JP3327656B2 - Method for manufacturing wedge-shaped light guide plate, wedge-shaped light guide plate, and planar illuminator using the light guide plate - Google Patents

Method for manufacturing wedge-shaped light guide plate, wedge-shaped light guide plate, and planar illuminator using the light guide plate

Info

Publication number
JP3327656B2
JP3327656B2 JP34061393A JP34061393A JP3327656B2 JP 3327656 B2 JP3327656 B2 JP 3327656B2 JP 34061393 A JP34061393 A JP 34061393A JP 34061393 A JP34061393 A JP 34061393A JP 3327656 B2 JP3327656 B2 JP 3327656B2
Authority
JP
Japan
Prior art keywords
light
wedge
guide plate
shaped
light guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34061393A
Other languages
Japanese (ja)
Other versions
JPH07159622A (en
Inventor
信義 俵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissen Chemitec Corp
Original Assignee
Nissen Chemitec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissen Chemitec Corp filed Critical Nissen Chemitec Corp
Priority to JP34061393A priority Critical patent/JP3327656B2/en
Publication of JPH07159622A publication Critical patent/JPH07159622A/en
Application granted granted Critical
Publication of JP3327656B2 publication Critical patent/JP3327656B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はエッジライト型の楔形の
導光板並びに該導光板を使用した面型照明体の改良に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wedge-shaped light guide plate of an edge light type and an improvement of a surface illuminator using the light guide plate.

【0002】[0002]

【従来の技術】この種の導光板はエッジに配設された冷
陰極管からの光を広い面積に拡散出光させて均一な照明
を行う面型照明体の面光源として広く利用され、広告灯
等の表示は勿論、近年は液晶表示装置のバックライトと
して広く利用されている。
2. Description of the Related Art A light guide plate of this type is widely used as a surface light source of a surface-type illuminating body for performing uniform illumination by diffusing light from a cold-cathode tube disposed at an edge into a wide area and outputting the same. In recent years, it has been widely used as a backlight of a liquid crystal display device.

【0003】従来の技術及びその問題点 (i)平板型導光板 従来のエッジライト型導光板は、アクリル樹脂の平板を
使用したものが多く、均一な白色ドットを反射用印刷面
に印刷したもの(実開昭54−146183号公報)、
或いは粗密を付した白色ドットを反射用印刷面に印刷し
たもの(特開昭54−35776号公報、特開昭57−
128383号公報、米国特許第4,985,809号)
等々多くの考案、発明がなされている。然しながら、こ
れ等全ては、導光板(1')が平板である為、プリズム性が
なく平板状導光板(1')の上・下面に平行に入った光は図
13のように、平板状導光板(1')の上・下面に当たる事
なく往復して出光せず、その結果、無駄な熱となってし
まう確率が高いという問題があった。図16にその傾向
を示す。
Conventional technology and its problems (i) Flat-type light guide plate Many conventional edge-light-type light guide plates use a flat plate made of an acrylic resin and have uniform white dots printed on a reflective printing surface. (Japanese Utility Model Laid-Open No. 54-146183),
Alternatively, white dots with coarse and dense prints are printed on a printing surface for reflection (JP-A-54-35776, JP-A-57-57776).
No. 128383, U.S. Pat. No. 4,985,809)
Many inventions and inventions have been made. However, in all of these, since the light guide plate (1 ') is a flat plate, light having no prismatic property and entering parallel to the upper and lower surfaces of the flat light guide plate (1') is flat as shown in FIG. There is a problem in that the light does not reciprocate without hitting the upper and lower surfaces of the light guide plate (1 '), and as a result, there is a high probability that the heat is wasted. FIG. 16 shows the tendency.

【0004】図16は、導光板の形状による出光の差を
調べたものである。図16中、A曲線が従来の平板導光
板(1')による出光面(S2')の輝度分布曲線で、図14に
平板導光板(1')の概略断面を示す。B曲線が本発明に使
用される楔形導光板(1)による出光面(S2)の輝度分布曲
線で、図15に楔形導光板(1)を示す。両導光板(1)(1')
は、共に無印刷で、導光板の形状による出光度合いの違
いを純粋に比較するためのものである。
FIG. 16 shows the result of examining the difference in light output depending on the shape of the light guide plate. In FIG. 16, curve A is a luminance distribution curve of the light emitting surface (S2 ') of the conventional flat light guide plate (1'), and FIG. 14 shows a schematic cross section of the flat light guide plate (1 '). A curve B is a luminance distribution curve of the light emitting surface (S2) of the wedge-shaped light guide plate (1) used in the present invention, and FIG. 15 shows the wedge-shaped light guide plate (1). Both light guide plates (1) (1 ')
Are for the purpose of purely comparing the difference in the degree of light emission depending on the shape of the light guide plate without printing.

【0005】図16は、前述のように白色ドット無印刷
の平板型導光板(1')と楔形導光板(1)における出光の差
を示すもので、曲線A、Bから明らかなように、平板型
光板(1')の方が楔形導光板(1)に比べて出光しにくい事
が判る。
FIG. 16 shows the difference in light output between the flat light guide plate (1 ') and the wedge-shaped light guide plate (1) without printing white dots as described above. As is clear from the curves A and B, FIG. It can be seen that the flat light plate (1 ') is less likely to emit light than the wedge-shaped light guide plate (1).

【0006】この様に平板型導光板(1')は形状的に出光
しにくい構造のため、高輝度化が要求される液晶表示装
置(特に、カラー液晶表示装置のような場合)のバック
ライトには適さない。又、平板型導光板(1')は楔形導光
板(1)より35%〜40%程重く軽量化が厳しく要求さ
れる液晶表示装置のバックライトとしては基本的に問題
がある。要するに、平板型導光板(1')は、楔形導光板
(1)と比較して形状的に出光しにくく、且つ重いと云う
基本的問題がある事が図16から理解できる。
As described above, since the flat-type light guide plate (1 ') has a structure in which light is hardly emitted, the backlight of a liquid crystal display device (especially, such as a color liquid crystal display device) which requires high luminance is required. Not suitable for Further, the flat light guide plate (1 ') is about 35% to 40% heavier than the wedge-shaped light guide plate (1) and has a fundamental problem as a backlight of a liquid crystal display device which is required to be strictly reduced in weight. In short, the flat light guide plate (1 ') is a wedge-shaped light guide plate.
It can be understood from FIG. 16 that there is a fundamental problem that the light is hardly emitted and that it is heavy in comparison with (1).

【0007】次に、楔形導光板(1)における反射用加工
面(S3)の輝度に対する影響について述べる。《実験例》
として、楔形導光板(1)で反射用加工面(S3)に全面白色
ペイントを施した楔形導光板(図17)と、後に述べる
楔形導光板(1)で反射用加工面(S3)の全面に均一に凹溝
(6a)を設けた場合を挙げる。米国特許明細書第4,27
7,817号には前者のタイプの楔形導光板(1)が記載さ
れている。然しながら、反射用加工面に白色ペイントを
全面に塗布したものは、殆どの光は光源(2)である冷陰
極管に近い部分で出光してしまい、冷陰極管(2)に直交
する出光面(S2)上の輝度分布は全く不均一(図から分か
るように、光源(2)から遠ざかるにつれて輝度は次第に
低下して行く事が分かる。)で、工業的使用に耐えな
い。図17は画面の広さ5.5''の楔形導光板(1)で発明
者がテストした輝度分布を示す。図17は、冷陰極管
(2)側で大部分の光が出光してしまう事を如実に表して
いる。
Next, the effect of the wedge-shaped light guide plate (1) on the luminance of the reflection processing surface (S3) will be described. 《Experimental example》
The wedge-shaped light guide plate (1) has a wedge-shaped light guide plate (1), in which white paint is applied to the entire surface to be processed for reflection (S3) (FIG. 17), and the wedge-shaped light guide plate (1) described later has an entire surface of the processed surface for reflection (S3). Groove evenly
The case where (6a) is provided will be described. U.S. Pat.No. 4,27
No. 7,817 describes a wedge-shaped light guide plate (1) of the former type. However, when the white paint is applied to the entire surface of the reflective surface, most of the light is emitted at the part close to the cold cathode tube, which is the light source (2), and the light emitting surface is orthogonal to the cold cathode tube (2). The luminance distribution on (S2) is quite non-uniform (as can be seen from the figure, it can be seen that the luminance gradually decreases as the distance from the light source (2) increases) and is not endurable for industrial use. FIG. 17 shows the luminance distribution tested by the inventor on a wedge-shaped light guide plate (1) having a screen width of 5.5 ″. FIG. 17 shows a cold cathode tube
This clearly shows that most of the light is emitted on the (2) side.

【0008】図18は、後者の楔形導光板(1)で且つ均
一な凹溝(6a)を反射用加工面(S3)に施した場合の輝度分
布グラフである。特開昭59−210411号公報に
は、後者の楔形導光板(1)が記載されているが、これ
は、前者の印刷ドット(6)の代わりに凹溝(6a)を施した
訳であるが、これも前記の前面白色塗装と同じく均一な
凹溝(6a)では冷陰極管(2)に近い側で出光してしまい、
工業的使用に耐えない事が判明した。
FIG. 18 is a luminance distribution graph when the wedge-shaped light guide plate (1) and the uniform concave groove (6a) are formed on the reflection processing surface (S3). JP-A-59-210411 discloses the latter wedge-shaped light guide plate (1), which is formed by providing a concave groove (6a) in place of the former print dot (6). However, this also emits light on the side close to the cold cathode tube (2) in the same concave groove (6a) as in the front white paint,
It turned out to be unsuitable for industrial use.

【0009】以上のように、従来の導光板は、いずれに
せよ出光面の輝度が全面において略均一に形成するとい
うようなものはほとんどなく、わずかに『粗密を施した
白色ドットを反射用加工面(S3)に施す』という程度の
『定性的な記述』が見られるのみで、どのような粗密で
あるか詳細且つ具体的な記載はなく工業的に利用可能な
『定量的提言』はこれまではなされていなかった。
As described above, in the conventional light guide plate, there is almost no case in which the brightness of the light emitting surface is formed substantially uniformly over the whole surface. `` Qualitative description '' of only about `` applied to the surface (S3) '' can be seen, but there is no detailed and specific description of how coarse or dense it is. Was not done until.

【0010】[0010]

【発明が解決しようとする課題】本発明はかかる従来の
導光板の抱えている問題点を解決するためになされた
ので、反射用加工面に印刷ドットを始め、各種加工を
『定量的』に施す事が出来るようにし、反射用加工面の
工業的加工を可能にする事をその解決課題とするもので
ある。
SUMMARY OF THE INVENTION The present invention has been made in order to solve the problems of the conventional light guide plate. It is an object of the present invention to make it possible to perform "quantitative" processing and to enable industrial processing of a processing surface for reflection.

【0011】[0011]

【課題を解決するための手段】請求項1は、『幅広な側
面で、光源(2)からの光が入光する入光側面(S1)と、前
記入光側面(S1)の反対側に位置する幅狭側面(S4)と、前
記両側面(S1)(S4)に交差する出光面(S2)と、前記出光面
(S2)の反対側に位置する光反射用加工面(S3)とを有する
楔形導光板の製造方法において、前記光反射用加工面(S
3)に、白色ドット(6)、凹溝(6a)、突条(6b)、凹所(6c)
乃至突起(6d)のいずれかを下記の式に従って分布するよ
うに形成する事を特徴とする、楔形導光板の製造方法。 P(x)=〈(1/K)・1/[{(x 1 /α)−x}・(L'−x)]〉 (1/n) 但し0≦x≦x 1 x;光源に垂直な方向で、光源端から奥に向かう楔形導
光板の出光面上の距離 P(x);楔形導光板の印刷率分布又は加工度分布 α;出光率 L';楔形導光板の形状で決まる形状係数 1 ;光源端から印刷領域の最奥端迄の距離 n,K;正の定数』である。 請求項に記載の楔形導光板(1)は、『幅広な側面で、
光源(2)からの光が入光する入光側面(S1)と、前記入光
側面(S1)の反対側に位置する幅狭側面(S4)と、前記両側
面(S1)(S4)に交差する出光面(S2)と、前記出光面(S2)の
反対側に位置する光反射用加工面(S3)とを有する楔形導
光板(1)において、前記光反射用加工面(S3)に、白色ド
ット(6)が下記の式に従って分布するように印刷されて
いる事を特徴とする、楔形導光板。 P(x)=〈(1/K)・1/[{(x 1 /α)−x}・(L'−x)]〉 (1/n) 但し0≦x≦x 1 x;光源に垂直な方向で、光源端から奥に向かう楔形導
光板の出光面上の距離 P(x);楔形導光板の印刷率分布 α;出光率 L';楔形導光板の形状で決まる形状係数 1 ;光源端から印刷又は加工領域の最奥端迄の距離 n,K;正の定数』である。
Means for Solving the Problems Claim 1 is directed to the "wide side
The light incident side (S1) where the light from the light source (2) enters
The narrow side (S4) opposite the writing light side (S1) and the front
A light-emitting surface (S2) intersecting both side surfaces (S1) and (S4), and the light-emitting surface
(S2) and a light reflection processing surface (S3) located on the opposite side
In the method for manufacturing a wedge-shaped light guide plate, the light reflection processing surface (S
3), white dots (6), grooves (6a), ridges (6b), recesses (6c)
Or any of the protrusions (6d) are distributed according to the following formula.
A method for manufacturing a wedge-shaped light guide plate, characterized in that the light guide plate is formed as follows. P (x) = <(1 / K) · 1 / [{(x 1 / α) −x} · (L′−x)]> (1 / n) where 0 ≦ x ≦ x 1 x; A wedge-shaped guide extending vertically from the light source end to the back
Distance P (x) on the light exit surface of the light plate ; printing rate distribution or processing degree distribution α of the wedge-shaped light guide plate; light emission rate L ′; shape factor x 1 determined by the shape of the wedge-shaped light guide plate ; N, K to the end ; positive constant ”. The wedge-shaped light guide plate (1) according to claim 2 is “a wide side surface,
Light incident side surface (S1) where light from the light source (2) enters, a narrow side surface (S4) located on the opposite side of the light incident side surface (S1), and the both side surfaces (S1) (S4) In a wedge-shaped light guide plate (1) having an intersecting light emitting surface (S2) and a light reflecting processed surface (S3) located on the opposite side of the light emitting surface (S2), the light reflecting processed surface (S3) , White
(6) are printed so as to be distributed according to the following formula.
A wedge-shaped light guide plate, P (x) = <(1 / K) · 1 / [{(x 1 / α) -x} · (L'-x)]> (1 / n) where 0 ≦ x ≦ x 1 x; the light source A wedge-shaped guide extending vertically from the light source end to the back
The distance P (x) on the light exit surface of the light plate ; the printing rate distribution α of the wedge-shaped light guide plate; the light emission rate L ′; the shape factor x 1 determined by the shape of the wedge-shaped light guide plate ; Distance n, K; positive constant ”.

【0012】基本式P(x)に従って光反射用加工面(S3)
に加工を行うと、1回乃至少ない回数の試作で楔形導光
板(1)のほぼ全面における出光率を高い精度で一定にす
る事ができ、光反射用加工面(S3)の加工時間を短縮する
事ができる。 また、出光面(S2)の入光側面(S1)側の出光
率が低くおさえられ、幅狭側面(S4)側に向かって出光率
が次第に増加するものであり、出光面(S2)全体として出
光率が均一となって均一輝度が確保される。
According to the basic formula P (x), the light-reflection processing surface (S3)
Wedge-shaped light guide with one or a small number of prototypes
Maintains the light output rate over the entire surface of the plate (1) with high accuracy and constant
To reduce the processing time of the light reflection processing surface (S3)
Can do things. Further , the light output rate on the light incident side (S1) side of the light output surface (S2) is suppressed low, and the light output rate gradually increases toward the narrow side surface (S4) side, and as a whole the light output surface (S2) The light emission rate is uniform, and uniform brightness is secured.

【0013】請求項に記載の楔形導光板(1)は、『幅
広な側面で、光源(2)からの光が入光する入光側面(S1)
と、前記入光側面(S1)の反対側に位置する幅狭側面(S4)
と、前記両側面(S1)(S4)に交差する出光面(S2)と、前記
出光面(S2)の反対側に位置する光反射用加工面(S3)とを
有する楔形導光板(1)において、光反射用加工面(S3)側
に凹溝(6a)乃至突条(6b)が下記の式に従って分布するよ
うに形成されている事を特徴とする、楔形導光板。 P(x)=〈(1/K)・1/[{(x 1 /α)−x}・(L'−x)]〉 (1/n) 但し0≦x≦x 1 x;光源に垂直な方向で、光源端から奥に向かう楔形導
光板の出光面上の距離 P(x);楔形導光板の加工度分布 α;出光率 L';楔形導光板の形状で決まる形状係数 1 ;光源端から印刷又は加工領域の最奥端迄の距離 n,K;正の定数』である。
[0013] The wedge-shaped light guide plate (1) according to the third aspect of the present invention is characterized in that "a light-entering side surface (S1) on which light from a light source (2) is incident is a wide side surface.
And a narrow side surface (S4) located on the opposite side of the light incident side surface (S1).
And a light emitting surface (S2) intersecting the both side surfaces (S1) and (S4), and a wedge-shaped light guide plate (1) having a light reflecting processed surface (S3) located on the opposite side of the light emitting surface (S2). At the light reflection processing surface (S3) side
The grooves (6a) to ridges (6b) are distributed according to the following formula.
A wedge-shaped light guide plate characterized by being formed as follows. P (x) = <(1 / K) · 1 / [{(x 1 / α) −x} · (L′−x)]> (1 / n) where 0 ≦ x ≦ x 1 x; A wedge-shaped guide extending vertically from the light source end to the back
The distance P (x) on the light exit surface of the light plate ; the processing degree distribution α of the wedge-shaped light guide plate; the light emission rate L ′; the shape factor x 1 determined by the shape of the wedge-shaped light guide plate ; Distance n, K; positive constant ”.

【0014】基本式P(x)に従って光反射用加工面(S3)
に加工を行うと、1回乃至少ない回数の試作で楔形導光
板(1)のほぼ全面における出光率を高い精度で一定にす
る事ができ、光反射用加工面(S3)の加工時間を短縮する
事ができる。
According to the basic formula P (x), the light reflecting surface (S3)
Wedge-shaped light guide with one or a small number of prototypes
Maintains the light output rate over the entire surface of the plate (1) with high accuracy and constant
To reduce the processing time of the light reflection processing surface (S3)
Can do things.

【0015】請求項に記載の楔形導光板(1)は、『幅
広な側面で、光源(2)からの光が入光する入光側面(S1)
と、前記入光側面(S1)の反対側に位置する幅狭側面(S4)
と、前記両側面(S1)(S4)に交差する出光面(S2)と、前記
出光面(S2)の反対側に位置する光反射用加工面(S3)とを
有する楔形導光板(1)において、光反射用加工面(S3)側
に凹所(6c)乃至突起(6d)が下記の式に従って分布するよ
うに形成されている事を特徴とする、楔形導光板。 P(x)=〈(1/K)・1/[{(x 1 /α)−x}・(L'−x)]〉 (1/n) 但し0≦x≦x 1 x;光源に垂直な方向で、光源端から奥に向かう楔形導
光板の出光面上の距離 P(x);楔形導光板の加工度分布 α;出光率 L';楔形導光板の形状で決まる形状係数 1 ;光源端から印刷又は加工領域の最奥端迄の距離 n,K;正の定数』である。
[0015] The wedge-shaped light guide plate (1) according to the fourth aspect is characterized in that "a light-entering side surface (S1) on which light from the light source (2) is incident is a wide side surface.
And a narrow side surface (S4) located on the opposite side of the light incident side surface (S1).
And a light emitting surface (S2) intersecting the both side surfaces (S1) and (S4), and a wedge-shaped light guide plate (1) having a light reflecting processed surface (S3) located on the opposite side of the light emitting surface (S2). At the light reflection processing surface (S3) side
The recesses (6c) to protrusions (6d) are distributed according to the following formula.
A wedge-shaped light guide plate characterized by being formed as follows. P (x) = <(1 / K) · 1 / [{(x 1 / α) −x} · (L′−x)]> (1 / n) where 0 ≦ x ≦ x 1 x; A wedge-shaped guide extending vertically from the light source end to the back
The distance P (x) on the light exit surface of the light plate ; the processing degree distribution α of the wedge-shaped light guide plate; the light emission rate L ′; the shape factor x 1 determined by the shape of the wedge-shaped light guide plate ; Distance n, K; positive constant ”.

【0016】この場合も前述と同様で、基本式P(x)に
従って光反射用加工面(S3)に加工を行うと、1回乃至少
ない回数の試作で楔形導光板(1)のほぼ全面における出
光率を高い精度で一定にする事ができ、光反射用加工面
(S3)の加工時間を短縮する事ができる。
In this case as well, the basic expression P (x) is
Therefore, when processing is performed on the light reflection processing surface (S3), once to
With almost no trial production, the light output from almost the entire surface of the wedge-shaped light guide plate (1) was
The luminous efficiency can be made constant with high accuracy, and the light reflection processing surface
The processing time of (S3) can be reduced.

【0017】[0017]

【0018】[0018]

【0019】請求項5は、請求項2から4のいずれかに
記載の楔形導光板において、光源(2)に近い側の印刷乃
至加工端部領域における印刷率乃至加工度が修正式『P
(x)+P'(x)』に従って形成されている事を特徴とす
る。この修正式は以下のとおりである。 『P(x)+P'(x)=〈(1/K)・1/[{(x1/α)−x}・
(L'−x)]〉(1/n)+(A1−B1x) 但し0≦x≦(A1/B1) (A1/B1);実験的に求められる距離定数 A1;実験的に求められる修正印刷率又は加工度 x;光源に垂直な方向で、光源端から奥に向かう楔形導
光板の出光面上の距離 P(x);楔形導光板の印刷率分布又は加工度分布P'(x);楔形導光板の入光側面側における臨界角障害の
修正項 α;出光率 L';楔形導光板の形状で決まる形状係数 x1;光源端から印刷又は加工領域の最奥端迄の距離 n、;正の定数』
A fifth aspect of the present invention is directed to any one of the second to fourth aspects.
In wedge-shaped light guide plate, wherein the light source (2) to print ratio in the near side printing or processing end region of the working ratio GaOsamu formal "P
(x) + P '(x) " .
You. The correction formula is as follows. “P (x) + P ′ (x) = <(1 / K) · 1 / [{(x 1 / α) −x} ·
(L′−x)]> (1 / n) + (A 1 −B 1 x) where 0 ≦ x ≦ (A 1 / B 1 ) (A 1 / B 1 ); distance constant A experimentally obtained 1 ; Modified printing ratio or degree of processing determined experimentally x: Distance on the light exit surface of the wedge-shaped light guide plate going from the light source end to the back in a direction perpendicular to the light source P (x); Print ratio distribution or wedge-shaped light guide plate Workability distribution P '(x); Critical angle disturbance on the light incident side surface of the wedge-shaped light guide plate
Correction term α; Light output rate L '; Shape factor determined by the shape of the wedge-shaped light guide plate x 1 ; Distance from the light source end to the innermost end of the printing or processing area n, K ; Positive constant "

【0020】前記修正式『P(x)+P'(x)』に従って光
反射用加工面(S3)に加工を行うと、光源(2)に近い側の
印刷乃至加工端部領域でも他の部分とほぼ等しい輝度を
達成する事ができる。
[0020] Before KiOsamu formal Doing processed light reflecting processing surface (S3) according to the "P (x) + P '( x) ", the light source (2) side printing or processing end region Any other near It is possible to achieve almost the same brightness as the part.

【0021】請求項6は、請求項2から4のいずれかに
記載の楔形導光板において、光源(2)から遠い側の印刷
乃至加工端部領域における印刷度乃至加工度が修正式
『P(x)+P''(x)』に従って形成されている事を特徴と
する。この修正式は以下の通りである。 『P(x)+P''(x)=〈(1/K)・1/[{(x1/α)−x}・
(L'−x)]〉(1/n)+(a1−b1x) 但し(a1/b1)≦x≦x1 (a1/b1);実験的に求められる距離定数 a1;実験的に求められる修正印刷率又は加工度 x;光源に垂直な方向で、光源端から奥に向かう楔形導
光板の出光面上の距離 P(x);楔形導光板の印刷率分布又は加工度分布P''(x);楔形導光板の最奥端面における照り返し障害
の修正項 α;出光率 L';楔形導光板の形状で決まる形状係数 x1;光源端から印刷又は加工領域の最奥端迄の距離 n,;正の定数』
A sixth aspect of the present invention is directed to any one of the second to fourth aspects.
In wedge-shaped light guide plate according, characterized in that formed in accordance with the light source printing of the printing or processing end region from the (2) side farther to the working ratio GaOsamu formal "P (x) + P '' (x) " When
I do. The correction formula is as follows. “P (x) + P ″ (x) = <(1 / K) · 1 / [{(x 1 / α) −x} ·
(L′−x)]> (1 / n) + (a 1 −b 1 x) where (a 1 / b 1 ) ≦ x ≦ x 1 (a 1 / b 1 ); distance constant experimentally obtained a 1 : Modified printing ratio or degree of processing determined experimentally x: Distance on the light-emitting surface of the wedge-shaped light guide plate extending from the light source end in the direction perpendicular to the light source P (x); Print ratio distribution of the wedge-shaped light guide plate Or processing degree distribution P ″ (x); reflection failure on the innermost end face of the wedge-shaped light guide plate
Correction factor α; light output rate L ′; shape factor determined by the shape of the wedge-shaped light guide plate x 1 ; distance from the light source end to the innermost end of the printing or processing area n, K ; positive constant ”

【0022】前記修正式『P(x)+P"(x)』に従って光
反射用加工面(S3)に加工を行うと、光源(2)に遠い側の
印刷乃至加工端部領域でも他の部分とほぼ等しい輝度を
達成する事ができる。
[0022] Before KiOsamu formal Doing processed into "P (x) + P" ( x) "light reflecting processing surface according to (S3), the light source (2) to another in the far side printing or processing end region of the It is possible to achieve almost the same brightness as the part.

【0023】請求項7は、面型照明体に関するもので、
『幅広な側面で、光源(2)からの光が入光する入光側面
(S1)と、前記入光側面(S1)の反対側に位置する幅狭側面
(S4)と、前記両側面(S1)(S4)に交差する出光面(S2)と、
前記出光面(S2)の反対側に位置する光反射用加工面(S3)
とを有し、前記光反射用加工面(S3)に白色ドット
(6)、凹溝(6a)、突条(6b)、凹所(6c)乃至突起(6d)のい
ずれかが下記の式に従って分布するように形成されてい
る楔形導光板(1)、前記楔形導光板(1)の入光側面(S1)に
沿って配置された光源(2)、前記楔形導光板(1)の出光面
(S3)上に配置された光散乱板(3)、および前記楔形導光
板(1)の光反射用加工面(S3)に沿って配置された反射シ
ート(4)を備える、面型照明体。 P(x)=〈(1/K)・1/[{(x 1 /α)−x}・(L'−x)]〉 (1/n) 但し0≦x≦x 1 x;光源に垂直な方向で、光源端から奥に向かう楔形導
光板の出光面上の距離 P(x);楔形導光板の印刷率分布又は加工度分布 α;出光率 L';楔形導光板の形状で決まる形状係数 1 ;光源端から印刷領域の最奥端迄の距離 n,K;正の定数』である。
A seventh aspect of the present invention relates to a surface illumination body.
`` The light-entering side where the light from the light source (2) enters
(S1) and a narrow side surface located on the opposite side of the light incident side surface (S1).
(S4), and a light emitting surface (S2) intersecting the both side surfaces (S1) and (S4),
Light-reflection processing surface (S3) located on the opposite side of the light exit surface (S2)
Having a white dot on the light reflection processing surface (S3).
(6), grooves (6a), ridges (6b), the recesses (6c) to the projection (6d) Noi
A wedge-shaped light guide plate (1) formed so that the deviation is distributed according to the following equation ; a light source (2) arranged along the light incident side surface (S1) of the wedge-shaped light guide plate (1) ; Light exit surface of light plate (1)
(S3) a light-scattering plate (3) disposed on the wedge-shaped light guide
Light reflecting along the working surface (S3) comprises arranged reflective sheet (4), a surface-type illumination of the plate (1). P (x) = <(1 / K) · 1 / [{(x 1 / α) −x} · (L′−x)]> (1 / n) where 0 ≦ x ≦ x 1 x; A wedge-shaped guide extending vertically from the light source end to the back
Distance P (x) on the light exit surface of the light plate ; printing rate distribution or processing degree distribution α of the wedge-shaped light guide plate; light emission rate L ′; shape factor x 1 determined by the shape of the wedge-shaped light guide plate ; N, K to the end ; positive constant ”.

【0024】これにより、出光面(S2)の入光側面(S1)側
の出光率が低くさえられ、幅狭側面(S4)に側に向かっ
て出光率が次第に増加するものであり、出光面(S2)全体
として出光が均一となって均一輝度が確保され、非常に
明るく且つ見やすい面型照明体(A)を得る事ができる。
[0024] Thus, the light incident side surface (S1) side of Idemitsu rate of the light exit surface (S2) is even our low, which narrow side (S4) to the light exit rate toward the side is increased gradually, Idemitsu Light emission is uniform over the entire surface (S2) and uniform brightness is secured, and a very bright and easy-to-view surface illuminator (A) can be obtained.

【0025】[0025]

【実施例】以下、本発明を図示実施例に従って詳述す
る。まず、本発明に使用される楔形導光板(1)の各種実
施例と、この楔形導光板(1)を利用した面型照明体(A)に
付いて説明する。楔形導光板(1)の第1実施例は、図1
及び2に示すように、反射用加工面(S3)に白色印刷ドッ
ト(6)を設けた例であり、第2実施例は図3に示すよう
に入光端面(S1)に平行に浅い断面三角形の凹条(6a)を多
数ヘアライン状に形成した例であり、第3実施例は図4
に示すように図3とは反対に入光端面(S3)に平行に低い
突条(6b)をヘアライン状に突設した例であり、第4実施
例は図6に示すように小円錐状凹所(6c)を多数凹設した
例であり、第5実施例は図7に示すように小円錐状凸部
(6d)を多数突設した例である。勿論、反射用加工面(S3)
の例は、これらに限定されず、凹条(6a)や突条(6b)を入
光端面(S3)に対して傾斜するように形成したり、クロス
させたりする事も他の例として可能である。本発明はこ
れら反射用加工面(S3)に施される加工度の定量化に関す
るものである。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. First, various embodiments of the wedge-shaped light guide plate (1) used in the present invention and a planar illuminator (A) using the wedge-shaped light guide plate (1) will be described. A first embodiment of the wedge-shaped light guide plate (1) is shown in FIG.
As shown in FIGS. 2 and 3, this is an example in which white printed dots (6) are provided on the reflection processing surface (S3), and the second embodiment has a shallow cross section parallel to the light incident end surface (S1) as shown in FIG. FIG. 4 shows an example in which a large number of triangular concave stripes (6a) are formed in a hairline shape.
3 shows an example in which a low ridge (6b) protrudes in a hairline shape in parallel to the light incident end face (S3) as opposed to FIG. 3, and the fourth embodiment has a small conical shape as shown in FIG. The fifth embodiment is an example in which a large number of recesses (6c) are recessed. In the fifth embodiment, as shown in FIG.
This is an example in which many (6d) are protruded. Of course, processing surface for reflection (S3)
However, the present invention is not limited to these, and it is also possible to form the concave streak (6a) or the protrusion (6b) so as to be inclined with respect to the light incident end surface (S3), or to cross them. It is. The present invention relates to the quantification of the degree of processing applied to the processing surface for reflection (S3).

【0026】楔形導光板(1)は、図1に示すように入光
端面(S1)が幅広に形成されており、入光端面(S1)の反対
側の反射端面(S4)が幅狭に形成されていて、両端面(S1)
(S4)間の出光面(S2)に対して反射用加工面(S3)が傾斜す
るように形成されていて、その断面があたかも楔状をな
すように形成されている。本実施例では、出光面(S2)が
入光端面(S1)に対して直角となっており、反射用加工面
(S3)が入光端面(S1)に対して傾斜しているものが示され
ているが、逆に、出光面(S2)が入光端面(S1)に対して傾
斜しており、反射用加工面(S3)が入光端面(S1)に対して
直角となっているものを使用してもよいことは言うまで
もない。材質は一般的に光透過性に優れたアクリル板が
使用される。
As shown in FIG. 1, the wedge-shaped light guide plate (1) has a light incident end surface (S1) formed to be wide, and a reflection end surface (S4) opposite to the light incident end surface (S1) has a narrow width. Formed, both end faces (S1)
The processing surface for reflection (S3) is formed so as to be inclined with respect to the light emitting surface (S2) between (S4), and the cross section is formed as if it were wedge-shaped. In the present embodiment, the light exit surface (S2) is perpendicular to the light incident end surface (S1), and the processing surface for reflection is used.
Although (S3) is shown inclined with respect to the light incident end surface (S1), conversely, the light emitting surface (S2) is inclined with respect to the light incident end surface (S1), and it is used for reflection. It goes without saying that a processing surface (S3) having a right angle to the light incident end surface (S1) may be used. In general, an acrylic plate having excellent light transmission properties is used.

【0027】楔形導光板(1)の入光端面(S1)に沿って光
源(21)となる冷陰極管(2)が配設される。この冷陰極管
(2)の背後には凹面に形成されたリフレクタ(7)が設置さ
れている。更に、楔形導光板(1)の反射用加工面(S3)に
下側には、反射シート(4)が設置されており、出光面(S
2)の上には散乱シート(3)が設置されている。
A cold-cathode tube (2) serving as a light source (21) is provided along the light-incident end surface (S1) of the wedge-shaped light guide plate (1). This cold cathode tube
Behind (2) is provided a reflector (7) formed in a concave surface. Further, a reflection sheet (4) is provided below the reflection processing surface (S3) of the wedge-shaped light guide plate (1), and the light exit surface (S
A scattering sheet (3) is set on 2).

【0028】光源(2)から出たの一部は、入光端面(S
1)に直接入光し、残余はリフレクタ(7)に反射されて入
光する事になる。入光した光は、楔形導光板(1)内を直
進し、大多数のは反射用加工面(S3)又は反射シート
(4)に反射され、その進路が変更され、無数の反射を繰
り返してその大半は出光面(S2)から出光される。出光面
(S2)又は反射用加工面(S3)に略平行に入光した光の一部
は、反射用加工面(S3)に反射されることなく反射端面(S
4)に配設された端面反射シート(5)にて反射され、入光
端面(S1)側に反射されるが、リフレクタ(7)によって再
反射して進路が変わり、最終的には出光するようになっ
ている。次に、単なる白色塗装や定性的な白色ドット印
刷では、従来例に示すように工業的に満足の行くような
略均一な輝度を示す出光面を得ることが出来ないので、
前記反射用加工面(S3)において、どのような加工を行え
ば、出光面(S2)における略均一な輝度分布が得られるか
を図9〜12に従って説明する。なお、輝度の単位はC
d/m2、距離の単位はcmとする。
A part of the light emitted from the light source (2) is incident on the light incident end face (S
The light directly enters 1), and the remainder is reflected by the reflector (7) and enters the light. The incoming light travels straight through the wedge-shaped light guide plate (1), and the majority of the light enters the processing surface for reflection (S3) or the reflection sheet.
The light is reflected by (4), its path is changed, and countless reflections are repeated, and most of the light is emitted from the light emitting surface (S2). Light emitting surface
(S2) or a part of the light incident substantially parallel to the processing surface for reflection (S3) is reflected by the reflection end surface (S
The light is reflected by the end face reflection sheet (5) disposed in 4) and is reflected to the light incident end face (S1) side, but is re-reflected by the reflector (7) to change the course, and finally emits light. It has become. Next, with simple white painting or qualitative white dot printing, it is not possible to obtain a light-emitting surface that exhibits a substantially uniform luminance that is industrially satisfactory as shown in the conventional example,
The processing performed on the reflection processing surface (S3) to obtain a substantially uniform luminance distribution on the light exit surface (S2) will be described with reference to FIGS. The unit of luminance is C
d / m 2 , and the unit of distance is cm.

【0029】楔形導光板(1)の入光端面(S1)に配設され
た冷陰極管(2)に垂直な面で切断された楔形導光板(1)の
断面において、冷陰極管(2)から距離xの位置にある微
小出光面dxの輝度Z(x)は、 《I》 その位置xでの残光量に比例する。 《II》 その位置xの楔形導光板(1)の厚さy(x)に比例
する。 《III》 その位置xでの出光率E(x)に比例する。 と仮定する。冷陰極管(2)に相対する入光側面(S1)の厚
さを(B)とし、当該入光側面(S1)の入光輝度を(Zo)とす
ると、その奥行き1cmに付いて、 入光量(Qo)=B×1×Zo=B・Zo … となる。0〜x間での出光面(S2)での出光量は、 ∫0 xZ(x)dx … となる。従って、x=x(すなわち、位置x)での残光
量は、 B・Zo−∫0 xZ(x)dx … となる。
The cross section of the wedge-shaped light guide plate (1), which is cut along a plane perpendicular to the cold-cathode tube (2) disposed on the light incident end surface (S1) of the wedge-shaped light guide plate (1), ), The brightness Z (x) of the minute light exit surface dx at a position x is << I >> proportional to the amount of residual light at the position x. << II >> It is proportional to the thickness y (x) of the wedge-shaped light guide plate (1) at the position x. << III >> It is proportional to the light emission rate E (x) at the position x. Assume that Assuming that the thickness of the light incident side surface (S1) facing the cold cathode tube (2) is (B) and the light incident luminance of the light incident side surface (S1) is (Zo), the light incident side is 1 cm in depth. Light quantity (Qo) = B × 1 × Zo = B · Zo. The output light amount on the light output surface (S2) between 0 and x is ∫0xZ (x) dx. Therefore, x = x (i.e., position x) the remaining amount of the, the B · Zo-∫ 0 x Z (x) dx ....

【0030】、及び上記《I》〜《III》の仮定によ
り、下記に示す楔形導光板(1)の出光面(S2)上の輝度分
布を表す式が得られる。 Z(x)=K'{B・Zo−∫0 xZ(x)dx}y(x)E(x) … ここで、K'は比例定数であり、前述のように、y(x)は
位置(x)の楔形導光板(1)の厚さ、E(x)は位置(x)での
出光率である。y(x)は楔形導光板(1)の形状によって決
まり、図10のように形状を定義すれば、以下のように
なる。 y(x)={L/(B−b)}・{BL/(B−b)−x} …
Based on the assumptions << I >> to << III >>, the following expression is obtained which represents the luminance distribution on the light exit surface (S2) of the wedge-shaped light guide plate (1). Z (x) = K ′ {B · Zo−∫ 0 x Z (x) dx} y (x) E (x) where K ′ is a proportionality constant and, as described above, y (x) Is the thickness of the wedge-shaped light guide plate (1) at the position (x), and E (x) is the light emission rate at the position (x). y (x) is determined by the shape of the wedge-shaped light guide plate (1), and if the shape is defined as shown in FIG. y (x) = {L / (B−b)} · {BL / (B−b) −x}

【0031】又、出光率E(x)は、白色ドット印刷(6)の
場合では、その印刷率P(x)『=単位面積当たりの印刷
部分の面積』のn乗に比例するものとして、以下の式で
表される。 E(x)=k・P(x)n
In the case of white dot printing (6), the light emission rate E (x) is proportional to the nth power of the printing rate P (x) [= the area of the printed portion per unit area]. It is represented by the following equation. E (x) = kP (x) n ...

【0032】ヘアラインを構成する凹条(6a)又は突条(6
b)の場合も、出光率E(x)は加工度P(x)のn乗に比例す
るとして、以下のように表すことができる。 E(x)=k・P(x)n …−1
The concave line (6a) or the ridge line (6
Also in the case of b), the light output rate E (x) can be expressed as follows, assuming that it is proportional to the n-th power of the processing degree P (x). E (x) = kP (x) n ...- 1

【0033】更に、小円錐状凹所(6c)や小円錐状突起(6
d)の場合も同様で、出光率E(x)は加工度P(x)のn乗に
比例するとして、以下のように表すことができる。 E(x)=k・P(x)n …−2 なお、上記、−1、−2はいずれも同一の符号を
用いている。
Further, the small conical recess (6c) and the small conical protrusion (6c)
The same applies to the case of d), and the light emission rate E (x) can be expressed as follows, assuming that it is proportional to the n-th power of the processing degree P (x). E (x) = kP (x) n ... -2 Note that the above-mentioned −1 and −2 use the same reference numerals.

【0034】、又は−1或いは−2をに代入
すると、その一般式は以下のように表される。 Z(x)=K{B・Zo−∫0 xZ(x)dx}・P(x)n・(L'−x)… ここで、K=K'・k・{L/(B−b)} … であり、又、 L’=BL/(B−b) …(10) である。(10)のL’は楔形導光板(1)の形状によって決
まる形状係数である。又、Kはで表される定数であ
る。
Or, when -1 or -2 is substituted for, the general formula is expressed as follows. Z (x) = K {B ・ Zo-∫ 0 x Z (x) dx} · P (x) n・ (L′-x) where K = K ′ ・ k {{L / (B− b)} and L ′ = BL / (B−b) (10) L 'in (10) is a shape factor determined by the shape of the wedge-shaped light guide plate (1). K is a constant represented by

【0035】又、適正な印刷率P(x)分布或いは加工度
P(x)分布により、均一な輝度(Zc)が得られたと仮定す
ると、は以下のようになる。 Zc=K(B・Zo−Zc・x)・P(x)n・(L'−x) …(11)
Further, assuming that uniform luminance (Zc) is obtained by an appropriate distribution of the printing ratio P (x) or the degree of processing P (x), the following is obtained. Zc = K (B · Zo−Zc · x) · P (x) n · (L′−x) (11)

【0036】P(x)nを左辺に出して整理すると、式は下
記のように表される。 P(x)n=(1/K)・1/〈{(Zo・B/Zc)−x}(L’−x)〉 …(12) 即ち、(12)が均一な輝度分布(Zc)を得るために必要な
P(x)を出すための一般式となる。
When P (x) n is put out on the left side and rearranged, the equation is expressed as follows. P (x) n = (1 / K) · 1 / <{(Zo · B / Zc) −x} (L′−x)> (12) That is, (12) is a uniform luminance distribution (Zc). This is a general expression for obtaining P (x) necessary to obtain the following.

【0037】(12)は、n、K、(Zo・B/Zc)、L’が
決まれば冷陰極管(2)に垂直な方向での出光面(S2)上の
印刷率分布、又は凹条(6a)、突条(6b)、小円錐状凹所(6
c)並びに小円錐状突起(6d)の加工度分布を算出する事が
できる。これらの中で、L’は形状係数で、(10)により
算出可能である。次に、入光量(Zo・B)が出光量
(Zc・x1)と等しいとすると、 (Zo・B)=(Zc・x1) …(13) であるが、ここで、(x1)は出光面(S2)上の冷陰極管(2)
から最も遠い位置を表す。実際には、入光した光は、通
過する機材に吸収されたり、漏洩したりするので、その
式は以下のように書き改められる。 Zo・B>Zc・x1 …(14)
(12) is the printing rate distribution on the light emitting surface (S2) in the direction perpendicular to the cold cathode tube (2) if n, K, (Zo · B / Zc) and L ′ are determined, or Ridge (6a), ridge (6b), small conical recess (6
c) and the working degree distribution of the small conical protrusions (6d) can be calculated. Among them, L ′ is a shape factor, which can be calculated by (10). Next, assuming that the incoming light quantity (Zo · B) is equal to the outgoing light quantity (Zc · x 1 ), (Zo · B) = (Zc · x 1 ) (13) where (x 1 ) Is the cold cathode tube (2) on the light emitting surface (S2)
Represents the position furthest from. In practice, the light that has entered is absorbed or leaked by the passing equipment, so the equation is rewritten as follows. Zo ・ B> Zc ・ x 1 … (14)

【0038】これを書き改めると、以下の通りとなる。 α・Zo・B=Zc・x1 ここで、αは1より小さい定数で整理すると以下のよう
になる。 α=(Zc・x1)/(Zo・B) …(15) 但し、0<α<1である。更に、これを書き改めると以
下のようになる。 (Zo・B)/Zc=x1/α …(16)
This can be rewritten as follows. α · Zo · B = Zc · x 1 where α is as follows when rearranged by a constant smaller than 1. α = (Zc · x 1 ) / (Zo · B) (15) where 0 <α <1. Furthermore, this can be rewritten as follows. (Zo · B) / Zc = x 1 / α (16)

【0039】(16)を(12)に代入し、両辺を(1/n)乗す
ると、以下のようになる。 P(x)=(1/K)・1/[{(x1/α)−x}・(L'−x)](1/n) …(17)
By substituting (16) for (12) and raising both sides to (1 / n), the following is obtained. P (x) = <(1 / K) · 1 / [{(x 1 / α) -x} · (L '-x)]> (1 / n) ... (17)

【0040】(15)から分かるように、(α)は導光板全体
の出光率であり、理論的には(B)が大きく、(L)が小さ
い。即ち、プリズムに近い形状のものほど大きい値とな
る。(α)は通常、0.70〜0.98の範囲になる。
(n)は主に塗料性能によって変わる指数で、通常(n)=
1〜4の間にある。ここで、(n),(α),(1/K)を適
当に決めることにより、(17)から印刷分布又は、突条
(6a)や凹条(6b)などの加工度分布P(x)が得られる。通
常の形状の楔形導光板では、 x1<x1/α<L' …(18) であり、(17)のグラフ全体は、一般的に図11のように
描かれるが、ここで必要な範囲は0〜(x1/α)の範囲で
あり、(x1/α)<xの範囲は、ここでは何らの意味を持
たない。
As can be seen from (15), (α) is the light output rate of the entire light guide plate, and theoretically (B) is large and (L) is small. That is, a value closer to the prism has a larger value. (α) is usually in the range of 0.70 to 0.98.
(n) is an index that mainly depends on the paint performance, and usually (n) =
It is between 1 and 4. Here, by appropriately determining (n), (α), and (1 / K), the printing rate distribution or the ridges can be calculated from (17).
Workability distribution P (x) such as (6a) and concave streak (6b) is obtained. In a wedge-shaped light guide plate having a normal shape, x 1 <x 1 / α <L ′ (18), and the entire graph of (17) is generally drawn as shown in FIG. 11. range is in the range of 0~ (x 1 / α), (x 1 / α) < x ranges, no any meaning here.

【0041】図10は特殊双曲線で、請求項1〜4では
図10の0〜x1間の印刷率分布曲線P(x)を表現してい
るわけで、この双曲線の中に我々の発明の大部分が表現
されている。
[0041] FIG 10 is a special hyperbolic, not expresses the print ratio distribution curve P between 0 to x 1 in FIG. 10 in the claim 1 to 4 (x), of our invention in the hyperbola Most are represented.

【0042】ヘアーラインのつけ方は前述のように凹溝
(6a)的にしてもよいし、図4のように突条(6b)状にして
もよい。もちろん出光効果はかなり異なるので、式(17)
の(α),(n),K等の定数は適宜変える必要がある。本
実施例では断面形状は三角形であるが、四角形、半円形
その他適宜の形状が使用される。従って、ここに例示し
たのは本発明の単なる例示であり、これによって断面形
状が限定されるものではない。
The hair line is attached in the groove as described above.
(6a), or a ridge (6b) as shown in FIG. Of course, the light emission effect is quite different, so equation (17)
(Α), (n), K and other constants need to be changed as appropriate. In this embodiment, the cross-sectional shape is a triangle, but a quadrangle, a semicircle, or any other appropriate shape is used. Therefore, what is illustrated here is merely an example of the present invention, and the cross-sectional shape is not limited thereby.

【0043】ここで、ヘアーラインを構成する凹溝(6a)
及び突条(6b)に於ける加工度の意味を説明する。 〔I〕ヘアーラインを構成する凹溝(6a)の加工度 (1)凹溝(6a)の深さ切口長さが共に(a)の場合(図
5)。 単位断面長さ(1cm)における凹溝(6a)の断面の長さ
(ABCの長さ=AB+BC)を加工度と定義した場
合、以下のようになる。 AB=d=√{(a/2)2+a2}=(a√5)/2 ABCの長さ=AB+BC=2d=a√5 故にヘアーライン断面の長さは深さ(a)又は切口長さ
(a)に比例する。 (2)凹溝(6a)の断面形状が正三角形の場合ライン断面
の長さ(2d)は(2a)となり切口長さ(a)に比例する。こ
の場合の深さは{a(√3)/2}となる。 (3)以上より、「光反射用加工面に入光側から幅狭側
面に向けて、入光側面に直交する方向の切断面における
光反射用加工面側に加工された凹溝又は突条の輪郭を構
成する線長」は、冷陰極管(2)に垂直な面で楔形導光板
(1)を切断した断面の反射用加工面(S3)側の単位長さ
(1cm)当たりのヘアーラインを構成する凹溝(6a)乃至
突条(6b)の輪郭線の一辺の長さ(d)乃至全長(2d)とい
う事になる。
Here, the groove (6a) constituting the hairline
The meaning of the degree of processing in the ridge (6b) will be described. [I] Degree of processing of the concave groove (6a) constituting the hairline (1) When the depth of the concave groove (6a) and the cut length are both (a) (FIG. 5). In the case where "the length of the cross section of the concave groove (6a) at the unit cross section length (1 cm) (the length of ABC = AB + BC) is defined as the degree of processing " , the following is obtained. AB = d = {(a / 2) 2 + a 2 } = (a√5) / 2 ABC length = AB + BC = 2d = a√5 Therefore, the length of the hairline cross section is the depth (a) or the cut length Sa
It is proportional to (a). (2) When the cross-sectional shape of the concave groove (6a) is an equilateral triangle, the length (2d) of the line cross section becomes (2a), which is proportional to the cut length (a). In this case, the depth is {a ({3) / 2}}. (3) From the above, “From the light incident side to the light reflection processing surface, narrow side
Toward the surface, in the cut surface in the direction orthogonal to the light incident side surface
Construct the contour of the groove or ridge processed on the light reflection processing surface side.
The line length to be formed is a wedge-shaped light guide plate that is perpendicular to the cold-cathode tube (2).
The length (d) of one side of the contour line of the concave groove (6a) to the ridge (6b) constituting the hairline per unit length (1 cm) of the cross section obtained by cutting (1) on the reflection processing surface (S3) side per unit length (1 cm) ) To the total length (2d).

【0044】次に、加工度P(x)と凹溝(6a)乃至突条(6
b)の輪郭線の一辺の長さ(d)乃至全長(2d)との関係に
ついて述べる。 (i) 図5に示すように、凹溝(6a)の深さ並びに切口の
長さが共に(a)の場合、一本のヘアーライン{=凹溝(6
a)}により生ずる長さ(2d)は、前述の通り、(a√5)
cmである。単位長(1cm)に(n)本の凹溝(6a)が形成
されている場合、単位長当たりの凹溝(6a)全体の加工長
さ(nd)=(n・a√5cm)という事になる。従って、
加工度P(x)=(n・a√5cm)/(1cm)=(n・a√
5《無次元》)となり、加工度P(x)は長さ(d)に比例す
る事になる。 (ii) 断面が正三角形の場合も同様で、ヘアーラインを
構成する凹溝(6a)一本の輪郭により生ずる長さ(d)=2
acmである。反射用加工面(S3)の単位長さ1cmにヘ
アーラインが(n)本あるとすると、加工度P(x)は(2n
a)となり、前記同様加工度P(x)は単位長さにおける
凹所(6a)の輪郭長さ(d)の割合(無次元数)に比例する
事になる。なお、このような関係は突条(6b)でも当ては
まる。また、上記では、凹所(6a)輪郭長さ(d)の割合
を単位長さ当たりの個数で計算したが、深さを増すよう
にして、単位長さにおける凹所(6a)の輪郭長さ(d)の割
合(無次元数)を増加させても同じである。換言すれ
ば、単位長さ当たりの(d)の増加割合は、個数を増やし
てもよいし、深さを増すことによって行ってもよいとい
う事である。
Next, the working degree P (x) and the groove (6a) to the ridge (6)
The relationship between the length (d) and the total length (2d) of one side of the contour line in b) will be described. (i) As shown in FIG. 5, when both the depth of the groove (6a) and the length of the cut are (a), one hairline {= groove (6
a) The length (2d) caused by} is (a√5)
cm. When (n) concave grooves (6a) are formed in a unit length (1 cm), the processing length (nd) of the entire concave groove (6a) per unit length is (nd) = (na ・ 5 cm). become. Therefore,
Degree of processing P (x) = (na ・ 5cm) / (1cm) = (na ・)
5 <dimensions>), and the working degree P (x) is proportional to the length (d). (ii) The same applies to the case where the cross section is an equilateral triangle, and the length (d) = 2 generated by one contour of the concave groove (6a) constituting the hair line
acm. Assuming that there are (n) hair lines in a unit length of 1 cm of the reflection processing surface (S3), the processing degree P (x) is (2n
a), and the working degree P (x) is proportional to the ratio (dimensionless number) of the contour length (d) of the recess (6a) per unit length as described above. Such a relationship also applies to the ridge (6b). In the above description, the ratio of the contour length (d) of the recess (6a) was calculated by the number per unit length, but as the depth was increased, the contour of the recess (6a) at the unit length was increased. The same is true even if the ratio (dimensionless number) of the length (d) is increased. In other words, the increasing rate of (d) per unit length may be increased by increasing the number or by increasing the depth.

【0045】請求項1〜4のいずれかに記載された刻印
を構成する凹所(6c)や凸部(6d)の加工度P(x)は、反射
用加工面(S3)上の単位面積当たりの凸部(6d)又は凹所
(6c)の刻印表面容積の分布(加工度分布という)率曲線
となる。刻印の形状は種々のものがある。円錐、n角
錐、円柱等がある。前記形状も前述同様単なる例示に止
まり、これによって形状を限定するものではない。
The degree of processing P (x) of the concave part (6c) or the convex part (6d) constituting the mark according to any one of claims 1 to 4 is a unit area on the processing surface for reflection (S3). Protruding part (6d) or recess
A distribution curve (referred to as processing degree distribution) of the engraved surface volume of (6c) is obtained. There are various shapes of the stamp. There are a cone, an n-pyramid, a cylinder, and the like. The shape described above is merely an example as described above, and the shape is not limited thereby.

【0046】〔II〕刻印を構成する凹所(6c)の加工度
(図6参照) (i) 刻印形状(6c)が深さ(a)、底面円の直径(a)の円
錐の場合円錐(6c)を拡げると、 円錐の扇形面積Acm2=(5/4)πa2cm2 単位面積(1cm2)当たりにm個の凹所(6c)があると
すると、その加工度P(x)は、以下のようになる。 P(x)=(5/4)πa2・m(無次元数) (ii) 刻印形状(6c)が底面円の直径(a)、稜の長さ(a)
の場合 円錐の扇形面積Acm2=(1/2)πa2 cm2 単位面積(1cm2)当たりにm個の凹所(6c)があると
すると、その加工度P(x)は、以下のようになる。 P(x)=(1/2)πa2・m(無次元数) (iii) 以上から、刻印(6c)の加工度は加工用反射面(S
3)の単位面積あたりの刻印により新しく発生した表面積
の割合(無次元)ということになる。なお、この場合も
前述同様、刻印(6c)の数を増やすこと又は刻印(6c)の深
さを増す事によって単位面積あたりの刻印により新しく
発生した表面積の割合を増やしてもよい。また、前述の
事柄は突起(6d)の場合にも当てはまる。
[II] Degree of processing of the recess (6c) forming the stamp (see FIG. 6) (i) When the stamp shape (6c) is a cone having a depth (a) and a diameter (a) of the bottom circle, the cone When spreading the (6c), when there are m recesses (6c) in a fan area Acm 2 = (√ 5/4) πa 2 cm 2 per unit area (1 cm 2) per cone, the working ratio P ( x) is as follows. P (x) = (√ 5/4 ) πa 2 · m ( dimensionless number) (ii) stamped shape (6c) of the bottom circle diameter (a), the length of the edge (a)
In the case of a sector of a cone Acm 2 = (1) πa 2 cm 2 Assuming that there are m recesses (6c) per unit area (1 cm 2 ), the processing degree P (x) is as follows: Become like P (x) = (1/2) πa 2 · m (dimensionless number) (iii) From the above, the processing degree of the mark (6c) is determined by the processing reflection surface (S
The percentage of the newly generated surface area (dimensionless) is obtained by the marking per unit area in 3). In this case, as described above, the ratio of the surface area newly generated by the marking per unit area may be increased by increasing the number of the markings (6c) or increasing the depth of the markings (6c). The same applies to the case of the protrusion (6d).

【0047】次に、入光側面(S1)における臨界角障害に
ついて説明する。図8に示したように楔形アクリル導光
板(1)の場合、入光側面(S1)の中点から反射用加工面(S
3)に(θ=47.9°で)向かう下り傾斜線から入光側
面(S1)側の範囲(B')の範囲はアクリルの臨界角のため
光が入って来ない。このため範囲(B')の領域(交差線
で塗り潰した領域)は、楔形導光板(1)の冷陰極管(2)に
臨む入光端部(S1)は式(17)を誘導したときの導光挙動に
従わないものと思われ、式(17)で算出した印刷率分布に
従って印刷してもいつも平均値よりわずかに暗く、出光
面(S2)の均一輝度の実現を妨げる。従って、請求項5に
示したような修正項P'(x)を式(17)の右辺に付加する必
要がある。 P'(x)=A1−B1・x 但し0<x<(A1/B1) 図8
参照。 図8の(B')と、A1、B1との間には nB'=A1/B1 n≫1 の関係があるが、nは予想以上に大きい。これは即ち、
入射角が大きくなるとアクリル表面での反射率が大きく
なり、(B')よりかなり大きな範囲で入光が少ないため
である。即ち、導光板材料の臨界角障害のようなもので
ある。又、A1はP'(x)が印刷率の場合、0.02〜0.
06程度である。
Next, the critical angle obstacle on the light incident side surface (S1) will be described. As shown in FIG. 8, in the case of the wedge-shaped acrylic light guide plate (1), the processing surface for reflection (S
In the range (B ') on the light incident side surface (S1) side from the downward inclined line going to (3) (at θ = 47.9 °), light does not enter because of the critical angle of acrylic. Therefore, the area (B ′) of the area (area filled with the intersection line) is the light incident end (S1) of the wedge-shaped light guide plate (1) facing the cold cathode tube (2) when the equation (17) is induced. Does not follow the light-guiding behavior described above, and even when printed in accordance with the printing rate distribution calculated by the equation (17), it is always slightly darker than the average value, which hinders realization of uniform brightness on the light exit surface (S2). Therefore, it is necessary to add a correction term P ′ (x) as shown in claim 5 to the right side of equation (17). P ′ (x) = A 1 −B 1 · x where 0 <x <(A 1 / B 1 ) FIG.
reference. There is a relationship of nB ′ = A 1 / B 1 n≫1 between (B ′) in FIG. 8 and A 1 and B 1 , but n is larger than expected. This means that
This is because, as the incident angle increases, the reflectance on the acrylic surface increases, and the light incidence is small in a range considerably larger than (B ′). That is, it is like a critical angle obstacle of the light guide plate material. A1 is 0.02 to 0.2 when P '(x) is the printing rate.
It is about 06.

【0048】次に、楔形導光板(1)の最奥端面における
照り返し障害について説明する。楔形導光板(1)では通
常最奥端面(S4)には反射テープ(5)を貼着する。このた
めこの反射テープ(5)により最奥端面(S4)で光の照り返
し現象があり、これによるはね返り光のために最奥端面
(S4)では式(17)を導出した時の仮定に従わない領域が発
生する。即ち、これが照り返し障害であり、出光面(S2)
の均一輝度を達成するためには、加工式の修正を要す
る。即ち、請求項6で示したように、 P''(x)=a1−b1・x 但し(a1/b1)<x<x1 の修正項を式(17)の右辺に付加する必要がある。最奥端
面(S4)の厚さ(b)に対し、 mb=x1−(a1/b1) とすると、通常(m)は10〜20程度である。又、
(a1)は0.02〜0.06の範囲にあり(b)が大きいと
(a1),(m)もともに大きくする必要がある。
Next, a description will be given of a reflection failure on the innermost end face of the wedge-shaped light guide plate (1). In the wedge-shaped light guide plate (1), a reflection tape (5) is usually attached to the innermost end surface (S4). For this reason, the reflection tape (5) causes a reflection phenomenon of light at the innermost end face (S4), and due to the reflected light, the innermost end face (S4).
In (S4), a region that does not follow the assumption at the time of deriving Expression (17) occurs. That is, this is a reflection failure, and the light emitting surface (S2)
In order to achieve the uniform brightness of the above, it is necessary to correct the processing formula. That is, as shown in claim 6, a correction term of P ″ (x) = a 1 −b 1 · x where (a 1 / b 1 ) <x <x 1 is added to the right side of equation (17). There is a need to. Assuming that mb = x 1 − (a 1 / b 1 ) with respect to the thickness (b) of the innermost end surface (S 4), normally (m) is about 10 to 20. or,
(a 1 ) is in the range of 0.02 to 0.06 and (b) is large.
Both (a 1 ) and (m) need to be increased.

【0049】出光面(S3)における高輝度の保証式(17)と
修正項P'(x)及び/又はP''(x)を加えたもので得られた
印刷率分布式を楔形導光板(1)に印刷して得られた平均
輝度はもし均斉度が充分高いものであれば、平均輝度も
最高のものとなっている。即ち、今例にある印刷率分布
P(x)*で均斉度100%となり、その時の平均輝度が
Zc*になったとする。図12参照。もしこの系で印刷
率をP1(x)*のように故意に上げると入口の輝度が高く
なり、奥の方は光量が減少するため平均より低くなる
(Z1(x)*)。逆に入口側の印刷率を低く抑えて、P
2(x)*にすると入口側の輝度は低くなり奥の方は高くな
る(Z2(x)*)。即ち、両者共均斉度が悪化するわけで
試作を繰り返し100%の均斉度が得られた平均輝度は
その使用された機材系では最高輝度のものとなるわけで
ある。即ち、発明者等のなした発明した請求項1〜6
使用して高均斉度の楔形導光板(1)が得られたら、それ
は輝度的にも最高輝度に近いものといえるわけである。
この議論はもちろんヘアーライン加工又は刻印加工した
楔形導光板(1)にも全く同様に適用出来る。
A wedge-shaped light guide plate is obtained by adding the printing rate distribution equation obtained by adding the guarantee equation (17) for high brightness on the light exit surface (S3) and the correction term P ′ (x) and / or P ″ (x). The average luminance obtained by printing in (1) is the highest if the uniformity is sufficiently high. That is, it is assumed that the uniformity is 100% in the printing rate distribution P (x) * in this example, and the average luminance at that time is Zc *. See FIG. If the print rate in this system P1 (x) * deliberately inlet luminance increases Increasing like, the inner part is lower than the average for the amount of light decreases (Z 1 (x) *) . Conversely, keep the printing rate on the entrance side low,
With 2 (x) *, the brightness on the entrance side is low and the depth on the back side is high (Z 2 (x) *). That is, the uniformity deteriorates in both cases, so that the average luminance at which 100% uniformity is obtained by repeating the trial production becomes the highest luminance in the equipment system used. That is, if a highly uniform wedge-shaped light guide plate (1) is obtained by using claims 1 to 6 invented by the inventors, it can be said that it is close to the maximum luminance in terms of luminance.
This discussion can of course be applied to the wedge-shaped light guide plate (1) which has been subjected to the hairline processing or the engraving processing.

【0050】実験例1 広さ3"、冷陰極管(2)側の入光側面(S1)の厚さ4mm、
その反対側の反射側面(S4)の厚さ1.5mmの楔形導光
板(1)で、出光率90%と仮定すると、式17は以下のよ
うになった。(単位はmm) P(x)={54.5/(51.1−x)・(63.4−x)}(1/n) …(19) 次いで、(n)を仮定し、塗料の種類、濃度を選択して印
刷を施し、拡散板としてBEF(商品名)及び100S
−2(商品名)、反射シート(4)としてK−90(商品
名)、遮光テープ(5)としてリピックテープ(商品
名)、リフレクタ(7)としてGR−38W(商品名)を
使用して面型照明体(A)を組み立て、輝度分布を測定し
たところ、平均輝度3,930Cd/m2、均斉度[冷陰
極管(2)に垂直な方向の楔形導光板(1)の出光面(S2)上の
輝度分布曲線で最小輝度と最大輝度を取り出し、(最小
輝度/最大輝度)×100として%表示するもの]は8
4%であった。次いで(n)をわずかに修正し、更に臨界
角障害に対する修正として下式 P”x=0.03−0.003x 但し、0<x<10 (単位mm) を(19)の右辺に入れて印刷率分布を修正して、再試作し
たところ、平均輝度3,900Cd/m2、均斉度88%
の高輝度高均斉度の面型照明体(A)が得られた。なお、
照り返し障害に対する修正は特に必要なかった。ここ
で、使用材料は下記のとおりであり、 (商品名)BEF………住友スリーエム株式会社 (商品名)100S-2……キモト株式会社 (商品名)K−90……キモト株式会社 (商品名)GR−38W…キモト株式会社 (商品名)リビックテープ…エット株式会社 上記の会社より入手したものである。
EXPERIMENTAL EXAMPLE 1 A 3 "wide, 4 mm thick light incident side surface (S1) on the cold cathode tube (2) side,
Assuming a 90% light output rate with a 1.5 mm thick wedge-shaped light guide plate (1) on the opposite reflection side surface (S4), Equation 17 is as follows. (Unit: mm) P (x) = {54.5 / (51.1-x) · (63.4-x)} (1 / n) (19) Then, assuming (n), paint Is selected and the printing is performed, and BEF (trade name) and 100S
-2 (trade name), K-90 (trade name) as reflective sheet (4), Lipic tape (trade name) as light-shielding tape (5), and GR-38W (trade name) as reflector (7) When the surface illuminator (A) was assembled and the luminance distribution was measured, the average luminance was 3,930 Cd / m 2 , the uniformity was [the light emitting surface of the wedge-shaped light guide plate (1) in the direction perpendicular to the cold cathode tubes (2)]. The minimum luminance and the maximum luminance are extracted from the luminance distribution curve on (S2), and (min luminance / maximum luminance) × 100 and displayed in%] is 8
4%. Then, (n) is slightly corrected, and as a correction for the critical angle obstacle, the following equation P ″ x = 0.03−0.003x where 0 <x <10 (unit mm) is inserted into the right side of (19). When the printing rate distribution was corrected and reproduced, the average luminance was 3,900 Cd / m 2 and the uniformity was 88%.
The surface illuminator (A) with high brightness and high uniformity was obtained. In addition,
No correction was required for the reflection failure. Here, the materials used are as follows: (trade name) BEF: Sumitomo 3M Co., Ltd. (trade name) 100S-2: Kimoto Corporation (trade name) K-90: Kimoto Corporation (trade name) Name) GR-38W ... Kimoto Co., Ltd. (Product name) Rivic Tape ... Et Co., Ltd. Obtained from the above company.

【0051】実験例2 広さ9”、冷陰極管(2)側の入光側面(S1)の厚さ4m
m、その反対側の反射側面(S4)の厚さ1.5mmの楔形
導光板(1)で、出光率(100α)90%と仮定した場合の式
(17)は次のようになった。(単位はcm) P(x)={10.2/(16.1−x)・(24−x)}(1/n) …(20) 次いで(n)を仮定して塗料の種類、濃度を選択して印刷
を施し、実施例1と同様の材料を使用して面型照明体
(A)を組み立て、実施例1と同様に輝度分布を測定した
ところ、平均輝度2,200Cd/m2、均斉度87%と
なり、一回の試作で液晶用バックライトとしてほぼ使用
に耐える面型照明体(A)が得られた。
EXPERIMENTAL EXAMPLE 2 9 "wide, 4 m thick light-incident side surface (S1) on the cold cathode tube (2) side
m, a 1.5-mm-thick wedge-shaped light guide plate (1) on the opposite side (S4), assuming a light output (100α) of 90%.
(17) was as follows. (Unit: cm) P (x) = {10.2 / (16.1-x) · (24-x)} (1 / n) (20) Then, assuming (n), the type of paint Printing is performed by selecting a density, and a surface-type illuminator using the same material as in the first embodiment.
(A) was assembled, and the luminance distribution was measured in the same manner as in Example 1. As a result, the average luminance was 2,200 Cd / m 2 and the uniformity was 87%. The illuminator (A) was obtained.

【0052】次に、(α1)、(n)をわずかに修正し、つ
いで臨界角障害に対する修正として下式 P'(x)=0.06−0.015x と、更に照り返し障害に対する修正として P"(x)=0.09375−0.0075x 但し、12.5<x<14.5 を式20の右辺に付加して印刷率を修正して再試作し、同
様の輝度分布を測定したところ、平均輝度2,180C
d/m2、均斉度89%で中央がわずかに凸の高輝度高
均斉度の導光板が得られた。
Next, (α 1 ) and (n) are slightly corrected, and then the following formula is used as a correction for the critical angle failure: P ′ (x) = 0.06-0.015x P "(x) = 0.09375-0.0075x However, 12.5 <x <14.5 was added to the right side of Equation 20, the printing rate was corrected, and the prototype was reproduced, and the same luminance distribution was measured. However, the average luminance is 2,180C
A light guide plate having a high luminance and a high degree of uniformity with d / m 2 and a degree of uniformity of 89% and a slightly convex center was obtained.

【0053】実験例3 広さ3”、冷陰極管(2)側の入光側面(S1)の厚さ4m
m、その反対側の反射側面(S4)の厚さ1.5mmの楔形
導光板(1)で、出光率80%と仮定した場合の式(17)は
次のようになった。(単位はmm) P(x)={170/(57.5−x)・(63.4−x)}(1/n) …(21) 次いで(n)を仮定して、切溝断面積分布曲線として(断
面形状は図3と同じく三角形とした)反射用加工面(S3)
にヘアーライン加工を施し、実施例1と同様の部材を使
って、面型照明体(A)を組み立て輝度分布を測定したと
ころ、平均輝度4,280Cd/m2、均斉度82%であ
った。1回の試作で液晶用バックライトとして工業的に
充分使用可能なヘアーライン型の面型照明体が得られ
た。
EXPERIMENTAL EXAMPLE 3 A 3 "wide, 4 m thick light-incident side surface (S1) on the cold cathode tube (2) side.
m, the reflection side surface (S4) on the opposite side is 1.5 mm thick and the wedge-shaped light guide plate (1) has a light output rate of 80%, and the equation (17) is as follows. (Unit: mm) P (x) = {170 / (57.5-x) · (63.4-x)} (1 / n) (21) Then, assuming (n), the kerf is cut. Reflected surface (S3) as area distribution curve (cross section is triangular as in Fig. 3)
Was subjected to a hairline process, and a surface-type illuminating body (A) was assembled using the same members as in Example 1 to measure the luminance distribution. As a result, the average luminance was 4,280 Cd / m 2 , and the uniformity was 82%. A hairline-type surface illuminator that can be used industrially as a backlight for liquid crystal was obtained in one trial production.

【0054】[0054]

【発明の効果】以上説明したように本発明では、基本
式(17)に従って、反射用加工面(S3)に印刷又はヘアーラ
インあるいは刻印加工することにより高輝度高均斉度の
導光板を容易に安価にかつ極めて短期に得られるように
なった。すなわち、既述せるようにこれまでに公開され
た文献特許等では高輝度高均斉度の導光板を得るのに印
刷あるいはヘアーラインあるいは刻印加工を得る方法と
して『定性的に粗密をつける』という表現だけで具体的
定量的方法が開示されていなかった。当該特許に開示し
た請求項1〜6により高輝度高均斉度の導光板を得るた
めの印刷率分布又は加工度分布を定量的に算出すること
ができるようになった。これにより、本発明の楔形導光
板を使用した面型照明体は、軽量かつ高輝度高均斉度の
ため高品位の液晶用バックライトあるいは広告その他用
途のバックライトになり得るという利点がある。さら
に、本発明では出光面の入光側面側の出光率が低くおさ
えられ、幅狭側面に側に向かって出光率が次第に増加す
るものであり、出光面全体として出光が均一となって均
一輝度が確保されるという利点がある。
As described above, according to the present invention, a light guide plate having high brightness and high uniformity can be easily obtained by printing or hairline or engraving on the reflection processing surface (S3) according to the basic formula (17). It has become inexpensive and extremely short-term. That is, as described above, in the patent literatures published so far, only the expression “qualitatively and densely” is used as a method of obtaining printing, hairline or engraving to obtain a light guide plate with high brightness and high uniformity. Did not disclose a specific quantitative method. According to claims 1 to 6 disclosed in the patent, it is possible to quantitatively calculate a printing rate distribution or a processing degree distribution for obtaining a light guide plate with high luminance and high uniformity. Accordingly, the surface-type illuminating body using the wedge-shaped light guide plate of the present invention has an advantage that it can be used as a high-quality liquid crystal backlight or a backlight for advertisement and other uses because of its light weight, high luminance and high uniformity. Further
In addition, in the present invention, the light output rate on the light incident side surface side of the light output surface is low.
And the light output gradually increases toward the narrow side.
Light emission is uniform over the entire light exit surface,
There is an advantage that one brightness is secured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に使用する楔形導光板の第1実施例の斜
視図
FIG. 1 is a perspective view of a first embodiment of a wedge-shaped light guide plate used in the present invention.

【図2】図1の側面図FIG. 2 is a side view of FIG. 1;

【図3】本発明に使用する楔形導光板の第2実施例の斜
視図
FIG. 3 is a perspective view of a second embodiment of a wedge-shaped light guide plate used in the present invention.

【図4】本発明に使用する楔形導光板の第3実施例の斜
視図
FIG. 4 is a perspective view of a third embodiment of a wedge-shaped light guide plate used in the present invention.

【図5】本発明の楔形導光板に形成される凹溝の部分拡
大斜視図
FIG. 5 is a partially enlarged perspective view of a concave groove formed in the wedge-shaped light guide plate of the present invention.

【図6】本発明の楔形導光板に形成される円錐状凹所の
拡大斜視図
FIG. 6 is an enlarged perspective view of a conical recess formed in the wedge-shaped light guide plate of the present invention.

【図7】本発明の楔形導光板に形成される円錐状突起の
拡大斜視図
FIG. 7 is an enlarged perspective view of a conical projection formed on the wedge-shaped light guide plate of the present invention.

【図8】本発明の楔形導光板の入光側面における臨界角
障害の説明用部分拡大断面図
FIG. 8 is a partially enlarged cross-sectional view for explaining a critical angle obstacle on a light incident side surface of the wedge-shaped light guide plate of the present invention.

【図9】本発明の計算式を説明するために楔形導光板を
奥行き1cmで切断した部分の斜投影図
FIG. 9 is an oblique projection view of a portion of the wedge-shaped light guide plate cut at a depth of 1 cm to explain a calculation formula of the present invention.

【図10】本発明の計算式を説明するための楔形導光板
の断面図
FIG. 10 is a sectional view of a wedge-shaped light guide plate for explaining a calculation formula of the present invention.

【図11】本発明における均一輝度を得るための印刷率
又は加工度分布グラフ
FIG. 11 is a graph showing a distribution of printing ratio or degree of processing for obtaining uniform brightness in the present invention.

【図12】本発明における出光面の高均斉度と高輝度と
の関係を表すグラフ
FIG. 12 is a graph showing a relationship between high uniformity and high luminance of a light emitting surface according to the present invention.

【図13】従来の板状導光板における平行光の通過状態
を示す断面図
FIG. 13 is a cross-sectional view showing a parallel light passing state in a conventional plate-shaped light guide plate.

【図14】従来の板状導光板の概略構造断面図FIG. 14 is a schematic structural sectional view of a conventional plate-shaped light guide plate.

【図15】本発明にかかる楔形導光板の概略断面図FIG. 15 is a schematic sectional view of a wedge-shaped light guide plate according to the present invention.

【図16】印刷率0%の場合の平板状導光板と楔形導光
板との出光面での輝度分布の相違を表すグラフ
FIG. 16 is a graph showing a difference in luminance distribution on the light exit surface between the flat light guide plate and the wedge light guide plate when the printing ratio is 0%.

【図17】白色ペイントを全面塗布した場合の楔形導光
板の出光面での輝度分布グラフ
FIG. 17 is a graph of the luminance distribution on the light exit surface of the wedge-shaped light guide plate when white paint is applied on the entire surface.

【図18】均一ヘアライン(凹溝)加工した場合の楔形
導光板の出光面での輝度分布グラフ
FIG. 18 is a graph of the luminance distribution on the light exit surface of the wedge-shaped light guide plate when uniform hairlines (concave grooves) are processed.

【符号の説明】[Explanation of symbols]

(1)…楔形導光板 (2)…光源 (6)…白色ドット (S1)…入光側面 (S2)…出光面 (S3)…光反射用加工面 (S4)…幅狭側面 (1) Wedge-shaped light guide plate (2) Light source (6) White dot (S1) Light incident side (S2) Light exit surface (S3) Light-processed surface for reflection (S4) Narrow side

フロントページの続き (56)参考文献 特開 平5−134251(JP,A) 特開 平4−268506(JP,A) 特開 平4−162002(JP,A) 特開 平3−118593(JP,A) 特開 平3−9304(JP,A) 実開 平5−55103(JP,U) 実開 平4−63402(JP,U) (58)調査した分野(Int.Cl.7,DB名) G02B 6/00 331 F21V 8/00 601 G02F 1/13357 Continuation of front page (56) References JP-A-5-134251 (JP, A) JP-A-4-268506 (JP, A) JP-A-4-162002 (JP, A) JP-A-3-118593 (JP) JP-A-3-9304 (JP, A) JP-A-5-55103 (JP, U) JP-A-4-63402 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB Name) G02B 6/00 331 F21V 8/00 601 G02F 1/13357

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】幅広な側面で、光源からの光が入光する入
光側面と、前記入光側面の反対側に位置する幅狭側面
と、前記両側面に交差する出光面と、前記出光面の反対
側に位置する光反射用加工面とを有する楔形導光板の製
造方法において、 前記光反射用加工面に、白色ドット、凹溝、突条、凹所
乃至突起のいずれかを下記の式に従って分布するように
形成する事を特徴とする、楔形導光板の製造方法。 P(x)=〈(1/K)・1/[{(x 1 /α)−x}・(L'−x)]〉 (1/n) 但し0≦x≦x 1 x;光源に垂直な方向で、光源端から奥に向かう楔形導
光板の出光面上の距離 P(x);楔形導光板の印刷率分布又は加工度分布 α;出光率 L';楔形導光板の形状で決まる形状係数 1 ;光源端から印刷領域の最奥端迄の距離 n,K;正の定数
A light incident surface on which light from a light source enters, a narrow side surface opposite to the light incident side surface, a light exit surface intersecting the both side surfaces, and the light exit surface. Made in wedge-shaped light guide plate having a light reflecting processing surface located opposite the surface
In the manufacturing method , a white dot, a concave groove, a ridge, a recess is formed on the light reflection processing surface.
Or any of the protrusions are distributed according to the following formula:
Forming a wedge-shaped light guide plate. P (x) = <(1 / K) · 1 / [{(x 1 / α) −x} · (L′−x)]> (1 / n) where 0 ≦ x ≦ x 1 x; A wedge-shaped guide extending vertically from the light source end to the back
Distance P (x) on the light exit surface of the light plate ; printing rate distribution or processing degree distribution α of the wedge-shaped light guide plate; light emission rate L ′; shape factor x 1 determined by the shape of the wedge-shaped light guide plate ; Distance to edge n, K; positive constant
【請求項2】幅広な側面で、光源からの光が入光する入
光側面と、前記入光側面の反対側に位置する幅狭側面
と、前記両側面に交差する出光面と、前記出光面の反対
側に位置する光反射用加工面とを有する楔形導光板にお
いて、 前記光反射用加工面に、白色ドットが下記の式に従って
分布するように印刷されている事を特徴とする楔形導
光板。 P(x)=〈(1/K)・1/[{(x 1 /α)−x}・(L'−x)]〉 (1/n) 但し0≦x≦x 1 x;光源に垂直な方向で、光源端から奥に向かう楔形導
光板の出光面上の距離 P(x);楔形導光板の印刷率分布 α;出光率 L';楔形導光板の形状で決まる形状係数 1 ;光源端から印刷領域の最奥端迄の距離 n,K;正の定数
2. A light incident surface on which light from a light source is incident on a wide side surface, a narrow side surface opposite to the light incident side surface, a light exit surface intersecting the both side surfaces, and the light exit surface. A wedge-shaped light guide plate having a light-reflection processing surface located on the opposite side of the surface, wherein a white dot is formed on the light reflection processing surface according to the following formula:
A wedge-shaped light guide plate , which is printed so as to be distributed . P (x) = <(1 / K) · 1 / [{(x 1 / α) −x} · (L′−x)]> (1 / n) where 0 ≦ x ≦ x 1 x; A wedge-shaped guide extending vertically from the light source end to the back
Distance P (x) on the light exit surface of the light plate ; print ratio distribution α of the wedge-shaped light guide plate; light output ratio L ′; shape factor x 1 determined by the shape of the wedge-shaped light guide plate ; distance from the light source end to the innermost end of the print area n, K; positive constant
【請求項3】幅広な側面で、光源からの光が入光する入
光側面と、前記入光側面の反対側に位置する幅狭側面
と、前記両側面に交差する出光面と、前記出光面の反対
側に位置する光反射用加工面とを有する楔形導光板にお
いて、 前記光反射用加工面に、凹溝乃至突条が下記の式に従っ
て分布するように形成されている事を特徴とする楔形
導光板。 P(x)=〈(1/K)・1/[{(x 1 /α)−x}・(L'−x)]〉 (1/n) 但し0≦x≦x 1 x;光源に垂直な方向で、光源端から奥に向かう楔形導
光板の出光面上の距離 P(x);楔形導光板の加工度分布 α;出光率 L';楔形導光板の形状で決まる形状係数 1 ;光源端から加工領域の最奥端迄の距離 n,K;正の定数
3. A light incident surface on which light from a light source enters, a narrow side surface opposite to the light incident side, a light exit surface intersecting the both side surfaces, and the light exit surface. A wedge-shaped light guide plate having a light-reflection processing surface located on the opposite side of the surface, wherein the light reflection processing surface has a concave groove or a ridge according to the following formula:
A wedge-shaped light guide plate , characterized in that it is formed so as to be distributed . P (x) = <(1 / K) · 1 / [{(x 1 / α) −x} · (L′−x)]> (1 / n) where 0 ≦ x ≦ x 1 x; A wedge-shaped guide extending vertically from the light source end to the back
The distance P (x) on the light exit surface of the light plate ; the processing degree distribution α of the wedge-shaped light guide plate; the light emission rate L ′; the shape factor x 1 determined by the shape of the wedge-shaped light guide plate ; the distance from the light source end to the innermost end of the processing area n, K; positive constant
【請求項4】幅広な側面で、光源からの光が入光する入
光側面と、前記入光側面の反対側に位置する幅狭側面
と、前記両側面に交差する出光面と、前記出光面の反対
側に位置する光反射用加工面とを有する楔形導光板にお
いて、 前記光反射用加工面に、凹所乃至突起が下記の式に従っ
て分布するように形成されている事を特徴とする、楔形
導光板。 P(x)=〈(1/K)・1/[{(x 1 /α)−x}・(L'−x)]〉 (1/n) 但し0≦x≦x 1 x;光源に垂直な方向で、光源端から奥に向かう楔形導
光板の出光面上の距離 P(x);楔形導光板の加工度分布 α;出光率 L';楔形導光板の形状で決まる形状係数 1 ;光源端から加工領域の最奥端迄の距離 n,K;正の定数
4. A light receiving means for receiving light from a light source on a wide side surface.
A light side surface and a narrow side surface opposite to the light incident side surface
And a light exit surface intersecting the both side surfaces, and an opposite of the light exit surface
And a wedge-shaped light guide plate having a light reflection processing surface
In the light reflection processing surface, recesses or projections are formed according to the following equation.
Wedge-shaped, characterized in that they are distributed
Light guide plate. P (x) = <(1 / K) · 1 / [{(x 1 / α) −x} · (L′−x)]> (1 / n) where 0 ≦ x ≦ x 1 x; A wedge-shaped guide extending vertically from the light source end to the back
The distance P (x) on the light exit surface of the light plate ; the processing degree distribution α of the wedge-shaped light guide plate; the light emission rate L ′; the shape factor x 1 determined by the shape of the wedge-shaped light guide plate ; the distance from the light source end to the innermost end of the processing area n, K; positive constant
【請求項5】光源に近い側の印刷乃至加工端部領域にお
ける印刷率乃至加工度が下記の修正式に従って形成され
ている事を特徴とする請求項2から4のいずれかに記載
の楔形導光板。 P(x)+P'(x)=〈(1/K)・1/[{(x1/α)−x}・(L'
−x)]〉(1/n)+(A1−B1x) 但し0≦x≦(A1/B1) (A1/B1);実験的に求められる距離定数 A1;実験的に求められる修正印刷率又は加工度 x;光源に垂直な方向で、光源端から奥に向かう楔形導
光板の出光面上の距離 P(x);楔形導光板の印刷率分布又は加工度分布P'(x);楔形導光板の入光側面側における臨界角障害の
修正項 α;出光率 L';楔形導光板の形状で決まる形状係数 x1;光源端から印刷又は加工領域の最奥端迄の距離 n,;正の定数
5. The wedge-shaped conductor according to claim 2 , wherein a printing rate or a processing degree in a printing or processing end area on a side close to the light source is formed according to the following correction formula. Light board. P (x) + P ′ (x) = <(1 / K) · 1 / [{(x 1 / α) −x} · (L ′
−x)]> (1 / n) + (A 1 −B 1 x) where 0 ≦ x ≦ (A 1 / B 1 ) (A 1 / B 1 ); distance constant experimentally obtained A 1 ; experiment X: the distance on the light-emitting surface of the wedge-shaped light guide plate extending from the light source end in the direction perpendicular to the light source and P (x); the print rate distribution or the workability distribution of the wedge-shaped light guide plate P '(x): Critical angle disturbance on the light incident side of the wedge-shaped light guide plate
Correction term α; Light output rate L '; Shape factor determined by the shape of the wedge-shaped light guide plate x 1 ; Distance from the light source end to the innermost end of the printing or processing area n, K ; Positive constant
【請求項6】光源から遠い側の印刷乃至加工端部領域に
おける印刷率乃至加工度が下記の修正式に従って形成さ
れている事を特徴とする請求項2から4のいずれかに記
載の楔形導光板。 P(x)+P''(x)=〈(1/K)・1/[{(x1/α)−x}・
(L'−x)]〉(1/n)+(a1−b1x) 但し(a1/b1)≦x≦x1 (a1/b1);実験的に求められる距離定数 a1;実験的に求められる修正印刷率又は加工度 x;光源に垂直な方向で、光源端から奥に向かう楔形導
光板の出光面上の距離 P(x);楔形導光板の印刷率分布又は加工度分布P''(x);楔形導光板の最奥端面における照り返し障害
の修正項 α;出光率 L';楔形導光板の形状で決まる形状係数 x1;光源端から印刷又は加工領域の最奥端迄の距離 n,;正の定数
6. The wedge-shaped conductor according to claim 2 , wherein a printing rate or a degree of processing in a printing or processing end area farther from the light source is formed according to the following correction formula. Light board. P (x) + P ″ (x) = <(1 / K) · 1 / [{(x 1 / α) −x} ·
(L'-x)]> ( 1 / n) + (a 1 -b 1 x) where (a 1 / b 1) ≦ x ≦ x 1 (a 1 / b 1); distance constant determined experimentally a 1 : Modified printing ratio or degree of processing determined experimentally x: Distance on the light-emitting surface of the wedge-shaped light guide plate extending from the light source end in the direction perpendicular to the light source P (x); Print ratio distribution of the wedge-shaped light guide plate Or processing degree distribution P ″ (x); reflection failure on the innermost end face of the wedge-shaped light guide plate
Correction factor α; light output rate L '; shape factor determined by the shape of the wedge-shaped light guide plate x 1 ; distance from the light source end to the innermost end of the printing or processing area n, K ; positive constant
【請求項7】幅広な側面で、光源からの光が入光する入
光側面と、前記入光側面の反対側に位置する幅狭側面
と、前記両側面に交差する出光面と、前記出光面の反対
側に位置する光反射用加工面とを有し、前記光反射用加
工面に白色ドット、凹溝、突条、凹所乃至突起のいず
れかが下記の式に従って分布するように形成されている
楔形導光板 前記楔形導光板の 入光側面に沿って配置された光源 前記楔形導光板の 出光面上に配置された光散乱板、およ
前記楔形導光板の光反射用加工面に沿って配置された
反射シートを備える、面型照明体。 P(x)=〈(1/K)・1/[{(x 1 /α)−x}・(L'−x)]〉 (1/n) 但し0≦x≦x 1 x;光源に垂直な方向で、光源端から奥に向かう楔形導
光板の出光面上の距離 P(x);楔形導光板の印刷率分布又は加工度分布 α;出光率 L';楔形導光板の形状で決まる形状係数 1 ;光源端から印刷領域の最奥端迄の距離 n,K;正の定数
7. A light incident surface on which light from a light source is incident on a wide side surface, a narrow side surface opposite to the light incident side surface, a light exit surface intersecting the both side surfaces, and the light exit surface. A light-reflection processing surface located on the opposite side of the surface, and the light-reflection processing surface does not include any of white dots, concave grooves, ridges, recesses or protrusions .
Re or the wedge-shaped light guide plate is formed so as to be distributed according to the following equation, a light source disposed along the light incident side surface of the wedge-shaped light guide plate, a light scattering plate disposed on the light exit surface of the wedge-shaped light guide plate , And
Along the optical reflective processing surface of the fine the wedge-shaped light guide plate comprises a arranged reflective sheet, a surface-type illumination body. P (x) = <(1 / K) · 1 / [{(x 1 / α) −x} · (L′−x)]> (1 / n) where 0 ≦ x ≦ x 1 x; A wedge-shaped guide extending vertically from the light source end to the back
Distance P (x) on the light exit surface of the light plate ; printing rate distribution or processing degree distribution α of the wedge-shaped light guide plate; light emission rate L ′; shape factor x 1 determined by the shape of the wedge-shaped light guide plate ; Distance to edge n, K; positive constant
JP34061393A 1993-12-07 1993-12-07 Method for manufacturing wedge-shaped light guide plate, wedge-shaped light guide plate, and planar illuminator using the light guide plate Expired - Lifetime JP3327656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34061393A JP3327656B2 (en) 1993-12-07 1993-12-07 Method for manufacturing wedge-shaped light guide plate, wedge-shaped light guide plate, and planar illuminator using the light guide plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34061393A JP3327656B2 (en) 1993-12-07 1993-12-07 Method for manufacturing wedge-shaped light guide plate, wedge-shaped light guide plate, and planar illuminator using the light guide plate

Publications (2)

Publication Number Publication Date
JPH07159622A JPH07159622A (en) 1995-06-23
JP3327656B2 true JP3327656B2 (en) 2002-09-24

Family

ID=18338657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34061393A Expired - Lifetime JP3327656B2 (en) 1993-12-07 1993-12-07 Method for manufacturing wedge-shaped light guide plate, wedge-shaped light guide plate, and planar illuminator using the light guide plate

Country Status (1)

Country Link
JP (1) JP3327656B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000326356A (en) * 1999-03-15 2000-11-28 Sumitomo Chem Co Ltd Manufacture of light guiding plate made of acrylic resin
US6845212B2 (en) * 1999-10-08 2005-01-18 3M Innovative Properties Company Optical element having programmed optical structures
KR100830261B1 (en) * 2000-07-11 2008-05-16 쓰리엠 이노베이티브 프로퍼티즈 캄파니 Backlight with structured surfaces
JP4031655B2 (en) 2002-03-12 2008-01-09 株式会社キシマ Decorative lighting equipment
JP3955505B2 (en) * 2002-07-08 2007-08-08 日本ライツ株式会社 Light guide plate
JP5711893B2 (en) 2010-03-08 2015-05-07 スタンレー電気株式会社 Surface light source device

Also Published As

Publication number Publication date
JPH07159622A (en) 1995-06-23

Similar Documents

Publication Publication Date Title
EP1326102B1 (en) Surface illuminant device
KR100754589B1 (en) Light source device
JP5066741B2 (en) Light guide plate for surface light source
US6986599B2 (en) Light source device
US6669350B2 (en) Planar light source system and light deflecting device therefor
US6727963B1 (en) Liquid crystal display
US7534024B2 (en) Optical deflector element and light source device
JP4119469B2 (en) Optical member and backlight unit using the same
KR101048201B1 (en) Light source device and light deflection element
JPH10260315A (en) Lens light guide plate and surface light source unit using the same
JP5700084B2 (en) Light guide plate, surface light source device, transmissive display device
JP3327656B2 (en) Method for manufacturing wedge-shaped light guide plate, wedge-shaped light guide plate, and planar illuminator using the light guide plate
JP2006202639A5 (en)
JPH1073820A (en) Light nondiffusion property light transmission plate, lens film and surface light source device
JP2000098382A (en) Transparent light guiding plate
JP6500613B2 (en) Light guide plate, surface light source device, transmission type display device
JP2002260424A (en) Light diffusing sheet, and image display element and surface light source device using the same
JP3886072B2 (en) Light guide plate for planar light source
JP3853133B2 (en) Surface light source device
JP5700169B2 (en) Light guide plate, surface light source device, transmissive display device
JP2001273805A (en) Light guide plate and surface light source apparatus
JP3230967B2 (en) Measuring method of light leakage from prism sheet
JP2003021707A (en) Prism sheet and back light
JP2002098816A (en) Prism sheet and back light

Legal Events

Date Code Title Description
S303 Written request for registration of pledge or change of pledge

Free format text: JAPANESE INTERMEDIATE CODE: R316303

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S303 Written request for registration of pledge or change of pledge

Free format text: JAPANESE INTERMEDIATE CODE: R316303

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S303 Written request for registration of pledge or change of pledge

Free format text: JAPANESE INTERMEDIATE CODE: R316303

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S303 Written request for registration of pledge or change of pledge

Free format text: JAPANESE INTERMEDIATE CODE: R316303

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080712

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090712

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090712

Year of fee payment: 7

S303 Written request for registration of pledge or change of pledge

Free format text: JAPANESE INTERMEDIATE CODE: R316311

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090712

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100712

Year of fee payment: 8

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100712

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110712

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120712

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130712

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term