JP3327835B2 - System voltage stabilizer with reactive power compensator - Google Patents

System voltage stabilizer with reactive power compensator

Info

Publication number
JP3327835B2
JP3327835B2 JP07959898A JP7959898A JP3327835B2 JP 3327835 B2 JP3327835 B2 JP 3327835B2 JP 07959898 A JP07959898 A JP 07959898A JP 7959898 A JP7959898 A JP 7959898A JP 3327835 B2 JP3327835 B2 JP 3327835B2
Authority
JP
Japan
Prior art keywords
reactive power
switch
ground fault
fault signal
power system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07959898A
Other languages
Japanese (ja)
Other versions
JPH11285141A (en
Inventor
立美 市岡
靖臣 豊田
誠記 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Energy Support Corp
Original Assignee
NGK Insulators Ltd
Energy Support Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd, Energy Support Corp filed Critical NGK Insulators Ltd
Priority to JP07959898A priority Critical patent/JP3327835B2/en
Publication of JPH11285141A publication Critical patent/JPH11285141A/en
Application granted granted Critical
Publication of JP3327835B2 publication Critical patent/JP3327835B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/16Electric power substations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/22Flexible AC transmission systems [FACTS] or power factor or reactive power compensating or correcting units

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Emergency Protection Circuit Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は電力系統の無効電力を電
力用コンデンサやリアクトルあるいはインバータを用い
ることにより補償する無効電力補償装置を備え、電力系
統の系統電圧が変動するとこの無効電力補償装置を作動
させて電力系統の電圧変動を安定化させる系統電圧安定
化装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention comprises a reactive power compensator for compensating reactive power of a power system by using a power capacitor, a reactor or an inverter. The present invention relates to a system voltage stabilizing device that operates to stabilize voltage fluctuations of a power system.

【0002】[0002]

【従来の技術】電力系統において、電源側から負荷点ま
では常にインピーダンスが存在するので、負荷電流が大
きくなればそれに応じて線路電圧降下が生じ、負荷点の
電圧は降下する。このように負荷点の電圧が降下する電
力系統にあっては、負荷に供給する電圧を一定の電圧範
囲に抑えるために、一般に電圧調整装置が設置されてい
る。この種の電圧調整装置においは、高圧線のピーク・
オフピーク時の電流比が大きく影響し、また地域や季節
によっても変化するので、これらの要素を総合的に判断
し、電圧調整を検討する必要がある。
2. Description of the Related Art In an electric power system, since impedance always exists from a power supply side to a load point, if a load current increases, a line voltage drop occurs accordingly, and a voltage at the load point drops. In such a power system in which the voltage at the load point drops, a voltage regulator is generally installed in order to keep the voltage supplied to the load within a certain voltage range. In this type of voltage regulator, the peak and
Since the current ratio at the off-peak time greatly affects and varies depending on the region and the season, it is necessary to comprehensively judge these factors and consider voltage adjustment.

【0003】従来、一般的に使用されている線路用電圧
調整装置(SVR:Step Voltage Reg
ulator)が知られている。このSVRは、電力系
統の電圧変動の大きい箇所に調整用変圧器を設け、この
調整用変圧器に設けられたタップを切り換えて、電源入
力側から入力された電圧が負荷側で電圧降下する分を予
め昇圧しておき、負荷側の電圧を一定の範囲内の電圧に
して負荷による電圧降下を補償しようとするものであ
る。
[0003] Conventionally, a line voltage regulator (SVR: Step Voltage Reg) generally used.
ulrator) is known. This SVR is provided with an adjusting transformer at a place where the voltage fluctuation of the power system is large, and by switching taps provided on the adjusting transformer, the voltage input from the power input side is reduced on the load side. Is increased in advance, and the voltage on the load side is set to a voltage within a certain range to compensate for the voltage drop due to the load.

【0004】このようなSVRにあっては、日負荷変動
等に伴う緩やかな電圧変動に対応することを目的とする
ため、瞬時の状況変化に対応する電圧調整ができないと
いう欠点があったことから、このようなSVRの電圧補
償機能に加え、電力系統の無効電力を高速に制御できる
パワーエレクトロニクス技術を応用した、静止型無効電
力補償装置(SVC:Static Var Comp
ensator)が用いられるようになった。このよう
なSVCの一種として、TSC(Thyristor−
Switched Capacitor)方式あるいは
SVG(Static Var Generator)
方式のようなものがある。
[0004] Such an SVR has a drawback that it is not possible to adjust the voltage corresponding to an instantaneous change in the situation, because the purpose is to deal with a gradual voltage change due to a daily load change or the like. In addition to such a voltage compensation function of the SVR, a static var compensator (SVC: Static Var Comp) applying a power electronics technology capable of controlling reactive power of a power system at high speed.
Encoder) has been used. As one type of such SVC, TSC (Thyristor-
Switched Capacitor method or SVG (Static Var Generator)
There is something like a scheme.

【0005】[0005]

【発明が解決しようとする課題】ところで、SVG方式
のような静止型無効電力補償装置を電力系統に接続する
場合、図4に示すように、電力系統Lの電源側と負荷側
にそれぞれ第1と第2のセンサ付開閉器61,62を接
続し、これらの第1と第2のセンサ付開閉器61,62
に並列に第3の開閉器63を接続し、この第3の開閉器
63を介してインバータとインバータに制御信号を送出
する制御回路等からなるSVG装置50を接続するよう
にしている。また、この第3の開閉器63にはSOGリ
レー71と通信部72とを備えた監視子局70が接続さ
れている。
When a static var compensator, such as the SVG system, is connected to a power system, first and second power supplies L and L are connected to the power system L as shown in FIG. And the second switches 61 and 62 with sensors, and the first and second switches 61 and 62 with sensors.
A third switch 63 is connected in parallel with the first switch 63, and an SVG device 50 including an inverter and a control circuit for sending a control signal to the inverter is connected via the third switch 63. Further, the third switch 63 is connected to a monitoring slave station 70 having an SOG relay 71 and a communication unit 72.

【0006】そして、当該SVG装置50においては、
第3の開閉器63よりSVG装置50側で地絡等の事故
が発生した場合、第3のセンサ付開閉器63のセンサ
(この場合は零相変流器(ZCT))が地絡事故を検出
して地絡信号を監視子局70のSOGリレー71に送出
する。すると、SOGリレー71は地絡信号に基づいて
第3の開閉器63に設けられたトリップコイルを励磁
し、第3の開閉器63の接点を開放することにより、S
VG装置50側で地絡事故が発生した場合に電力系統L
に影響を及ぼさないように切り離すようになされてい
る。
Then, in the SVG device 50,
When an accident such as a ground fault occurs on the SVG device 50 side from the third switch 63, the sensor of the switch 63 with the third sensor (in this case, a zero-phase current transformer (ZCT)) causes a ground fault. It detects and sends a ground fault signal to the SOG relay 71 of the monitoring slave station 70. Then, based on the ground fault signal, the SOG relay 71 excites the trip coil provided in the third switch 63, and opens the contact of the third switch 63, so that S
When a ground fault occurs on the VG device 50 side, the power system L
It is designed to be separated so as not to affect.

【0007】しかしながら、上述したように、電力系統
Lの電源側と負荷側にそれぞれ第1と第2のセンサ付開
閉器61,62を接続し、これらの第1と第2のセンサ
付開閉器61,62に並列に第3の開閉器63を接続
し、この第3の開閉器63にSVG装置50を接続する
ようにしている。このため、第1と第2のセンサ付開閉
器61,62と第3の開閉器63との3つの開閉器が必
要になるため、この種の装置が高価になるという問題を
生じる。また、第1と第2のセンサ付開閉器61,62
を電力系統Lに直列に接続するようしているため、この
種の装置を接続するための工事が面倒で、複雑になると
いう問題も生じた。
However, as described above, the first and second switches 61 and 62 with sensors are respectively connected to the power supply side and the load side of the power system L, and the first and second switches with sensors are connected. A third switch 63 is connected in parallel to 61 and 62, and the SVG device 50 is connected to the third switch 63. For this reason, three switches, ie, the first and second switches 61 and 62 with sensors and the third switch 63, are required, which causes a problem that this type of device becomes expensive. Further, the first and second switches 61 and 62 with sensors are provided.
Are connected in series to the electric power system L, so that the work for connecting this type of device is troublesome and complicated.

【0008】[0008]

【課題を解決するための手段およびその作用・効果】本
発明は、上記課題を解決するためになされたものであっ
て、1つの開閉器を用いて無効電力補償装置を電力系統
に投入あるいは開放できるようにするとともに、無効電
力補償装置側の地絡事故から電力系統を保護できるよう
にすることをその目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made in order to solve the above-mentioned problems, and is intended to provide a reactive power compensator to a power system by using one switch. It is an object of the present invention to make it possible to protect a power system from a ground fault on the reactive power compensator side.

【0009】本発明は上記の目的を達成するため、電力
系統の系統電圧が変動すると同電力系統の電圧変動を安
定化させる無効電力補償装置を備えた系統電圧安定化装
置であって、前記電力系統に開閉器を介して前記無効電
力補償装置を接続するとともに、前記電力系統の状態を
監視してその監視状態を親局との間で通信により報知す
る監視子局を前記開閉器に接続し、前記無効電力補償装
置に前記電力系統の無効電力を補償する主回路部と、該
主回路部の動作を制御すると共に同主回路部の異常を検
出する制御回路と、該制御回路が前記主回路部の異常を
検出したとき模擬地絡信号を発生する模擬地絡信号発生
部を設け、前記開閉器に前記模擬地絡信号発生部にて発
生した模擬地絡信号に応答して地絡信号を出力する零相
変流器と、前記電力系統に前記無効電力補償装置を接続
する接点を開閉するトリップコイルを設けて、前記零相
変流器が前記模擬地絡信号発生器から送出された模擬地
絡信号を検出すると地絡信号を出力して、この地絡信号
に基づいて前記監視子局が前記トリップコイルにトリッ
プ信号を送出し、このトリップ信号により前記トリップ
コイルが励磁して前記開閉器を開動作させるようにした
ことを特徴とする無効電力補償装置を備えた系統電圧安
定化装置を提供するものである。
In order to achieve the above object, the present invention
If the system voltage fluctuates, the voltage fluctuation of the same power system will be reduced.
System voltage stabilizer with reactive power compensator
A reactive power supply connected to the power system via a switch.
Connect the power compensator and change the state of the power system
Monitor and report the monitoring status by communication with the master station
Connected to the switch, and the reactive power compensator is connected to the switch.
A main circuit section for compensating the reactive power of the power system;
Controls the operation of the main circuit and detects abnormalities in the main circuit.
And a control circuit for outputting an abnormality in the main circuit section.
Simulated ground fault signal generation that generates a simulated ground fault signal when detected
And a simulated ground fault signal generation unit
Zero phase that outputs a ground fault signal in response to the generated simulated ground fault signal
A current transformer and the reactive power compensator connected to the power system
A trip coil that opens and closes the contact
A simulated ground where a current transformer is sent from the simulated ground fault signal generator
When a ground fault signal is detected, a ground fault signal is output.
The monitoring slave station trips the trip coil based on
The trip signal is sent, and the trip signal
The coil is excited to open the switch.
System voltage reduction provided with a reactive power compensator
A stabilizing device is provided.

【0010】[0010]

【0011】上記のように構成した系統電圧安定化装置
においては、零相変流器が模擬地絡信号発生部から送出
された模擬地絡信号を検出して地絡信号を出力し、監視
子局がこの地絡信号に基づいてトリップコイルにトリッ
プ信号を送出するため、トリップ信号によりトリップコ
イルが励磁されて開閉器を開動作させることが可能とな
る。このため、この無効電力補償装置の内部に異常が発
生した場合であっても、無効電力補償装置が電力系統に
接続されないため、電力系統に悪影響を及ぼすことがな
いようにすることができる。
The system voltage stabilizing device constructed as described above.
In, the zero-phase current transformer detects the simulated ground fault signal sent from the simulated ground fault signal generator and outputs a ground fault signal, and the monitoring slave station sends a trip signal to a trip coil based on the ground fault signal. Is transmitted, the trip coil is excited by the trip signal, and the switch can be opened. Therefore, even when an abnormality occurs inside the reactive power compensator, the reactive power compensator is not connected to the power system, so that it is possible to prevent the power system from being adversely affected.

【0012】さらに、開閉器に電圧検出センサと電流検
出センサを備えるようにすると、無効電力補償装置は電
圧検出センサおよび電流検出センサが検出した検出値に
基づいて電力系統の無効電力を算出するとともに、この
算出値に基づいて電力系統の無効電力を補償するように
動作するため、配電線に直接電流検出センサを備えるよ
うにしなくても、無効電力を補償することが可能とな
り、この種の無効電力補償装置の構成が簡単になるとと
もに、設置作業も容易になる。
Furthermore, when the switch is provided with a voltage detection sensor and a current detection sensor, the reactive power compensator calculates the reactive power of the power system based on the detection values detected by the voltage detection sensor and the current detection sensor. However, since the operation is performed to compensate for the reactive power of the power system based on the calculated value, it is possible to compensate for the reactive power without providing a current detection sensor directly on the distribution line. The configuration of the power compensator is simplified, and the installation work is also facilitated.

【0013】[0013]

【発明の実施の形態】以下、図に基づいて本発明の一実
施の形態を説明する。なお、図1は本発明の無効電力補
償装置を備えた系統電圧安定化装置の概略構成を示すブ
ック図であり、図2はこの系統電圧安定化装置を柱上に
設置する例を示す概略図である。本発明の無効電力補償
装置を備えた系統電圧安定化装置は、図1に示すよう
に、電力系統Lに並列に開閉器30の可動接点を接続
し、この開閉器30の固定接点に無効電力補償装置10
を接続するとともに、この開閉器30には監視子局40
を接続している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a book diagram showing a schematic configuration of a system voltage stabilizing device provided with a reactive power compensating device of the present invention, and FIG. 2 is a schematic diagram showing an example in which the system voltage stabilizing device is installed on a pole. It is. As shown in FIG. 1, a system voltage stabilizing device including a reactive power compensating device of the present invention connects a movable contact of a switch 30 in parallel with a power system L, and applies a reactive power to a fixed contact of the switch 30. Compensation device 10
And the switch 30 is connected to a monitoring slave station 40.
Are connected.

【0014】無効電力補償装置10は、主回路部11
と、この主回路部11に制御信号を付与するとともに主
回路部11が故障か否かの判定を行う制御回路13から
構成される。主回路部11は制御回路13の信号を受け
て、電力系統Lに対してL(インダクタンス)やC(コ
ンダクタンス)成分となるように制御されて動作するも
のである。
The reactive power compensator 10 includes a main circuit 11
And a control circuit 13 for giving a control signal to the main circuit unit 11 and determining whether or not the main circuit unit 11 is out of order. The main circuit section 11 receives a signal from the control circuit 13 and operates under the control of the power system L so as to have an L (inductance) or C (conductance) component.

【0015】制御回路13は、周知のマイクロコンピュ
ータから構成され、開閉器30に配設された、PT(計
器用変圧)32にて検出された電力系統Lの電圧および
CT(変流器)33にて検出された電力系統Lの電流に
基づいて、電力系統Lの無効電力を算出し、この算出値
に基づいて主回路部11が回路動作するための制御信号
を送出する。ここで、制御回路13は、算出した無効電
力が進み位相の場合、主回路部11が電力系統Lから見
てL(インダクタンス)として作用するように主回路部
11の各回路を制御する制御信号を送出し、算出した無
効電力が遅れ位相の場合、主回路部11が電力系統Lか
ら見てC(コンダクタンス)として作用するように主回
路部11の各回路を制御する制御信号を送出する。
The control circuit 13 is composed of a well-known microcomputer. The control circuit 13 includes a switch 30 and a voltage of the power system L detected by a PT (instrument transformer) 32 and a CT (current transformer) 33. Calculates the reactive power of the power system L based on the detected current of the power system L, and sends a control signal for causing the main circuit unit 11 to perform a circuit operation based on the calculated value. Here, when the calculated reactive power is in the leading phase, the control circuit 13 controls each circuit of the main circuit unit 11 so that the main circuit unit 11 acts as L (inductance) when viewed from the power system L. When the calculated reactive power has a delayed phase, a control signal for controlling each circuit of the main circuit unit 11 is transmitted so that the main circuit unit 11 acts as C (conductance) when viewed from the power system L.

【0016】また、制御回路13はPT(計器用変圧)
32にて検出された電力系統Lの電圧を設定された基準
電圧と比較し、電力系統Lの電圧が高い場合は主回路部
11が電力系統Lから見てL(インダクタンス)として
作用するように主回路部11の各回路を制御する制御信
号を送出し、電力系統Lの電圧が低い場合は主回路部1
1が電力系統Lから見てC(コンダクタンス)として作
用するように主回路部11の各回路を制御する制御信号
を送出することもある。
The control circuit 13 has a PT (transformer for an instrument).
The voltage of the power system L detected at 32 is compared with a set reference voltage, and when the voltage of the power system L is high, the main circuit unit 11 acts as L (inductance) when viewed from the power system L. A control signal for controlling each circuit of the main circuit unit 11 is transmitted, and when the voltage of the power system L is low, the main circuit unit 1
A control signal for controlling each circuit of the main circuit unit 11 may be transmitted so that 1 acts as C (conductance) when viewed from the power system L.

【0017】開閉器30は、電力系統Lに接続される可
動接点と無効電力補償装置10の主回路部11に接続さ
れる固定接点からなる接点31と、電力系統Lの電圧を
検出するPT(計器用変圧)32と、電力系統Lの電流
を検出するCT(変流器)33と、無効電力補償装置1
0側の零相電流を検出して地絡信号を出力するZCT
(零相変流器)34と、後述するSOGリレー41から
のトリップ信号により励磁されて接点31のロックを開
放するトリップコイル35とから構成される。
The switch 30 has a contact 31 consisting of a movable contact connected to the power system L and a fixed contact connected to the main circuit section 11 of the reactive power compensator 10, and a PT (PT) for detecting the voltage of the power system L. Voltage transformer 32), CT (current transformer) 33 for detecting the current of the power system L, and the reactive power compensator 1
ZCT that detects zero-phase current on the 0 side and outputs a ground fault signal
(Zero-phase current transformer) 34 and a trip coil 35 which is excited by a trip signal from the SOG relay 41 described later and releases the lock of the contact 31.

【0018】監視子局40は、開閉器30に備えられた
ZCT(零相変流器)34の検出信号(地絡信号)に基
づいて開閉器30に備えられたトリップコイル35にト
リップ信号を送出するSOGリレー41と、ポールトラ
ンス(図2参照)Trから電源が供給されて、開閉器3
0の状態を監視することにより無効電力補償装置10の
状態を監視して、この監視状態を図示しない親局に放置
する通信部42とから構成される。
The monitoring slave station 40 sends a trip signal to a trip coil 35 provided in the switch 30 based on a detection signal (ground fault signal) of a ZCT (zero-phase current transformer) 34 provided in the switch 30. Power is supplied from the SOG relay 41 to be transmitted and the pole transformer (see FIG. 2) Tr, and the switch 3
The communication unit 42 monitors the state of the reactive power compensator 10 by monitoring the state of 0, and leaves the monitored state to the master station (not shown).

【0019】上述のように構成する系統電圧安定化装置
を電力系統に設置する例について説明すると、図2に示
すように、まず、2本の電柱P1,P2間に架台Fを設
置した後、この架台F上に無効電力補償装置10を配置
する。また、一方の電柱P1の上部にポールトランスT
rを設置するとともに、その下部に監視子局40を設置
するとともに、他方の電柱P2に開閉器30を設置す
る。
An example in which the system voltage stabilizing device configured as described above is installed in a power system will be described. As shown in FIG. 2, first, a gantry F is installed between two power poles P1 and P2, The reactive power compensator 10 is arranged on the gantry F. In addition, a pole transformer T is provided above one pole P1.
In addition to installing r, the monitoring slave station 40 is installed underneath, and the switch 30 is installed on the other telephone pole P2.

【0020】この後、開閉器30の入力側端子30a,
30bに電力系統Lを接続するとともに、開閉器30の
出力側端子30cと無効電力補償装置10の入力端子1
0aとを接続する。一方、ポールトランスTrと監視子
局40とを接続し、親局との通信線に監視子局40の通
信部42を接続するとともに、監視子局40のSOGリ
レー41と開閉器30に備えられたZCT(零相変流
器)34に接続する。さらに、開閉器30に備えられた
PT(計器用変圧)32およびCT(変流器)33と無
効電力補償装置10の制御回路13とを接続して、系統
電圧安定化装置の電力系統Lへの設置が完了する。
Thereafter, the input terminals 30a of the switch 30,
30b, the power system L is connected, and the output terminal 30c of the switch 30 and the input terminal 1 of the reactive power compensator 10 are connected.
0a. On the other hand, the pole transformer Tr is connected to the monitoring slave station 40, the communication unit 42 of the monitoring slave station 40 is connected to the communication line with the master station, and the SOG relay 41 and the switch 30 of the monitoring slave station 40 are provided. ZCT (zero-phase current transformer) 34. Further, a PT (current transformer) 32 and a CT (current transformer) 33 provided in the switch 30 and the control circuit 13 of the reactive power compensator 10 are connected to the power system L of the system voltage stabilizer. Installation is completed.

【0021】ついで、上述のようにして設置された本発
明の系統電圧安定化装置の動作を説明する。まず、開閉
器30の接点31が投入されることにより、開閉器30
の入力側端子30aおよび出力側端子30cを通して電
力系統Lの電流が無効電力補償装置10の入力端子10
aに流入する。すると、無効電力補償装置10の主回路
部11に電力系統Lの電流が流入することとなる。しか
しながら、例えば、電力系統Lの無効電力を0にするよ
うな制御をしたい場合、制御回路13が開閉器30に備
えられたPT(計器用変圧)32およびCT(変流器)
33が検出した電圧および電流に基づいて無効電力を算
出した結果、電力系統Lには遅れ位相も進み位相も生じ
ていない場合は、制御回路13は主回路部11に制御信
号を送出しないため、主回路部11は作動することがな
い。
Next, the operation of the system voltage stabilizer of the present invention installed as described above will be described. First, when the contact 31 of the switch 30 is turned on, the switch 30 is turned on.
Of the power system L through the input side terminal 30a and the output side terminal 30c of the reactive power compensator 10.
flows into a. Then, the current of the power system L flows into the main circuit section 11 of the reactive power compensator 10. However, for example, when it is desired to control the reactive power of the power system L to be 0, the control circuit 13 uses the PT (instrument transformer) 32 and the CT (current transformer) provided in the switch 30.
As a result of calculating the reactive power based on the voltage and the current detected by 33, if neither the lagging phase nor the leading phase occurs in the power system L, the control circuit 13 does not send a control signal to the main circuit unit 11, The main circuit section 11 does not operate.

【0022】ここで、電力系統Lの負荷端に過負荷状態
が生じて電力系統Lに遅れ位相が発生すると、制御回路
13は主回路部11に制御信号を送出するため、主回路
部11は作動状態となって、遅れ位相を解消するように
動作することとなる。一方、電力系統Lに進み位相が発
生すると、制御回路13は主回路部11に制御信号を送
出するため、主回路部11は作動状態となって、進み位
相を解消するように動作することとなる。
Here, when an overload condition occurs at the load end of the power system L and a lag phase occurs in the power system L, the control circuit 13 sends a control signal to the main circuit unit 11. In the operating state, the operation is performed so as to eliminate the delay phase. On the other hand, when the advance phase occurs in the power system L, the control circuit 13 sends a control signal to the main circuit section 11, so that the main circuit section 11 is in an operating state and operates to eliminate the advance phase. Become.

【0023】このような状態のとき、この無効電力補償
装置10側に地絡事故が発生すると、開閉器30に備え
られたZCT(零相変流器)34はこの地絡事故を検出
して地絡信号を出力する。すると、開閉器30に備えら
れたSOGリレー41は、この地絡信号に基づいてトリ
ップコイル35にトリップ信号を送出する。これによ
り、開閉器30に備えられたトリップコイル35は励磁
されて、接点31の可動接点のロックを解除して接点3
1を開放するため、地絡電流が電力系統Lに流れ出すこ
とを防止できるようになる。
In such a state, if a ground fault occurs on the reactive power compensator 10 side, a ZCT (zero-phase current transformer) 34 provided in the switch 30 detects this ground fault and detects Outputs a ground fault signal. Then, the SOG relay 41 provided in the switch 30 sends a trip signal to the trip coil 35 based on the ground fault signal. As a result, the trip coil 35 provided in the switch 30 is excited, and the movable contact of the contact 31 is unlocked.
1 is released, so that a ground fault current can be prevented from flowing into the power system L.

【0024】また、SOGリレー41がトリップコイル
35にトリップ信号を送出すると同時に、SOGリレー
41は通信部42にトリップ信号に対応する信号を送出
するため、この通信部42は図示しない親局(なお、こ
の親局は例えば電力会社の各営業所に設けられている)
に地絡事故が発生した旨の信号を送出する。
Since the SOG relay 41 sends a trip signal to the trip coil 35 and the SOG relay 41 sends a signal corresponding to the trip signal to the communication unit 42, the communication unit 42 is connected to a master station (not shown). , This master station is provided, for example, at each sales office of a power company)
A signal indicating that a ground fault has occurred.

【0025】なお、図示しないが、開閉器30には周知
のOCリレー(カットオフリレー)が設けられており、
この無効電力補償装置10側に短絡事故が発生すると、
このOCリレーは接点31を蓄勢トリップ動作させるた
め、短絡事故が発生した後、変電所が停電してから所定
の時間が経過して短絡電流が消滅していると、トリップ
コイル35を励磁し、接点31の可動接点のロックを解
除して接点31を開放する。
Although not shown, the switch 30 is provided with a well-known OC relay (cut-off relay).
When a short circuit accident occurs on the reactive power compensator 10 side,
Since the OC relay causes the contact 31 to perform an energy-storing trip operation, after a short-circuit accident has occurred, if a predetermined time has elapsed after the power failure of the substation and the short-circuit current has disappeared, the trip coil 35 is excited. Then, the movable contact of the contact 31 is unlocked and the contact 31 is opened.

【0026】上述したように、本実施形態においては、
開閉器30に無効電力補償装置10側の地絡事故を検出
して地絡信号を出力するZCT(零相変流器)34と開
閉器30の接点31を開放するトリップコイル35とを
備えるようにしているので、地絡事故が発生した場合に
電力系統Lを保護できるようになる。
As described above, in this embodiment,
The switch 30 includes a ZCT (zero-phase current transformer) 34 that detects a ground fault on the reactive power compensator 10 and outputs a ground fault signal, and a trip coil 35 that opens the contact 31 of the switch 30. Therefore, when a ground fault occurs, the power system L can be protected.

【0027】変形例 ついで、上述した実施形態の変形例について図3に基づ
いて説明する。図3は本変形例の無効電力補償装置を備
えた系統電圧安定化装置の概略構成を示すブック図であ
る。なお、図3において、図1と同一符号は同一名称で
あるとともにその機能も同一であるので、図1と相違す
るところのみを説明する。
Modified Example Next, a modified example of the above-described embodiment will be described with reference to FIG. FIG. 3 is a book diagram showing a schematic configuration of a system voltage stabilizing device including the reactive power compensating device of the present modification. In FIG. 3, the same reference numerals as those in FIG. 1 denote the same names and the same functions, and therefore only different points from FIG. 1 will be described.

【0028】本変形例の無効電力補償装置を備えた系統
電圧安定化装置は、図3に示すように、無効電力補償装
置10に模擬地絡信号発生部14を備えるようにすると
ともに、模擬地絡信号発生部14から送出される模擬地
絡信号を開閉器30のZCT(零相変流器)34に送出
するようにしている。
As shown in FIG. 3, the system voltage stabilizing device including the reactive power compensating device according to the present modification includes a reactive ground compensating device 10 provided with a simulated ground fault signal generator 14 and a simulated ground fault signal generating device. The simulated ground fault signal sent from the fault signal generator 14 is sent to a ZCT (zero-phase current transformer) 34 of the switch 30.

【0029】また、制御回路13は主回路部11に配設
された図示しない温度センサ、電圧センサあるいは電流
センサに基づいて主回路部11の温度状態、電圧状態あ
るいは電流状態を予め設定された基準値と比較し、比較
した結果、異常であると判定しかつこの無効電力補償装
置10を電力系統Lから切り離すべきと判定すると模擬
地絡信号発生部14に異常信号を送出するようにしてい
る。さらに、制御回路13はこの無効電力補償装置10
の図示しない操作盤に設けられた開スイッチからの開信
号にもとづいて模擬地絡信号発生部14に開スイッチ信
号を送出し、模擬地絡信号発生部14を動作状態にする
ようにしている。
The control circuit 13 determines the temperature state, voltage state or current state of the main circuit section 11 based on a temperature sensor, voltage sensor or current sensor (not shown) provided in the main circuit section 11. When the value is determined to be abnormal and the reactive power compensator 10 is determined to be disconnected from the power system L, an abnormal signal is transmitted to the simulated ground fault signal generator 14. The control circuit 13 further controls the reactive power compensator 10
An open switch signal is sent to the simulated ground fault signal generation unit 14 based on an open signal from an open switch provided on an operation panel (not shown), and the simulated ground fault signal generation unit 14 is set to an operating state.

【0030】このように、模擬地絡信号発生部14を備
えるようにすると、この無効電力補償装置10は以下の
ように動作するようになる。即ち、まず、開閉器30の
接点31が投入されることにより、開閉器30の入力側
端子30aおよび出力側端子30cを通して電力系統L
の電流が無効電力補償装置10の入力端子10aに流入
する。すると、無効電力補償装置10の主回路部11に
電力系統Lの電流が流入することとなる。
When the simulated ground fault signal generator 14 is provided as described above, the reactive power compensator 10 operates as follows. That is, first, when the contact 31 of the switch 30 is turned on, the power system L through the input terminal 30a and the output terminal 30c of the switch 30 is turned on.
Flows into the input terminal 10a of the reactive power compensator 10. Then, the current of the power system L flows into the main circuit section 11 of the reactive power compensator 10.

【0031】ここで、無効電力補償装置10の主回路部
11の素子に異常が発生すると、制御回路13は主回路
部11の各センサからの信号に基づいて故障か否かの判
定を行い、故障であると判定すると、模擬地絡信号発生
部14に制御信号を送出する。すると、模擬地絡信号発
生部14はZCT(零相変流器)34に模擬地絡信号
(例えば、1.0Aの電流)を送出するため、ZCT
(零相変流器)34は地絡事故を検出して、監視子局4
0のSOGリレー41に地絡信号を送出する。
Here, when an abnormality occurs in an element of the main circuit section 11 of the reactive power compensator 10, the control circuit 13 determines whether or not there is a failure based on signals from each sensor of the main circuit section 11, If it is determined that a fault has occurred, a control signal is sent to the simulated ground fault signal generator 14. Then, the simulated ground fault signal generator 14 sends a simulated ground fault signal (for example, a current of 1.0 A) to the ZCT (zero-phase current transformer) 34,
(Zero-phase current transformer) 34 detects a ground fault and
A ground fault signal is sent to the SOG relay 41 of 0.

【0032】すると、SOGリレー41は開閉器30の
トリップコイル35にトリップ信号を送出するようにな
るため、トリップコイル35はトリップ信号に基づいて
励磁されて、開閉器30の接点31の可動接点のロック
を解除して接点31を開放する。この結果、この無効電
力補償装置10の内部に異常が発生した場合であって
も、無効電力補償装置10は電力系統Lに接続されない
ため、電力系統Lに悪影響を及ぼすことを防止できるよ
うになる。
Then, the SOG relay 41 sends a trip signal to the trip coil 35 of the switch 30. Therefore, the trip coil 35 is excited based on the trip signal, and the movable contact of the contact 31 of the switch 30 is turned on. The lock is released and the contact 31 is opened. As a result, even when an abnormality occurs inside the reactive power compensator 10, the reactive power compensator 10 is not connected to the power system L, so that it is possible to prevent the power system L from being adversely affected. .

【0033】さらに、作業員が無効電力補償装置10を
電力系統Lを切り離すために、図示しない操作盤に設け
られた開スイッチを押圧すると、この開スイッチの開信
号に基づいて制御回路13は模擬地絡信号発生部14に
開スイッチ信号を送出する。すると、模擬地絡信号発生
部14は動作状態になって、ZCT(零相変流器)34
に模擬地絡信号(例えば、1.0Aの電流)を送出する
ため、ZCT(零相変流器)34は地絡事故を検出し
て、監視子局40のSOGリレー41に地絡信号を送出
する。すると、SOGリレー41は開閉器30のトリッ
プコイル35にトリップ信号を送出するようになるた
め、トリップコイル35はトリップ信号に基づいて励磁
されて、開閉器30の接点31の可動接点のロックを解
除して接点31を開放する。
Further, when an operator presses an open switch provided on an operation panel (not shown) to disconnect the reactive power compensator 10 from the power system L, the control circuit 13 simulates based on the open signal of the open switch. An open switch signal is sent to the ground fault signal generator 14. Then, the simulated ground fault signal generation unit 14 is activated, and the ZCT (zero-phase current transformer) 34
The ZCT (zero-phase current transformer) 34 detects a ground fault and sends the ground fault signal to the SOG relay 41 of the monitoring station 40. Send out. Then, the SOG relay 41 sends a trip signal to the trip coil 35 of the switch 30. Therefore, the trip coil 35 is excited based on the trip signal, and unlocks the movable contact of the contact 31 of the switch 30. Then, the contact 31 is opened.

【0034】以上に説明したように、本発明において
は、開閉器30に無効電力補償装置10側の地絡等の事
故に起因する微弱電流の発生に基づき地絡事故を検出す
るZCT(零相変流器)34と、開閉器30の接点31
を開放するトリップコイル35とを備えるようにしてい
る。このため、ZCT(零相変流器)34が地絡事故を
検出して地絡信号を出力すると、監視子局40のSOG
リレー41がこの地絡信号に基づいてトリップコイル3
5にトリップ信号を送出するように動作して、トリップ
コイル35は励磁されて接点31のロックを開放するよ
うに作用するため、無効電力補償装置10側の地絡事故
から電力系統Lを保護することができるようになる。
As described above, in the present invention, the ZCT (zero-phase zero phase detection) that detects a ground fault based on the generation of a weak current in the switch 30 due to a fault such as a ground fault on the reactive power compensator 10 side. Current transformer) 34 and contact 31 of switch 30
And a trip coil 35 for opening the coil. Therefore, when the ZCT (zero-phase current transformer) 34 detects a ground fault and outputs a ground fault signal, the SOG
The relay 41 detects the trip coil 3 based on the ground fault signal.
5, the trip coil 35 is energized and acts to release the lock of the contact 31, so that the power system L is protected from a ground fault on the reactive power compensator 10 side. Will be able to do it.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の無効電力補償装置を備えた系統電圧
安定化装置の一実施形態の概略構成を示すブック図であ
る。
FIG. 1 is a book diagram showing a schematic configuration of an embodiment of a system voltage stabilizing device including a reactive power compensating device of the present invention.

【図2】 図1の系統電圧安定化装置を柱上に設置する
例を示す概略図である。
FIG. 2 is a schematic diagram showing an example in which the system voltage stabilizer of FIG. 1 is installed on a pole.

【図3】 図1の無効電力補償装置の変形例を示す図で
ある。
FIG. 3 is a diagram showing a modification of the reactive power compensator of FIG. 1;

【図4】 従来の無効電力補償装置を備えた系統電圧安
定化装置の概略構成を示す図である。
FIG. 4 is a diagram showing a schematic configuration of a system voltage stabilizing device including a conventional reactive power compensating device.

【符号の説明】[Explanation of symbols]

10…無効電力補償装置、11…主回路部、13…制御
回路、14…模擬地絡信号発生部、30…開閉器、31
…接点、32…PT(計器用変圧器)、33…CT(変
流器)、34…ZCT(零相変流器)、35…トリップ
コイル、40…監視子局、41…SOGリレー、42…
通信部、L…電力系統
DESCRIPTION OF SYMBOLS 10 ... Reactive power compensator, 11 ... Main circuit part, 13 ... Control circuit, 14 ... Simulated ground fault signal generation part, 30 ... Switch, 31
... Contact, 32 ... PT (instrument transformer), 33 ... CT (current transformer), 34 ... ZCT (zero-phase current transformer), 35 ... trip coil, 40 ... monitoring station, 41 ... SOG relay, 42 …
Communication unit, L ... power system

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 誠記 愛知県名古屋市瑞穂区須田町2番56号 日本碍子株式会社内 (56)参考文献 特開 平3−226221(JP,A) 特開 昭55−133620(JP,A) 特開 平8−211951(JP,A) (58)調査した分野(Int.Cl.7,DB名) H02H 3/34 H02H 3/347 H02J 3/18 H02J 13/00 ──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Seiki Ito 2-56, Suda-cho, Mizuho-ku, Nagoya-shi, Aichi Japan Insulator Co., Ltd. (56) References JP-A-3-226221 (JP, A) JP-A Sho 55-133620 (JP, A) JP-A-8-211951 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H02H 3/34 H02H 3/347 H02J 3/18 H02J 13 / 00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電力系統の系統電圧が変動すると同電力
系統の電圧変動を安定化させる無効電力補償装置を備え
た系統電圧安定化装置であって、 前記電力系統に開閉器を介して前記無効電力補償装置を
接続するとともに、前記電力系統の状態を監視してその
監視状態を親局との間で通信により報知する監視子局を
前記開閉器に接続し、 前記無効電力補償装置に前記電力系統の無効電力を補償
する主回路部と、該主回路部の動作を制御すると共に同
主回路部の異常を検出する制御回路と、該制御回路が前
記主回路部の異常を検出したとき模擬地絡信号を発生す
る模擬地絡信号発生部を設け、 前記開閉器に前記模擬地絡信号発生部にて発生した模擬
地絡信号に応答して地絡信号を出力する零相変流器と、
前記電力系統に前記無効電力補償装置を接続する接点を
開閉するトリップコイルを設けて 、 前記零相変流器が前記模擬地絡信号発生器から送出され
た模擬地絡信号を検出すると地絡信号を出力して、この
地絡信号に基づいて前記監視子局が前記トリップコイル
にトリップ信号を送出し、このトリップ信号により前記
トリップコイル励磁して前記開閉器の接点を開動作さ
せるようにしたことを特徴とする無効電力補償装置を備
えた系統電圧安定化装置。
1. When the system voltage of the power system fluctuates, the same power
Equipped with a reactive power compensator that stabilizes voltage fluctuations in the system
System voltage stabilizing device, wherein the reactive power compensator is connected to the power system via a switch.
Connect and monitor the status of the power system to
A monitoring slave station that notifies the monitoring status by communication with the master station
Connected to the switch, the reactive power compensator compensates the reactive power of the power system
A main circuit unit for controlling and operating the main circuit unit.
A control circuit for detecting an abnormality in the main circuit section;
Generates a simulated ground fault signal when an abnormality is detected in the main circuit
A simulated ground-fault signal generator, and a simulated ground-fault signal generator in the switch.
A zero-phase current transformer that outputs a ground fault signal in response to a ground fault signal;
A contact connecting the reactive power compensator to the power system
Provided trip coil for opening and closing, and outputs a ground fault signal when said zero-phase current transformer for detecting the simulated ground No. fault signal sent from said simulated grounding signal generator, this
The monitoring slave station sends a trip signal before Symbol trip coil based on the ground fault signal, to characterized in that the trip coil is so as to opening operation of the contacts of the switch is excited by the trip signal system voltage stabilizer having a reactive power compensator that.
【請求項2】 前記開閉器に電圧検出センサと電流検出
センサを設けて、これらの電圧検出センサと電流検出セ
ンサが検出した検出値に基づいて前記無効電力補償装置
が前記電力系統の無効電力を算出すると共にその算出値
に基づいて前記電力系統の無効電力を補償するようにし
たことを特徴とする請求項に記載の無効電力補償装置
を備えた系統電圧安定化装置。
2. The switch comprises a voltage detection sensor and a current detection sensor, and the reactive power compensator reduces the reactive power of the power system based on detection values detected by the voltage detection sensor and the current detection sensor. The system voltage stabilizing device comprising the reactive power compensating device according to claim 1 , wherein the system voltage is calculated and the reactive power of the power system is compensated based on the calculated value.
JP07959898A 1998-03-26 1998-03-26 System voltage stabilizer with reactive power compensator Expired - Lifetime JP3327835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07959898A JP3327835B2 (en) 1998-03-26 1998-03-26 System voltage stabilizer with reactive power compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07959898A JP3327835B2 (en) 1998-03-26 1998-03-26 System voltage stabilizer with reactive power compensator

Publications (2)

Publication Number Publication Date
JPH11285141A JPH11285141A (en) 1999-10-15
JP3327835B2 true JP3327835B2 (en) 2002-09-24

Family

ID=13694453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07959898A Expired - Lifetime JP3327835B2 (en) 1998-03-26 1998-03-26 System voltage stabilizer with reactive power compensator

Country Status (1)

Country Link
JP (1) JP3327835B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103475105A (en) * 2013-09-30 2013-12-25 河南开启电力实业有限公司 Intelligent integrated power distribution cabinet

Also Published As

Publication number Publication date
JPH11285141A (en) 1999-10-15

Similar Documents

Publication Publication Date Title
US6295190B1 (en) Circuit breaker arrangement with integrated protection, control and monitoring
KR890004588B1 (en) Power supply system and controlling method
CN211701481U (en) Arc extinguishing system
US20030063421A1 (en) Network protector relay and method of controlling a circuit breaker employing two trip characteristics
JP2002171667A (en) Power system stabilizer
JP3327835B2 (en) System voltage stabilizer with reactive power compensator
JP3796428B2 (en) Distribution line ground fault current amplifier
JP3278396B2 (en) System voltage stabilizer with reactive power compensator
JPS6355297B2 (en)
KR20170042070A (en) Apparatus and method for preventing disaster caused by short-circuit in electric power systems
JP2860740B2 (en) Grid connection protection detector
WO2004042883A1 (en) Protective relay
CN211266475U (en) Arc extinguishing system
JP3848722B2 (en) Switch for voltage regulator
JPS6117222B2 (en)
JP3629324B2 (en) Synchronous generator isolated operation detection method
JP2640628B2 (en) Grid connection protection device
JP4033136B2 (en) Overcurrent protection system
JP2751009B2 (en) Grid connection protection device
JPS5939809Y2 (en) Power system stabilizer
JP2860784B2 (en) Grid connection protection device
JP2767214B2 (en) Grid connection protection device
JP3968660B2 (en) Short-circuit current supply device
JP3008427B2 (en) In-house stand-alone operation transfer equipment for thermal power generation equipment
CN112582970A (en) Graphite resistance furnace load short circuit processing method and system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080712

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090712

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100712

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100712

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110712

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120712

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120712

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130712

Year of fee payment: 11

EXPY Cancellation because of completion of term