate of reinforced concrete structures
US4861453A (en) Corrosion detecting probe for steel buried in concrete
Isaacs et al. Scanning reference electrode techniques in localized corrosion
Elsener et al. Assessment of reinforcement corrosion by means of galvanostatic pulse technique
US1910021A (en) Soil testing apparatus
JP5097776B2 (en) Method and detector for determining the passivating properties of a mixture containing at least two components, cement and water
CN207557160U (en) System is monitored for the Multifunctional corrosion of reinforced concrete structure
Monrrabal et al. Electrochemical noise measurements on stainless steel using a gelled electrolyte
Torbati-Sarraf et al. Study of the passivation of carbon steel in simulated concrete pore solution using scanning electrochemical microscope (SECM)
US4351703A (en) Cathodic protection monitoring
Gowers et al. ELECTROCHEMICAL TECHNIQUES FOR CORROSION ASSESSMENT OF REINFORCED CONCRETE STRUCTURES.
CN101339119A (en) Coastal area concrete reinforcement erosion situation electrochemical test method
Parthiban et al. Potential monitoring system for corrosion of steel in concrete
Lim et al. A quantitative analysis of the geometric effects of reinforcement in concrete resistivity measurement above reinforcement
JP3328181B2 (en) Non-destructive corrosion diagnostic method for tensile steel in anchors
JP2685358B2 (en) Corrosion diagnosis method for reinforcing bars in concrete
JPH0749327A (en) Method and equipment for measuring true electrochemical potential of structure in electrolyte
Klinghoffer In situ monitoring of reinforcement corrosion by means of electrochemical methods
JP2002062362A (en) Inspecting method for baking-work part
Lim et al. Mathematical modeling for quantitative estimation of geometric effects of nearby rebar in electrical resistivity measurement
JPS59217147A (en) Method and apparatus for inspecting corrosion of steel material in concrete
RU2533344C1 (en) Installation for electrochemical survey of metal corrosion
Bjegovic et al. Non-destructive corrosion rate monitoring for reinforced concrete structures
Gomes et al. Improved experimental setup to reach a broad frequency domain in local electrochemical impedance spectroscopy measurements

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080712

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090712

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100712

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110712

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110712

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120712

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120712

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130712

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140712

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees