JP3325642B2 - Manufacturing method of foam insulated wire - Google Patents
Manufacturing method of foam insulated wireInfo
- Publication number
- JP3325642B2 JP3325642B2 JP07724393A JP7724393A JP3325642B2 JP 3325642 B2 JP3325642 B2 JP 3325642B2 JP 07724393 A JP07724393 A JP 07724393A JP 7724393 A JP7724393 A JP 7724393A JP 3325642 B2 JP3325642 B2 JP 3325642B2
- Authority
- JP
- Japan
- Prior art keywords
- foaming
- electron beam
- wire
- insulated wire
- resin mixture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Processes Specially Adapted For Manufacturing Cables (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
- Molding Of Porous Articles (AREA)
- Organic Insulating Materials (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は発泡絶縁電線の製法にか
かわり、特に発泡絶縁被覆の発泡度を高くかつ精密に調
節し得るポリオレフィン系発泡絶縁電線の製法に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a foamed insulated electric wire, and more particularly to a method for producing a polyolefin-based foamed insulated electric wire capable of controlling the degree of foaming of a foamed insulating coating to a high degree and precisely.
【0002】[0002]
【従来の技術】ポリオレフィン系の発泡絶縁電線は、伝
送損失が低くかつ高周波伝送速度が高い、などの特性が
あるので多用されている。従来、ポリオレフィン系の発
泡絶縁電線を製造するには、ポリオレフィン系樹脂に化
学発泡剤と有機過酸化物などの架橋剤とを添加した樹脂
混合物を調製し、これを押出機で芯線上に押し出して被
覆した後、200〜250℃に加熱された発泡架橋炉に
送り込んで発泡と同時に架橋させる方法が行われてい
る。また、さらに効率化された製法として、発泡架橋炉
を用いる代わりに、押出機のダイス部分を発泡架橋温度
以上に加熱し、押し出すと同時に発泡架橋させる方法も
行われている。このように発泡と架橋とが同時に行われ
ると、発泡核に発生した気泡が膨張するとともに気泡壁
が増粘し、ある程度の気泡径に成長した段階で独立気泡
として固定される。2. Description of the Related Art Polyolefin foamed insulated wires are widely used because of their characteristics such as low transmission loss and high high-frequency transmission speed. Conventionally, in order to manufacture a polyolefin foam insulated wire, a resin mixture is prepared by adding a chemical foaming agent and a crosslinking agent such as an organic peroxide to a polyolefin resin, and extruding it onto a core wire with an extruder. After coating, a method is used in which the resin is sent to a foaming and crosslinking furnace heated to 200 to 250 ° C. to form and crosslink at the same time as foaming. Further, as a more efficient production method, instead of using a foaming and crosslinking furnace, a method of heating a die portion of an extruder to a foaming and crosslinking temperature or higher and extruding and simultaneously performing foaming and crosslinking is also performed. When foaming and cross-linking are performed at the same time, the bubbles generated in the foam nuclei expand and the cell walls thicken, and are fixed as closed cells when they have grown to a certain cell diameter.
【0003】[0003]
【発明が解決しようとする課題】しかし、このような従
来の発泡絶縁電線の製法にあっては、気泡の成長と架橋
による気泡壁の増粘とが同時に進行し、かつ、その発泡
と増粘とが発泡体の肉厚方向に均一に進行するので、ま
だ十分に増粘していない状態にある表層の近傍では、発
生したガスの一部が気泡壁を破って外部に放散されてし
まう。従って、この方法によっては、ある程度以上に発
泡度を向上させることができなかった。また、発泡と架
橋との双方の反応速度が温度のみに依存して調節される
ので、これらのバランスを最適に、かつ一定に調節する
ことはきわめて困難である。従って、従来の方法では発
泡度が高くできないばかりでなく、その発泡度の調節を
精密に行うことも困難であった。本発明は上記の問題を
解決するためになされたものであって、その目的は、発
泡絶縁電線における発泡絶縁被覆の発泡度を高く、かつ
精密に調節することができるポリオレフィン系発泡絶縁
電線の製法を提供することにある。However, in such a conventional method for producing a foamed insulated wire, the growth of the bubbles and the thickening of the cell walls due to the cross-linking proceed simultaneously, and the foaming and the thickening of the bubbles occur. And so on proceed uniformly in the thickness direction of the foam, so that in the vicinity of the surface layer in which the viscosity has not yet been sufficiently increased, a part of the generated gas breaks the cell wall and is diffused to the outside. Therefore, this method could not improve the degree of foaming to a certain degree or more. In addition, since the reaction rates of both foaming and crosslinking are adjusted only depending on the temperature, it is extremely difficult to adjust these balances optimally and constantly. Therefore, not only the foaming degree cannot be increased by the conventional method, but also it is difficult to precisely control the foaming degree. The present invention has been made in order to solve the above problems, and an object of the present invention is to provide a method for producing a polyolefin foam insulated wire in which the degree of foaming of a foamed insulation coating on a foamed insulated wire is high and can be precisely adjusted. Is to provide.
【0004】[0004]
【課題を解決するための手段】上記の課題は、ポリオレ
フィン系樹脂に化学発泡剤を添加した樹脂混合物を導体
上に押出し、次いでこの樹脂混合物を化学発泡剤の分解
温度以上に加熱して発泡させたのち、ただちに電子線を
照射して架橋させることを特徴とする発泡絶縁電線の製
法によって解決できる。また、電子線の照射を電線側方
の少なくとも2方向から行うことが好ましい。ここで、
ポリオレフィン系樹脂とは、ポリエチレン、EPゴムな
ど電線の絶縁被覆材として使用できる熱可塑性樹脂であ
りかつ電子線によって架橋できるものである。このポリ
オレフィン系樹脂は、電子線架橋の効率を高めるための
架橋助剤、充填剤、着色剤などを含んでいてもよい。The object of the present invention is to extrude a resin mixture obtained by adding a chemical blowing agent to a polyolefin resin onto a conductor, and then heat the resin mixture to a temperature equal to or higher than the decomposition temperature of the chemical blowing agent to cause foaming. After that, the problem can be solved by a method for producing a foamed insulated wire characterized by immediately irradiating an electron beam to crosslink. Further , it is preferable that the irradiation of the electron beam is performed from at least two directions on the side of the electric wire. here,
The polyolefin-based resin is a thermoplastic resin such as polyethylene and EP rubber that can be used as an insulating coating material for electric wires and can be cross-linked by an electron beam. The polyolefin-based resin may include a crosslinking aid, a filler, a coloring agent, and the like for increasing the efficiency of electron beam crosslinking.
【0005】[0005]
【作用】本発明の製法では、化学発泡剤を添加した樹脂
混合物を導体上に押出し、次いでこの樹脂混合物を化学
発泡剤の分解温度以上に加熱して発泡させる。このと
き、発泡反応は発泡体の肉厚方向に均一に進行するか
ら、導体近傍であっても被覆の外周近傍であっても同時
に気泡が発生し膨張する。そして、この発泡体に電子線
を照射して架橋を行う。電子線は透過性が高く、気泡な
どが存在しても被覆内部に浸透して架橋反応を誘発す
る。このとき、電子線による架橋反応は表層部から内奥
へと進行するから、発泡体は電子線によってその表層部
から架橋が開始され、ガス不透過性のスキン層を形成
し、次いで内奥部へ漸次、架橋反応が進行する。したが
って、生成した気泡は、形成された外壁に包囲されて外
部に放散されず、ガス抜けが防止される結果、高発泡化
が可能になる。また、発泡速度の調節は加熱温度によ
り、また架橋反応の調節は電子線照射量により、それぞ
れ別個の行うことができるので、被覆層の発泡度を精密
に調節することができる。電子線は直線性が高いもので
あるので、一方向からの照射では電線裏側の架橋が不十
分になる場合がある。したがってその照射を電線側方の
少なくとも2方向から行うことが好ましい。等角度の3
方向から照射すれば全周均一に架橋反応を進行させるこ
とができる。According to the process of the present invention, a resin mixture containing a chemical foaming agent is extruded onto a conductor, and then the resin mixture is heated to a temperature not lower than the decomposition temperature of the chemical foaming agent to cause foaming. At this time, since the foaming reaction proceeds uniformly in the thickness direction of the foam, bubbles are generated and expanded simultaneously near the conductor and also near the outer periphery of the coating. Then, the foam is irradiated with an electron beam to perform crosslinking. The electron beam has high permeability, and even if bubbles are present, it penetrates into the inside of the coating and induces a crosslinking reaction. At this time, since the cross-linking reaction by the electron beam proceeds from the surface layer part to the inner part, the foam starts to be cross-linked from the surface part by the electron beam to form a gas-impermeable skin layer, and then the inner part. The crosslinking reaction proceeds gradually. Therefore, the generated air bubbles are surrounded by the formed outer wall and are not radiated to the outside, and gas escape is prevented. As a result, high foaming becomes possible. Further, the foaming rate can be adjusted by the heating temperature and the crosslinking reaction can be adjusted by the amount of electron beam irradiation, so that the foaming degree of the coating layer can be precisely adjusted. Since electron beams have high linearity, irradiation from one direction may cause insufficient cross-linking on the back side of the electric wire. Therefore, the irradiation is preferably performed from at least two directions on the side of the electric wire. Equal angle 3
Irradiation from the direction allows the crosslinking reaction to proceed uniformly around the entire circumference.
【0006】[0006]
【実施例】次に図面を用いて本発明の一実施例を説明す
る。図1は発泡絶縁電線を製造する実施例の工程を示し
ている。この工程では、まず、導体芯線Aが送線機1か
ら送り出され、矯線機2によって湾曲を矯正され、余熱
機3によって余熱されて付着水分などが除去され、押出
機先端部4に接続されたクロスヘッドダイ5に導入され
る。これとは別に、押出機(図示せず)から、化学発泡
剤を含む溶融した樹脂混合物Pが、押出機先端部4を経
てクロスヘッドダイ5に導入され、ここにおいて、芯線
Aが樹脂混合物Pで被覆される。クロスヘッドダイ5か
ら引き出された被覆線Bは、加熱筒6に導入されて加熱
発泡され、次いで、直ちに電子線照射装置7に導入さ
れ、ここで電子線が照射される。次いで、被覆線Bは冷
却水槽8に送られて冷却され、キャプスタン9において
巻き取りのための張力が与えられて、巻取機10におい
てボビンに巻き取られる。Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows the steps of an embodiment for producing a foamed insulated wire. In this step, first, the conductor core wire A is sent out from the wire feeder 1, straightened by the wire straightening machine 2, straightened by the preheater 3 to remove adhering moisture and the like, and connected to the extruder tip portion 4. Into the crosshead die 5. Separately, from an extruder (not shown), a molten resin mixture P containing a chemical foaming agent is introduced into a crosshead die 5 through an extruder tip 4, where a core wire A is connected to the resin mixture P. Covered. The coated wire B drawn out from the crosshead die 5 is introduced into a heating cylinder 6 and heated and foamed, and then immediately introduced into an electron beam irradiation device 7, where the electron beam is irradiated. Next, the coated wire B is sent to the cooling water tank 8 where it is cooled, a tension for winding is provided in the capstan 9, and the wound wire is wound on a bobbin in the winder 10.
【0007】この実施例の工程において、導体芯線Aと
してはAWG25の銅導体を用いた。樹脂混合物Pとし
ては、低密度ポリエチレン100重量部とアゾジカルボ
ンアミド(化学発泡剤)20重量部との混和物を、押出
機に投入して120〜140℃で混練押出ししたものを
用いた。この樹脂混合物Pをクロスヘッドダイ5におい
て、肉厚1mmとなるように、芯線A上に被覆した。ク
ロスヘッドダイ5から引き出された被覆線Bを、加熱筒
6において250℃に加熱し発泡させた。次に、加熱筒
6を通過した直後の被覆線Bに、等角度の3方向から、
ダイナミトロン電子線照射装置7によって、線量を下記
の3段階に変化させて電子線を照射し、樹脂混合物を架
橋硬化させて実施例1〜3の発泡絶縁電線を得た。 (実施例1)電子線照射条件;1MeV5mA。 (実施例2)電子線照射条件;1MeV7mA。 (実施例3)電子線照射条件;1MeV10mA。In the process of this embodiment, an AWG25 copper conductor was used as the conductor core wire A. As the resin mixture P, a mixture of 100 parts by weight of low-density polyethylene and 20 parts by weight of azodicarbonamide (chemical blowing agent) was put into an extruder, kneaded and extruded at 120 to 140 ° C., and used. This resin mixture P was coated on the core wire A in the crosshead die 5 so as to have a thickness of 1 mm. The covered wire B pulled out from the crosshead die 5 was heated to 250 ° C. in the heating cylinder 6 to foam. Next, the covering wire B immediately after passing through the heating cylinder 6 is applied to the covering wire B from three equal-angle directions.
The dynamitron electron beam irradiation device 7 was used to irradiate an electron beam while changing the dose in the following three stages to crosslink and cure the resin mixture to obtain foamed insulated wires of Examples 1 to 3. (Example 1) Electron beam irradiation condition: 1 MeV5 mA. (Example 2) Electron beam irradiation conditions: 1 MeV7 mA. (Example 3) Electron beam irradiation conditions: 1 MeV10 mA.
【0008】(比較例)図1の工程において、樹脂混合
物Pとして、低密度ポリエチレン100重量部とアゾジ
カルボンアミド(化学発泡剤)20重量部とジクミルペ
ルオキシド(架橋剤)5重量部との混和物を、押出機に
投入して120〜140℃で混練押出ししたものを用
い、この樹脂混合物を、実施例と同様にAWG25の銅
導体A上に、肉厚1mmで押出し被覆した後、加熱筒6
を通して、250℃で発泡と同時に架橋させて比較例の
発泡絶縁電線を得た。Comparative Example In the step of FIG. 1, as a resin mixture P, 100 parts by weight of low density polyethylene, 20 parts by weight of azodicarbonamide (chemical blowing agent) and 5 parts by weight of dicumyl peroxide (crosslinking agent) were mixed. This resin mixture was put into an extruder, kneaded and extruded at 120 to 140 ° C., and this resin mixture was extruded on a copper conductor A of AWG25 at a thickness of 1 mm in the same manner as in the example, and then heated. 6
To form a foamed insulated wire of a comparative example at 250 ° C. simultaneously with foaming.
【0009】(試験)各実施例と比較例とについて、得
られた発泡絶縁電線の被覆層の発泡度を測定した。その
結果を表1に示す。(Test) With respect to each of Examples and Comparative Examples, the degree of foaming of the coating layer of the obtained foamed insulated wire was measured. Table 1 shows the results.
【0010】[0010]
【表1】 [Table 1]
【0011】上記の試験結果から、実施例の方法で電子
線を照射して架橋させて得られた発泡絶縁電線が、発泡
剤と架橋剤とを用い加熱によって発泡架橋させた比較例
の場合に比べて、高い発泡度を有していることは明かで
ある。From the above test results, it can be seen that the foamed insulated wire obtained by irradiating with an electron beam according to the method of the embodiment and crosslinked by heating using a foaming agent and a crosslinking agent is a comparative example. In comparison, it is clear that it has a high degree of foaming.
【0012】[0012]
【発明の効果】本発明の発泡絶縁電線の製法は、ポリオ
レフィン系樹脂に化学発泡剤を添加した樹脂混合物を導
体上に押出し、次いでこの樹脂混合物を化学発泡剤の分
解温度以上に加熱して発泡させたのち、ただちに電子線
を照射して架橋させるものであるので、発泡と架橋との
反応条件を別個に調節できて、発泡度の精密な調整が可
能になるとともに、電子線の照射によって被覆の表層か
ら架橋が進行するので、生成されたガスが放散されず、
高発泡度の被覆を有する発泡絶縁電線が製造できる。According to the method of manufacturing the foamed insulated wire of the present invention, a resin mixture obtained by adding a chemical foaming agent to a polyolefin resin is extruded onto a conductor, and then the resin mixture is heated to a temperature not lower than the decomposition temperature of the chemical foaming agent. After then, since immediately those which crosslink by electron beam irradiation, and can separately adjust the reaction conditions of the foaming and crosslinking, together with allowing precise adjustment of the degree of foaming, coating by irradiation of an electron beam Since the cross-linking proceeds from the surface layer of, the generated gas is not released,
A foamed insulated wire having a coating with a high foaming degree can be manufactured.
【図1】 本発明の一実施例を示す発泡絶縁電線の製造
工程図である。FIG. 1 is a manufacturing process diagram of a foam insulated wire showing one embodiment of the present invention.
A…導体芯線、B…被覆線、P…樹脂混合物、5…クロ
スヘッドダイ、6…加熱筒、7…電子線照射装置。A: conductor core wire, B: covered wire, P: resin mixture, 5: crosshead die, 6: heating cylinder, 7: electron beam irradiation device.
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01B 13/14 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01B 13/14
Claims (1)
した樹脂混合物を導体上に押出し、次いでこの樹脂混合
物を化学発泡剤の分解温度以上に加熱して発泡させたの
ち、ただちに電子線を照射して架橋させることを特徴と
する発泡絶縁電線の製法。1. A resin mixture comprising a polyolefin resin and a chemical foaming agent added thereto is extruded onto a conductor, and then the resin mixture is foamed by heating it to a temperature not lower than the decomposition temperature of the chemical foaming agent .
In addition, a method for producing a foamed insulated wire characterized by irradiating an electron beam immediately to crosslink.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07724393A JP3325642B2 (en) | 1993-04-02 | 1993-04-02 | Manufacturing method of foam insulated wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07724393A JP3325642B2 (en) | 1993-04-02 | 1993-04-02 | Manufacturing method of foam insulated wire |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06295631A JPH06295631A (en) | 1994-10-21 |
JP3325642B2 true JP3325642B2 (en) | 2002-09-17 |
Family
ID=13628424
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP07724393A Expired - Fee Related JP3325642B2 (en) | 1993-04-02 | 1993-04-02 | Manufacturing method of foam insulated wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3325642B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006231568A (en) * | 2005-02-22 | 2006-09-07 | Bridgestone Corp | Manufacturing method of cord-containing rubber member |
JP5483665B2 (en) * | 2008-03-10 | 2014-05-07 | 矢崎総業株式会社 | Electric wire manufacturing method |
JP5297726B2 (en) * | 2008-03-25 | 2013-09-25 | 宇部日東化成株式会社 | Coaxial cable hollow core manufacturing method, coaxial cable hollow core, and coaxial cable |
DE102011052520A1 (en) * | 2011-08-09 | 2013-02-14 | Aumann Gmbh | Device for coating electrically conductive wires |
CN103341960B (en) * | 2013-06-03 | 2016-04-20 | 四川九洲线缆有限责任公司 | The extruded mould that a kind of cable makes |
CN104282398A (en) * | 2014-10-16 | 2015-01-14 | 佛山市粤佳信电线电缆有限公司 | Automatic wrapping device of insulation layer of wire and cable |
CN107369503A (en) * | 2017-08-04 | 2017-11-21 | 远东电缆有限公司 | Wisdom energy wind-powered electricity generation light-duty fire-retardant midium voltage cable of environmentally friendly oil resistant and production technology |
CN111710474B (en) * | 2020-06-22 | 2021-10-22 | 北京朝阳隆华电线电缆有限公司 | Cable extrusion molding production line and process |
CN115366329B (en) * | 2022-08-19 | 2024-10-11 | 山东东宏管业股份有限公司 | Production device and method for improving welding strength of electric smelting pipe fitting |
-
1993
- 1993-04-02 JP JP07724393A patent/JP3325642B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH06295631A (en) | 1994-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3325642B2 (en) | Manufacturing method of foam insulated wire | |
DE3001159C2 (en) | Process for producing shrinkable molded parts | |
US3170968A (en) | Method of manufacturing cellular insulated wire | |
US3387065A (en) | Production of irradiated material | |
EP0031868A2 (en) | Process for preparing shrinkable articles, apparatus for carrying out this process and articles thus obtained | |
EP1148518A1 (en) | A process for producing cross-linked polyethylene coated conducting wires | |
JP2002298673A (en) | Manufacturing method of crosslinked polyethylene insulation power cable | |
JPS6011604B2 (en) | Manufacturing method for long rubber products | |
KR100755571B1 (en) | Method for manufacturing an heat shrinkable tube by using infrared heating crosslinking | |
EP0271990A2 (en) | An insulated wire comprising a polytetrafluoroethylene coating | |
JPS63216218A (en) | Manufacture of high foam resin insulated wire | |
JP3919278B2 (en) | Method for producing a tape with a crosslinking agent | |
JPH0367416A (en) | Manufacture of foamed insulator electric wire | |
KR20120095011A (en) | Polyolefin copolymer resin form for an air duct and manufacturing method thereof | |
JPS5915812B2 (en) | Continuous rubber hose manufacturing equipment | |
JP3067352B2 (en) | Rubber insulated wire and method of manufacturing the same | |
JPS6034090B2 (en) | optical fiber | |
JPH04162311A (en) | Manufacture of high foaming insulation wire | |
JPH02210721A (en) | Manufacture of highly foamed small diameter insulated wire | |
JPH01253126A (en) | Manufacture of foam insulated electric wire | |
JPH06309970A (en) | Manufacture of electric wire covered with foaming fluorinated resin | |
CN115966342A (en) | Method for manufacturing radio frequency coaxial cable with high foaming degree | |
JPH07299832A (en) | Production of polyolefinic resin foamed sheet | |
JPH04144007A (en) | Foamed electric wire for coaxial cable and manufacture thereof | |
CN112863764A (en) | Power line processing technology for improving performance stability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |