JP3324443B2 - Seismic construction method for buried pipes - Google Patents

Seismic construction method for buried pipes

Info

Publication number
JP3324443B2
JP3324443B2 JP11110797A JP11110797A JP3324443B2 JP 3324443 B2 JP3324443 B2 JP 3324443B2 JP 11110797 A JP11110797 A JP 11110797A JP 11110797 A JP11110797 A JP 11110797A JP 3324443 B2 JP3324443 B2 JP 3324443B2
Authority
JP
Japan
Prior art keywords
pipe
ground
main body
block
buried
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11110797A
Other languages
Japanese (ja)
Other versions
JPH10299947A (en
Inventor
修幸 小野
浩之 堀川
敬一 牟田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP11110797A priority Critical patent/JP3324443B2/en
Publication of JPH10299947A publication Critical patent/JPH10299947A/en
Application granted granted Critical
Publication of JP3324443B2 publication Critical patent/JP3324443B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Foundations (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は埋設管の耐震工法、
特に建造物廻りの埋設管の耐震工法に関するものであ
る。
BACKGROUND OF THE INVENTION The present invention relates to a seismic construction method for buried pipes,
In particular, the present invention relates to an earthquake-resistant construction method for a buried pipe around a building.

【0002】[0002]

【従来の技術】埋設管は一般に長距離にわたるので種々
の地盤内に敷設される。
BACKGROUND OF THE INVENTION Buried pipes are generally laid over a long distance and are laid in various grounds.

【0003】そのため、地震が発生したときに、その周
囲の地盤の動きは各個所で異なっており、大別して以下
の2つの現象の影響を受ける。
[0003] For this reason, when an earthquake occurs, the movement of the surrounding ground is different at each location, and is roughly affected by the following two phenomena.

【0004】一つは、地震波により地盤そのものに著し
い変化が発生する現象で砂質土地盤に発生する液状化で
ある。液状化は砂質土が地震波により一時的に液体のよ
うになってしまうものである。液状化した地盤では鉛直
方向及び水平方向の支持力が著しく減少し、場合によっ
ては支持力が零になり、その結果、その地盤に支持され
ている埋設管が浮上がったり、傾斜したりして、埋設管
に被害が発生する。
[0004] One is liquefaction that occurs on sandy ground due to a phenomenon in which a significant change occurs in the ground itself due to seismic waves. Liquefaction is a process in which sandy soil temporarily becomes liquid due to seismic waves. In the liquefied ground, the vertical and horizontal support forces decrease significantly, and in some cases the support force becomes zero, and as a result, the buried pipe supported by the ground rises or slopes, The buried pipe will be damaged.

【0005】また、地盤の表層が非液状化層で下層が液
状化層の場合には、表層内の埋設管が底抜けしたような
状態になつて沈下し、同様に被害が発生する。
In the case where the surface layer of the ground is a non-liquefied layer and the lower layer is a liquefied layer, the buried pipe in the surface layer sinks in a state where the buried pipe is in the bottom and similarly damages.

【0006】もう一つは、断層変位による地盤変化であ
る。この場合には、断層変位を生じた個所で埋設管が地
盤から局部的な力を受けるために、曲がり等の損傷を受
ける危険性がある。
The other is ground change due to fault displacement. In this case, since the buried pipe receives local force from the ground at the place where the fault displacement occurs, there is a risk of being damaged such as bending.

【0007】そのために、埋設管については上記の現象
を想定した耐震対策が検討されている。
For this purpose, seismic countermeasures have been studied for buried pipes on the assumption of the above phenomenon.

【0008】上記した2つの現象のうち、地盤の液状化
が、断層変位による地盤変化よりも、発生し易いことか
ら、埋設管については上記液状化現象を考慮した耐震工
法が種々検討されている。
Among the above two phenomena, the liquefaction of the ground is more likely to occur than the ground change due to the fault displacement. Therefore, various seismic construction methods for the buried pipe in consideration of the liquefaction phenomenon have been studied. .

【0009】特開平2−46387号公報には、既設埋
設管の地盤液状化時の浮上がり防止方法が開示されてい
る(従来技術1)。
Japanese Unexamined Patent Publication (Kokai) No. 2-46387 discloses a method for preventing floating of an existing buried pipe during liquefaction of the ground (prior art 1).

【0010】この方法は2本の平行な鋼管杭等の縦杭材
の上端を、H型鋼等の桁部材で溶接により連結した門型
部材をあらかじめ必要な個数製作しておき、これらの門
型部材を、液状化層に埋設ずみの既設埋設管の延長方向
に門型のやっとこを当接して圧入機等で圧入する。この
方法によれば、その地盤における掘削作業が不要にな
り、門型部材を圧入する圧入作業を行うので、市街地等
での施工が容易になる。
In this method, a required number of portal members are prepared in advance by connecting the upper ends of two vertical pile members such as parallel steel pipe piles by welding with a girder member such as an H-shaped steel. The member is pressed into the liquefied layer with a press-fitting machine or the like by contacting a gate-shaped bar in the extension direction of the existing buried pipe buried in the liquefied layer. According to this method, the excavation work on the ground becomes unnecessary, and the press-fitting work for press-fitting the portal member is performed, so that the construction in the city area or the like becomes easy.

【0011】また、特開平2−213538号公報に
は、地下埋設管の不等沈下防止方法が開示されている
(従来技術2)。
Japanese Unexamined Patent Publication (Kokai) No. 2-213538 discloses a method for preventing uneven settlement of underground pipes (prior art 2).

【0012】図6は上記不等沈下防止方法の一例を示す
正面断面図である。図6では管本体2aは地盤1を掘削
して形成された溝3a内に敷設され、管本体2aの周辺
部を良質な土砂4で充分に締固め、その上部全面に発泡
スチロールからなるブロック5を設置する。ブロック5
は管本体2aの埋設深さに応じてブロック5を一枚ある
いは複数枚積み重ねて設置する。この状態でブロック5
上に土砂を埋め戻して層を形成する。
FIG. 6 is a front sectional view showing an example of the above-mentioned unequal settlement prevention method. In FIG. 6, the pipe main body 2a is laid in a groove 3a formed by excavating the ground 1, the periphery of the pipe main body 2a is sufficiently compacted with high-quality earth and sand 4, and a block 5 made of styrene foam is provided on the entire upper surface thereof. Install. Block 5
According to the embedding depth of the pipe main body 2a, one or a plurality of blocks 5 are stacked and installed. Block 5 in this state
Backfill the earth and sand to form a layer.

【0013】上記のような構成によって管本体2aに作
用する鉛直荷重を小さくして、不等沈下発生を防止す
る。
With the above-described structure, the vertical load acting on the pipe main body 2a is reduced to prevent uneven settlement.

【0014】[0014]

【発明が解決しようとする課題】しかしながら、従来技
術1では以下の問題がある。一般にガス管、上下水道管
等の配管は建造物と地盤に跨がって敷設される場合が多
く、このような建造物に近接した地盤に敷設された埋設
管では、従来技術1をそのまま用いることは困難であ
る。
However, the prior art 1 has the following problems. In general, pipes such as gas pipes and water / sewage pipes are often laid so as to straddle a building and the ground. For a buried pipe laid on the ground close to such a building, the prior art 1 is used as it is. It is difficult.

【0015】即ち、従来技術1は地盤内の埋設管に門型
部材を圧入して跨がらせる作業が必要であり、建造物に
近接した限られた場所では作業が煩雑になり、充分に施
工することが困難である。
That is, the prior art 1 requires the work of press-fitting the portal member into the buried pipe in the ground and straddling it, and the work is complicated in a limited place close to the building, and the construction is sufficiently performed. Is difficult to do.

【0016】また、地盤の表層が非液状化層で下層が液
状化層の場合に生じる埋設管の沈下に対しては、上方か
ら圧入した門型部材では何ら防止ができない。
In addition, a gate-type member press-fitted from above cannot prevent the sinking of the buried pipe which occurs when the surface layer of the ground is a non-liquefied layer and the lower layer is a liquefied layer.

【0017】一方、従来技術2は埋戻し時の転圧が容易
であり、また、道路下等の地中に埋設された場合の自動
車荷重等による不等沈下発生の防止にはそれなりの効果
が期待される。
On the other hand, the prior art 2 has a good effect of preventing the occurrence of unequal settlement due to the load of a vehicle when buried in the ground such as under a road, because the compaction at the time of backfilling is easy. Be expected.

【0018】しかしながら、従来技術2では、地震等が
発生して地盤下層が液状化した場合に、表層内の埋設管
の沈下を充分に防止することが困難である。
However, according to the prior art 2, it is difficult to sufficiently prevent the sinking of the buried pipe in the surface layer when the ground below the ground liquefies due to an earthquake or the like.

【0019】即ち、地盤下層が液状化した場合の異常状
態では、溝3aの幅一杯に設置されたブロック5の荷重
圧と、ブロック5の側土圧の合計圧が管本体2aにかか
るので表層内の管本体2aが不等沈下する。
That is, in the abnormal state when the lower layer of the ground is liquefied, the total pressure of the load pressure of the block 5 installed over the entire width of the groove 3a and the earth pressure on the side of the block 5 is applied to the pipe body 2a. The inner pipe body 2a sinks unequally.

【0020】特に、建造物廻りの埋設管が上記のような
沈下に対して損傷等の被害を受けやすい。
In particular, a buried pipe around a building is susceptible to damage such as damage due to the above settlement.

【0021】本発明は上記のような地盤の下層で発生す
る液状化の現象が非常に多いことに着目して為されたも
のであり、このような液状化の現象が発生しても埋設管
の不等沈下を防止することのできる耐震工法を提供する
ことを目的とする。
The present invention has been made by paying attention to the fact that the liquefaction phenomenon that occurs in the lower layer of the ground as described above is extremely large. It is an object of the present invention to provide an earthquake-resistant construction method capable of preventing unequal settlement of a building.

【0022】[0022]

【課題を解決するための手段】本発明は地盤を掘削して
形成した溝に管本体を設置し、その上方に発泡スチロー
ルのブロック積層を形成させて埋戻しする埋設管の耐震
工法において、横断面視による各ブロック層の上端部点
が管本体の垂直中心線と所定角度で交わる2本の直線上
に一致させて積層し、各ブロック層の管本体直上を覆う
部位に一貫する2つの垂直スリットで各独立ブロックを
形成させたことを特徴とする埋設管の耐震工法である。
SUMMARY OF THE INVENTION The present invention relates to a seismic construction method for a buried pipe in which a pipe main body is installed in a groove formed by excavating the ground, and a block stack of styrofoam is formed above the pipe body and backfilled. Two vertical slits which are stacked in a manner that the upper end point of each block layer is visually aligned on two straight lines intersecting the vertical center line of the pipe main body at a predetermined angle, and which is consistent with a portion of each block layer covering just above the pipe main body. This is an earthquake-resistant construction method for buried pipes, characterized in that each independent block is formed by the method.

【0023】本発明は上記のような構成によって、地震
の発生による地盤下層の液状化等の異常時には、地盤表
層からの各ブロック層が受ける側土圧を各独立ブロック
に対して皆無とし、管本体直上を覆う各独立ブロックの
荷重圧のみを管本体にかかるようにしたので、表層内の
埋設管は不等沈下を軽減できる。
According to the present invention having the above-described structure, when an abnormality such as liquefaction of the lower layer of the ground due to the occurrence of an earthquake occurs, the side earth pressure applied to each block layer from the surface layer of the ground is completely eliminated from each independent block, Since only the load pressure of each independent block covering just above the main body is applied to the pipe main body, the buried pipe in the surface layer can reduce uneven settlement.

【0024】[0024]

【発明の実施の形態】図を用いて本発明の実施の形態を
説明する。図1は、本発明の一実施の形態を示す正面断
面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a front sectional view showing an embodiment of the present invention.

【0025】図1において,図示しない建造物廻りの地
盤1aを掘削して側壁側を上広テーバー状にした溝3b
に管本体2bを設置し、その上方に、後述する図2に示
す直線N1、N2に上端部が一致するように発泡スチロ
ールのブロック積層S1〜S3を設置する。
In FIG. 1, a ground 3a around a building (not shown) is excavated to form a groove 3b having a side wall having a wide taber shape.
The tube main body 2b is installed at the top, and the block stacks S1 to S3 of Styrofoam are installed above the tube main body 2b so that the upper ends thereof coincide with straight lines N1 and N2 shown in FIG.

【0026】埋戻しの際には、管本体2bの廻りを山砂
4aで所定の厚さに締め固めて、その上に、管本体2b
の直上を覆う部位に独立ブロック11a、12a、13
aを設置する。独立ブロック11a、12a、13aの
側面には一貫する2つの垂直スリット10a、10bを
設けて他のブロック11b、12b、13bを設置し溝
3bとの隙間を山砂4aで締め固めて、ブロック積層S
1〜S3を形成する。
At the time of backfilling, the area around the pipe main body 2b is compacted to a predetermined thickness with mountain sand 4a, and the pipe main body 2b is further placed thereon.
Blocks 11a, 12a, 13
a is installed. Two independent vertical slits 10a, 10b are provided on the side surfaces of the independent blocks 11a, 12a, 13a, and the other blocks 11b, 12b, 13b are installed. The gap with the groove 3b is compacted with pit sand 4a, and the blocks are stacked. S
1 to S3 are formed.

【0027】ブロック積層S3の上には鉄筋コンクリー
ト床版14を設け、独立ブロック13aの上には垂直ス
リット10a、10bで独立させた鉄筋コンクリート床
版14aを設けている。
A reinforced concrete floor slab 14 is provided on the block stack S3, and a reinforced concrete floor slab 14a which is made independent by vertical slits 10a and 10b is provided on the independent block 13a.

【0028】鉄筋コンクリート床版14の上には、アス
ファルト表層15を設け、鉄筋コンクリート床版14a
の上には垂直スリット10a、10bで独立させたアス
ファルト表層15aを設け、スリット10a、10bの
上端部にゴム板16a、16bでシールさせている。ゴ
ム板16a、16bを用いたのは雨水等の侵入を防止す
るためである。
An asphalt surface layer 15 is provided on the reinforced concrete slab 14, and the reinforced concrete slab 14a
Is provided with an asphalt surface layer 15a separated by vertical slits 10a and 10b, and the upper ends of the slits 10a and 10b are sealed with rubber plates 16a and 16b. The rubber plates 16a and 16b are used to prevent intrusion of rainwater and the like.

【0029】図2は本発明の作用原理の説明図である。
図2において、横断面視による各ブロック積層S1〜S
3は上端部の点P1〜P3が管本体2bの垂直中心線M
と角度θで交わる2本の直線N1、N2上に一致させて
積層する。
FIG. 2 is an explanatory diagram of the operation principle of the present invention.
In FIG. 2, each of the block stacks S1 to S in a cross sectional view is shown.
3 is a point P1-P3 at the upper end is a vertical center line M of the pipe body 2b.
Are stacked on two straight lines N1 and N2 which intersect at an angle θ.

【0030】角度θは図示しない溝3bを掘削した際に
土砂が崩れない程度の角度にする。通常は45°程度が
使用される。
The angle θ is set so that the earth and sand do not collapse when the not-shown groove 3b is excavated. Usually, about 45 ° is used.

【0031】直線N1、N2は管本体2bの外周と1点
交差、2点交差とするか、または若干離れてもよい。必
要に応じて適宜決めることができる。
The straight lines N1 and N2 may intersect the outer periphery of the pipe body 2b at one point, two points, or may be slightly apart. It can be determined as needed.

【0032】また、本発明では、管本体2b直上の各ブ
ロック積層S1〜S3に一貫する2つの垂直スリット1
0a、10bを設けて独立ブロック11a、12a、1
3aを形成させる。
In the present invention, two vertical slits 1 consistent with each of the block stacks S1 to S3 immediately above the pipe main body 2b are provided.
0a, 10b to provide independent blocks 11a, 12a, 1
3a is formed.

【0033】地震等の発生によって、埋設管の管本体2
bが敷設されている地盤表層の下層が液状化した場合
に、地盤1aの下層による支持力が減少するので、従来
の場合のように、各ブロック積層が管本体2bの上方を
覆って単純に設置されていると、管本体2bの荷重圧と
各ブロック積層等の荷重圧の合計荷重圧によって埋設管
2bが沈下する。
When an earthquake or the like occurs, the pipe main body 2 of the buried pipe is
When the lower layer of the ground surface layer on which the b is laid is liquefied, the supporting force of the lower layer of the ground 1a decreases, so that each block stack simply covers the upper part of the pipe body 2b as in the conventional case. When installed, the buried pipe 2b sinks due to the total load pressure of the load pressure of the pipe main body 2b and the load pressure of each block stack.

【0034】即ち、地盤表層は非液状化層であるので、
各ブロック積層の側面には側土圧がかかっており、加算
された大きな圧力が埋設管2bにかかるためである。
That is, since the ground surface layer is a non-liquefied layer,
This is because the side earth pressure is applied to the side surface of each block stack, and the added large pressure is applied to the buried pipe 2b.

【0035】しかし、本発明では、各ブロック積層S1
〜S3が2本の直線N1、N2上に位置させて積層して
いるので、各ブロック積層S1〜S3への表層の側土圧
を軽減させる。
However, in the present invention, each block stack S1
Since S3 is stacked on the two straight lines N1 and N2, the side earth pressure of the surface layer on each of the block stacks S1 to S3 is reduced.

【0036】更に、独立ブロック11a、12a、13
aは各ブロック積層S1〜S3と2つの垂直スリット1
0a、10bによって分断されているので、各ブロック
積層S1〜S3を介した表層の側土圧は皆無になり、影
響を与えない。
Further, the independent blocks 11a, 12a, 13
a is each block stack S1 to S3 and two vertical slits 1
Since it is divided by 0a and 10b, there is no side earth pressure on the surface layer via each of the block stacks S1 to S3, and there is no influence.

【0037】そのために、管本体2bは独立ブロック1
1a、12a、13a自体の荷重圧のみを受けることに
なり、独立ブロック11a、12a、13aが圧縮強度
が強く密度が小さい発泡スチロールのブロックを用いて
いることから、独立ブロック11a、12a、13aに
よる影響が小さく、下層が液状化しても管本体2bを敷
設している表層が底抜けすることがなく不等沈下を生じ
ない。
For this purpose, the pipe main body 2b is connected to the independent block 1
Since only the load pressure of 1a, 12a, 13a itself is received, and the independent blocks 11a, 12a, 13a use blocks of styrene foam having high compressive strength and low density, the influence of the independent blocks 11a, 12a, 13a is obtained. Even if the lower layer is liquefied, the surface layer on which the pipe main body 2b is laid does not fall out, and uneven settlement does not occur.

【0038】本発明で用いる発泡スチロールのブロック
は一般に単位重量が0.02〜0.04(t/m3
で、土砂の単位重量1.6〜2.0(t/m3 )に比較
して1/10〜1/20の重量である。
The styrofoam block used in the present invention generally has a unit weight of 0.02 to 0.04 (t / m 3 ).
In the weight of the compared unit weight of sediment 1.6~2.0 (t / m 3) 1 / 10~1 / 20.

【0039】また、一般に圧縮強度は11〜30(t/
cm2 )で自動車の荷重が加えられても充分に耐えられ
るものである。
In general, the compressive strength is 11 to 30 (t /
cm 2 ) and can withstand the load of an automobile.

【0040】図3は本発明の効果を確認するために行っ
た試験装置の概要を示す図である。図3において、試験
装置17は上下動可能にジャッキ18で支持した試験容
器19と試験容器19内を水平方向に貫通させた試験用
管本体2cの両端を固定するフランジ20とフランジ2
0を取付ける架台21とから構成される。
FIG. 3 is a diagram showing an outline of a test apparatus used for confirming the effect of the present invention. In FIG. 3, a test apparatus 17 includes a test container 19 supported by a jack 18 so as to be vertically movable, and a flange 20 and a flange 2 for fixing both ends of a test tube main body 2c penetrating the test container 19 in a horizontal direction.
And a gantry 21 for mounting 0.

【0041】試験容器19の貫通口19aは垂直方向の
長孔で、試験用管本体2cが試験容器の荷重を受けない
ようにしている。試験用管本体2cを貫通させた貫通口
の廻りに薄いゴム板を設けて内部の山砂が溢れないよう
にしている。
The through-hole 19a of the test container 19 is a vertically long hole so that the test tube main body 2c does not receive the load of the test container. A thin rubber plate is provided around a through-hole through which the test tube main body 2c is made to penetrate to prevent the mountain sand inside from overflowing.

【0042】試験用管本体2cは管径100mmφ、長
さ10mの鋼管を用いた。試験用管本体2cの両端部に
は上下位置に歪計22を取付けている。試験容器19内
の上下動は手動によって移動距離調整具23を調整して
行う。
As the test tube main body 2c, a steel tube having a diameter of 100 mm and a length of 10 m was used. At both ends of the test tube main body 2c, strain gauges 22 are attached at upper and lower positions. The vertical movement in the test container 19 is performed by manually adjusting the moving distance adjuster 23.

【0043】試験容器19内には試験用管本体2cの上
方に本発明による図示しないブロック積層S1〜S3を
形成させる。所定の速度で試験容器19を下方に移動さ
せて沈下状態にし、沈下量(cm)による最大発生歪
(%)を歪計22によって測定した。比較例はブロック
積層S1〜S3に代わって山砂のみを用いた以外は同じ
条件とした。それらの結果を図4に示す。■印は本発明
例、◆印は比較例である。
In the test container 19, block stacks S1 to S3 (not shown) according to the present invention are formed above the test tube main body 2c. The test container 19 was moved downward at a predetermined speed to be in a sinking state, and the maximum generated strain (%) according to the sinking amount (cm) was measured by the strain meter 22. In the comparative example, the same conditions were used except that only the mountain sand was used instead of the block stacks S1 to S3. The results are shown in FIG. The mark “■” indicates the present invention, and the mark “◆” indicates the comparative example.

【0044】図4から明らかなように、本発明例の場合
は沈下量15cmの場合までは殆ど最大発生歪(%)が
生じなかった。沈下量15cmの場合では若干最大発生
歪(%)が生じたが、比較例の最大発生歪(%)に比較
して著しく小さい。
As is apparent from FIG. 4, in the case of the present invention, the maximum generated strain (%) hardly occurred until the settlement amount was 15 cm. When the settlement amount was 15 cm, the maximum generated strain (%) was slightly generated, but was significantly smaller than the maximum generated strain (%) of the comparative example.

【0045】これらの試験結果から本発明の方法によれ
ば、地震等の発生によって建造物廻りの地盤等の下層に
液状化を生じても非液状化層の表層に埋設される管本体
を地盤沈下等から保護することがてきることを確認でき
た。
From the test results, according to the method of the present invention, even if liquefaction occurs in the lower layer such as the ground around a building due to the occurrence of an earthquake or the like, the pipe main body buried in the surface layer of the non-liquefied layer is grounded. It was confirmed that protection from subsidence etc. could be achieved.

【0046】図5は本発明の耐震工法をガバナステイシ
ョン(GSと呼称する)のガバナ室廻りの地盤内の埋設
管に用いた場合の概略斜視図である。
FIG. 5 is a schematic perspective view showing a case where the earthquake-resistant construction method of the present invention is used for a buried pipe in the ground around a governor room of a governor station (referred to as GS).

【0047】図5において、GSに供給された高圧ガス
を加熱装置24に送入して加熱し、ガバナ室25で加熱
された高圧ガスを所定のガス圧に調整する。
In FIG. 5, the high-pressure gas supplied to the GS is sent to a heating device 24 for heating, and the high-pressure gas heated in the governor chamber 25 is adjusted to a predetermined gas pressure.

【0048】ガス圧が調整されたガスはガバナ室25廻
りの地盤1a内の埋設管2を介して所定の場所に送られ
る。矢印はガスの流れる方向を示す。
The gas whose gas pressure has been adjusted is sent to a predetermined place through a buried pipe 2 in the ground 1a around the governor chamber 25. Arrows indicate the direction of gas flow.

【0049】ガバナ室25、加熱装置24は基礎に固定
されており配管26は安定した状態に保持されるが、地
盤1a内の埋設管2は地震等による地盤1aの下層の液
状化等に影響されるが、本発明の工法によれば、確認試
験に見られるように、充分に使用することができる。
The governor chamber 25 and the heating device 24 are fixed to the foundation, and the pipe 26 is maintained in a stable state. However, the buried pipe 2 in the ground 1a affects the liquefaction of the lower layer of the ground 1a due to an earthquake or the like. However, according to the method of the present invention, it can be sufficiently used as seen in the confirmation test.

【0050】実施の形態では建造物廻りの埋設管の耐震
工法について説明したが、建造物廻りでなく、固い地盤
(安定した地盤)と下層で液状化し易い地盤とに跨がる
ような埋設管でも同様の効果が期待できる。
In the embodiment, the seismic construction method of the buried pipe around the building has been described. However, the buried pipe not extending around the building but straddling the hard ground (stable ground) and the ground which is easily liquefied in the lower layer. But the same effect can be expected.

【0051】[0051]

【発明の効果】以上のように、本発明よる耐震工法では
地盤下層で液状化の現象が発生しても、非液状化層の表
層に埋設された埋設管の不等沈下を防止することのでき
る。
As described above, in the earthquake-resistant construction method according to the present invention, even if a liquefaction phenomenon occurs in the lower layer of the ground, it is possible to prevent uneven settlement of the buried pipe buried in the surface layer of the non-liquefied layer. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態を示す正面断面図であ
る。
FIG. 1 is a front sectional view showing an embodiment of the present invention.

【図2】本発明の説明図である。FIG. 2 is an explanatory diagram of the present invention.

【図3】本発明の確認試験を行うための試験装置の概要
を示す図である。
FIG. 3 is a diagram showing an outline of a test apparatus for performing a confirmation test according to the present invention.

【図4】本発明の確認試験の結果を図4である。FIG. 4 shows the results of the confirmation test of the present invention.

【図5】本発明の耐震工法をガバナステイションのガバ
ナ室廻りの地盤内の埋設管に用いた場合の概略斜視図で
ある。
FIG. 5 is a schematic perspective view of a case where the earthquake-resistant construction method of the present invention is used for a buried pipe in the ground around a governor room of a governor station.

【図6】従来の不等沈下防止方法の一例を示す正面断面
図である。
FIG. 6 is a front sectional view showing an example of a conventional uneven settlement preventing method.

【符号の説明】 1 地盤 1a 建造物廻りの地盤 2 埋設管 2a、2b 管本体 2c 試験用管本体 3a、3b 溝 4 土砂 4a 山砂 10a、10b 垂直スリット 11a、12a、13a 独立ブロック 11b、12b、13b 他のブロック S1〜S3 ブロック積層 14 鉄筋コンクリート床版 14a 垂直スリットで独立させた鉄筋コンクリート床
版 15 アスファルト表層 15a 垂直スリットで独立させたアスファルト表層 16a、16b ゴム板 17 試験装置 18 ジャッキ 19 試験容器 19a 貫通口 20 フランジ 21 架台 22 歪計 23 移動距離調整具 24 加熱装置 25 ガバナ室 26 配管 S1〜S3 ブロック層
[Description of Signs] 1 Ground 1a Ground around a building 2 Buried pipe 2a, 2b Pipe main body 2c Test pipe main body 3a, 3b Groove 4 Sediment 4a Mountain sand 10a, 10b Vertical slit 11a, 12a, 13a Independent blocks 11b, 12b , 13b Other blocks S1 to S3 Laminated block 14 Reinforced concrete floor slab 14a Reinforced concrete floor slab separated by vertical slit 15 Asphalt surface layer 15a Asphalt surface layer separated by vertical slit 16a, 16b Rubber plate 17 Test device 18 Jack 19 Test container 19a Through hole 20 Flange 21 Mount 22 Strain gauge 23 Moving distance adjuster 24 Heating device 25 Governor chamber 26 Piping S1 to S3 Block layer

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−102983(JP,A) 特開 平5−126282(JP,A) 特開 平2−213538(JP,A) (58)調査した分野(Int.Cl.7,DB名) F16L 1/024 ────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-2-102983 (JP, A) JP-A-5-126282 (JP, A) JP-A-2-213538 (JP, A) (58) Field (Int.Cl. 7 , DB name) F16L 1/024

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 地盤を掘削して形成した溝に管本体を設
置し、その上方に発泡スチロールのブロック積層を形成
させて埋戻しする埋設管の耐震工法において、横断面視
による各ブロック層の上端部点が管本体の垂直中心線と
所定角度で交わる2本の直線上に一致させて積層し、各
ブロック層の管本体直上を覆う部位に一貫する2つの垂
直スリットで各独立ブロックを形成させたことを特徴と
する埋設管の耐震工法。
1. A seismic construction method for a buried pipe in which a pipe main body is installed in a groove formed by excavating the ground and a stack of styrofoam blocks is formed above the pipe body to bury the pipe, and the upper end of each block layer is viewed in a cross-sectional view. The stacking points are aligned on two straight lines intersecting the vertical center line of the pipe main body at a predetermined angle, and are laminated, and each independent block is formed by two vertical slits consistent with a portion of each block layer covering directly above the pipe main body. Seismic construction method for buried pipes.
JP11110797A 1997-04-28 1997-04-28 Seismic construction method for buried pipes Expired - Lifetime JP3324443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11110797A JP3324443B2 (en) 1997-04-28 1997-04-28 Seismic construction method for buried pipes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11110797A JP3324443B2 (en) 1997-04-28 1997-04-28 Seismic construction method for buried pipes

Publications (2)

Publication Number Publication Date
JPH10299947A JPH10299947A (en) 1998-11-13
JP3324443B2 true JP3324443B2 (en) 2002-09-17

Family

ID=14552587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11110797A Expired - Lifetime JP3324443B2 (en) 1997-04-28 1997-04-28 Seismic construction method for buried pipes

Country Status (1)

Country Link
JP (1) JP3324443B2 (en)

Also Published As

Publication number Publication date
JPH10299947A (en) 1998-11-13

Similar Documents

Publication Publication Date Title
Finno et al. Performance of a stiff support system in soft clay
Roboski et al. Distributions of ground movements parallel to deep excavations in clay
KR101595702B1 (en) Soil retaining structure using plate pile with reinforcing bridge and construction method thereof
CN105953078B (en) The protective device of high-pressure gas pipeline and guard method
CN112503247A (en) Slope section water pipeline and construction method thereof
Clough et al. A study of earth loadings on floodway retaining structures in the 1971 San Fernando Valley earthquake
Bardet et al. Seismic analysis of flexible buried structures
Ko et al. Full‐scale shaking table tests on soil liquefaction‐induced uplift of buried pipelines for buildings
JP3324443B2 (en) Seismic construction method for buried pipes
JP2007169927A (en) Earthquake resisting manhole structure and its manufacturing method
JP5314252B2 (en) Pipeline structure
CN107701810A (en) A kind of method for protecting support of oil pipeline
KR101858711B1 (en) Repairing equipment and repairing method of sinking buildings
CN111579039B (en) Anti-settling seamless construction method for flat plate type dynamic weighing equipment
Wang Field Test Investigation of the Pile Jacking Performance for Prefabricated Square Rigid‐Drainage Piles in Saturated Silt Sandy Soils
JP4900091B2 (en) Embankment structure, embankment method
CN219527220U (en) Road below reinforced structure
CN220377102U (en) Supporting type hidden bridge protection culvert structure
Moh et al. Performance of diaphragm walls in deep foundation excavations
US20080008538A1 (en) Foundation system
CN220451031U (en) Novel foundation pit supporting structure without grooving buried pipe
JPH11270747A (en) Earthquake-proofing execution method for buried pipe
JPH02269228A (en) Structure for retaining wall and construction method for retaining wall
JPH11280087A (en) Ground solidifying construction method for damping and preventing liquefaction
JPH10205651A (en) Earthquake resisting method of existing underground pipe

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080705

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080705

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080705

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090705

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090705

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100705

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100705

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110705

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120705

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120705

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130705

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130705

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140705

Year of fee payment: 12

EXPY Cancellation because of completion of term