JP3324225B2 - Centrifuge rotor - Google Patents

Centrifuge rotor

Info

Publication number
JP3324225B2
JP3324225B2 JP24458593A JP24458593A JP3324225B2 JP 3324225 B2 JP3324225 B2 JP 3324225B2 JP 24458593 A JP24458593 A JP 24458593A JP 24458593 A JP24458593 A JP 24458593A JP 3324225 B2 JP3324225 B2 JP 3324225B2
Authority
JP
Japan
Prior art keywords
rotor
heat radiating
radiating portion
rotor body
centrifuge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24458593A
Other languages
Japanese (ja)
Other versions
JPH0796217A (en
Inventor
達也 今野
秋郎 坂爪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koki Holdings Co Ltd
Original Assignee
Hitachi Koki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Koki Co Ltd filed Critical Hitachi Koki Co Ltd
Priority to JP24458593A priority Critical patent/JP3324225B2/en
Publication of JPH0796217A publication Critical patent/JPH0796217A/en
Application granted granted Critical
Publication of JP3324225B2 publication Critical patent/JP3324225B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Centrifugal Separators (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、分離試料を収納する複
数の穴を有するロータボディと、ロータボディの上部開
口部を閉塞可能なカバーとを有する超高速遠心分離機用
ロータの放熱構造に関するものである。
BACKGROUND OF THE INVENTION This invention is, double that houses the separated sample
A rotor body having a number of holes and an upper opening of the rotor body
The present invention relates to a heat radiation structure for a rotor for an ultra-high-speed centrifuge having a cover whose mouth can be closed .

【0002】[0002]

【従来の技術】従来の超高速遠心分離機用ロータ(以下
ロータと称す)を図4を用いて説明する。従来のロータ
は、材料の強度、ロータにかかる応力、簡単な加工形状
及び高価な合金材料を無駄なく使用するか等を考慮しな
がら設計していたが、ロータの放熱構造については、遠
心分離機に容量の大きい冷凍機を装備することによりロ
ータ室を十分低温とすることができたため、特にロータ
の放熱面積に留意する必要がなかった。
2. Description of the Related Art A conventional rotor for an ultrahigh-speed centrifuge (hereinafter referred to as a rotor) will be described with reference to FIG. Conventional rotors have been designed in consideration of the strength of the material, the stress applied to the rotor, simple processing shapes, and whether to use expensive alloy materials without waste. By installing a large-capacity refrigerator, the temperature of the rotor chamber could be sufficiently lowered, so that it was not necessary to pay particular attention to the heat radiation area of the rotor.

【0003】[0003]

【発明が解決しようとする課題】遠心分離機でより高い
遠心加速度を得るためには、回転半径を大きくするか、
回転数を高くするかの2つの手段がある。単純にこれら
の手段を用いるとロータの回転応力が高くなりロータを
破壊してしまうため、より高い遠心加速度を得るために
ロータを小形化する必要があった。このためロータの放
熱面積が小さくなってしまうという欠点を有していた。
また、フロン規制により市場の流れがフロンレスの電子
冷却(ロータ室到達温度:冷凍機約−40℃、電子冷却
約−20℃)を求めるようになってきたことによりロー
タ室を十分低温に維持することが難しくなってしまいロ
ータの放熱面積が小さくなると放熱の際に不具合を生じ
ることになる。
In order to obtain a higher centrifugal acceleration in a centrifuge, it is necessary to increase the radius of rotation or
There are two ways to increase the rotation speed. Simply using these means increases the rotational stress of the rotor and destroys the rotor. Therefore, the rotor needs to be downsized to obtain a higher centrifugal acceleration. For this reason, there is a disadvantage that the heat radiation area of the rotor is reduced.
In addition, the flow of the market has come to require Freon-less electronic cooling (rotor chamber reaching temperature: about -40 ° C for refrigerators and about -20 ° C for electronic cooling) due to Freon regulations, so that the rotor chamber is maintained at a sufficiently low temperature. When the heat radiation area of the rotor becomes small, it becomes difficult to radiate heat.

【0004】本発明の目的は、ロータ室の温度が従来よ
り高い温度であっても、十分冷却でき低温を維持するこ
とのできるロータを提供することある。
An object of the present invention, the temperature of the rotor chamber even at a temperature higher than the conventional is to provide a rotor capable of maintaining a low temperature can be sufficiently cooled.

【0005】[0005]

【課題を解決するための手段】超高速遠心機は通常真空
中でロータを回転させる。真空中であるが故、空気とロ
ータの摩擦による発熱はほぼ無視できることから、ロー
タに侵入する熱量は回転軸からの熱伝達のみとなる。ロ
ータ室とロータの熱伝達は真空中のため輻射熱伝達とな
る。数1にロータ室とロータの輻射熱伝達の式を示す。
(式を簡略化するためロータ室は全面一定の温度とし
た。)
SUMMARY OF THE INVENTION Ultrahigh-speed centrifuges usually rotate a rotor in a vacuum. Since it is in a vacuum, the heat generated by friction between the air and the rotor is almost negligible. Therefore, the amount of heat entering the rotor is only heat transfer from the rotating shaft. Since the heat transfer between the rotor chamber and the rotor is in a vacuum, it is radiant heat transfer. Equation 1 shows an equation of radiant heat transfer between the rotor chamber and the rotor.
(In order to simplify the equation, the rotor chamber was kept at a constant temperature.)

【0006】[0006]

【数1】 (Equation 1)

【0007】 Q :ロータからロータ室への熱移動量 σ :ステファン・ボルツマン定数 TR:ロータの温度 TC:ロータ室表面温度 AR:ロータの表面積 AC:ロータ室の表面積 εR:ロータ表面の輻射率 εC:ロータ室表面の輻射率 式中左辺のQが回転軸からロータに伝わる熱量より大き
ければ、ロータ温度TRを達成するとができる。ここで
ロータ及びロータ室表面は塗装されており、ほぼ輻射率
εR、εC=1とした場合を数2に示す。
Q: Heat transfer amount from rotor to rotor chamber σ: Stefan-Boltzmann constant TR: Temperature of rotor TC: Surface temperature of rotor chamber AR: Surface area of rotor AC: Surface area of rotor chamber εR: Emissivity of rotor surface εC : Emissivity of rotor chamber surface If Q on the left side of the equation is larger than the amount of heat transmitted from the rotating shaft to the rotor, the rotor temperature TR can be achieved. Here, the rotor and the rotor chamber surface are painted, and the case where the emissivity εR, εC = 1 is almost shown in Equation 2.

【0008】 Q=σ(TR4−TC4)AR……………………(数2) 数2の中で支配的変数はロータ温度TR、ロータ室温度
TC、ロータ表面積ARである。しかしながら、ロータ
温度は遠心分離機の冷却能力仕様で決まっており、ロー
タ室温度は電子冷却を採用した場合、冷凍機のように十
分な低温にすることができない。従って、上記目的は、
ロータの外周やロータの上部開口部を閉塞可能なカバー
に円板状の放熱部を設けることで、ロータの表面積を増
加させロータ温度とロータ室温度の差が少なくともロー
タを冷却できるように改良することにより達成される。
Q = σ (TR 4 −TC 4 ) AR (Equation 2 ) In Equation 2, the dominant variables are the rotor temperature TR, the rotor chamber temperature TC, and the rotor surface area AR. However, the rotor temperature is determined by the cooling capacity specification of the centrifuge, and the rotor chamber temperature cannot be made sufficiently low as in the case of a refrigerator when electronic cooling is employed. Therefore , the purpose is
Cover that can close the outer periphery of the rotor and the upper opening of the rotor
By providing two disk-shaped heat radiation member, the difference between the rotor temperature and the rotor chamber temperature increases the surface area of the rotor Ru is achieved by improved to cool at least the rotor.

【0009】[0009]

【作用】ロータ外周やロータの上部開口部を閉塞可能な
カバーに円板状の放熱部を設けたことにより、ロータの
表面積が増加して真空中での輻射による冷却効率を向上
させることができるため、冷却面たるロータ室温度とロ
ータの温度差が少なくてもロータを冷却できる。
[Function] The outer periphery of the rotor and the upper opening of the rotor can be closed.
By providing a disk-shaped heat radiating portion on the cover, the surface area of the rotor is increased and the cooling efficiency by radiation in vacuum can be improved, so that the temperature difference between the rotor chamber temperature as the cooling surface and the rotor temperature is small. Can cool the rotor.

【0010】[0010]

【実施例】図1乃至図3を用いて本発明の実施例を説明
する。図1は分離試料を収納する複数の穴を有するロー
タボディ1cと、ロータボディ1cの上部開口部を閉塞
可能なカバー3とを有する超遠心機用ロータ1(以下ロ
ータと称す)の一実施例を示す一部断面側面図である。
ロータボディ1cには分離試料を収納するための穴1a
と、ロータボディ1cを回転させる駆動部の回転軸と嵌
合する穴1bが設けられておりロータボディ1cの試料
収容穴1aはカバ3で密閉されている。ロータ1の下
部には円板状の放熱部2(放熱板)が取付けられてい
る。放熱2は、ロータボディ1cの最大外径より大き
い径を有しており、且つ放熱部2の外周の厚みは、テー
パ形状により中央の厚みより薄くなる構造を有しており
ロータ1と密着している。ここで放熱2はロータボデ
ィ1cとの伝熱面積を確保することに留意しなければな
らず、放熱2をロータボディ1cと一体加工してもよ
い。またロータボディ1cの下部に放熱2を設けるこ
とにより、ロータの回転方向の慣性モーメントを大き
くし、ロータの重心を低くできるためロータの回転
安定性を向上させることができる。図2は図1のA−A
線断面図、図3は図1のB−B線断面図を示しており、
両図とも図中斜線部分が回転中に高応力の発生する部分
である。ロータ1の試料収容穴1aより下部に放熱
を設けるとにより、試料収容穴1a周囲に発生する高応
力の制約を受けなくなり、放熱2の外径を大きくする
ことができる。また図3の斜線部(高応力部)は、放熱
外周部質量に起因するものであり、放熱外周部を薄
くする事によりその応力を下げることができる。更に図
1の様にテパ状に薄くすることで、放熱面積を増加す
ることも可能となる。放熱板の材料としては金属であれ
ロータボディ1cの素材と同等またはそれ以上の比強
度を持つものが望ましい。非金属では金属より密度の低
い炭素繊維やアラミド繊維の強化樹脂が有望である。放
部2を別部材とする場合、その取付は圧入が最も望ま
しく、最も良い設計はロータの放熱取付部位が回転中
の遠心応力により伸び、放熱内径部を適度に圧迫する
ように放熱の素材や形状を組み合わせることである。
図4は本発明になるロータ1の他の実施例を示す一部断
面側面図である。ロータボディ1cには分離試料を収納
するための穴1aと、ロータボディ1cを回転させる駆
動部の回転軸と嵌合する穴1bが設けられており、ロー
タボディ1cの試料収容穴1aはカバー3で密閉されて
いる。カバー3は、ロータボディ1cとの嵌合部より大
きく張り出した円板状の放熱部3aを有しており、この
放熱部3aの外周の厚みは中央の厚みより薄く形成され
ている。カバー3と放熱3aを別部材で製作すること
も可能であるが、カバー3と放熱3aの密着面つまり
伝熱面積を確保することに留意しなければならない。図
5は本発明になるロータ1の更に他の実施例を示す一部
断面側面図である。ロータボディ1cには分離試料を収
納するための穴1aと、ロータボディ1cを回転させる
駆動部の回転軸と嵌合する穴1bが設けられており、
ータボディ1cの試料収容穴1aはカバー3で密閉され
ている。ロータボディ1cの上部、下部には円板状の放
2が2枚取り付けられており、放熱2の外周部が
薄くなる構造を有している。放熱2はロータボディ1
と密着しロータボディ1cとの伝熱面積を確保するこ
とに留意しなければならない。また放熱2はロータボ
ディ1cと一体加工すると熱伝達上有利である。実際の
一例を上げると、当社の小形超遠心機用ロータ120A
Tは図6に示す様な形状で、最大外径φ79mm、全高
約48mm、有効放熱面積(輻射率の低い金属面を除く)
125cm2である。これを冷凍機を装備した小形超遠
心機で運転した場合、ロータ室温−30℃でロータを0
℃にできる。これをロータ室温度が−20℃までしか下
がらない電子冷却装置を装備した小形超遠心機で運転す
るとロータ温度は6℃となる。これを−20℃でも0℃
まで冷却できるようにするには、放熱面積を増やさなけ
ればならない。必要な面積は数3を解くことにより得ら
れ、この場合ロータの表面積は178cm2必要あり5
3cm2以上の放熱部をロータに与えてやればよい。
図1に示した方法を採用した場合、直径100mmの円
板状放熱部2ロータボディ1cの下部に取付ければロ
ータ室が−20℃迄しか冷却できなくてもロータは0℃
に冷却できる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. Figure 1 shows a row with multiple holes for storing separated samples .
The upper opening of the rotor body 1c and the rotor body 1c is closed.
And an ultracentrifuge rotor 1 having a cover 3
Some shows an embodiment of a chromatography data hereinafter) is a cross-sectional side view.
Hole 1a for storing separated sample in rotor body 1c
When the sample receiving hole 1a of the rotor body 1c has holes 1b for rotating shaft and the fitting of the drive unit for rotating the rotor body 1c is provided is sealed by cover 3. A disc-shaped heat radiating portion 2 (heat radiating plate) is attached to a lower portion of the rotor 1. The heat radiation part 2 is larger than the maximum outer diameter of the rotor body 1c.
And the thickness of the outer periphery of the heat radiating portion 2 is
It has a structure that is thinner than the center thickness due to the shape of the rotor, and is in close contact with the rotor 1. Here, the heat radiation part 2 is a rotor body
Care must be taken to ensure a heat transfer area with the rotor 1c, and the heat radiating portion 2 may be integrally formed with the rotor body 1c . In addition, by providing the heat dissipation unit 2 at the bottom of the rotor body 1c, increasing the rotational direction of the inertia moment of the rotor 1, it is possible to improve the rotational stability of the rotor 1 because it can lower the center of gravity of the rotor 1. FIG. 2 is a sectional view taken along the line AA
FIG. 3 is a sectional view taken along line BB of FIG. 1.
In both figures, the hatched portions in the figures are portions where high stress is generated during rotation. The bottom from a sample receiving hole 1a of the rotor 1 the heat radiating portion 2
Is provided, the restriction of the high stress generated around the sample accommodating hole 1a is eliminated, and the outer diameter of the heat radiating section 2 can be increased. The hatched portion (high stress portion) in FIG.
This is due to the mass of the outer peripheral portion, and the stress can be reduced by making the outer peripheral portion of the heat radiating portion thinner. Furthermore, by thinning the tape over path shaped as in FIG. 1, it is possible to increase the heat dissipation area. As a material of the heat sink, a metal having a specific strength equal to or higher than that of the material of the rotor body 1c is desirable as long as it is a metal. Among nonmetals, carbon fiber and aramid fiber reinforced resins with lower density than metals are promising. When the heat radiating portion 2 is formed as a separate member, it is most preferable to press-fit the heat radiating portion , and the best design is that the heat radiating portion mounting portion of the rotor expands due to centrifugal stress during rotation and appropriately presses the heat radiating portion inner diameter portion. Combining different materials and shapes.
FIG. 4 is a partially sectional side view showing another embodiment of the rotor 1 according to the present invention. The rotor body 1c and the hole 1a for housing a separate sample, and a hole 1b is provided with a rotary shaft and the fitting of the drive unit for rotating the rotor body 1c, the low
The sample accommodating hole 1a of the tab body 1c is closed by a cover 3. The cover 3 is larger than the fitting portion with the rotor body 1c.
It has a protruding disk-shaped heat radiating portion 3a.
The thickness of the outer periphery of the heat radiating portion 3a is formed smaller than the thickness of the center . Although it is possible to manufacture the cover 3 and the heat radiating portion 3a as separate members, care must be taken to ensure the close contact surface between the cover 3 and the heat radiating portion 3a, that is, the heat transfer area. FIG. 5 is a partially sectional side view showing still another embodiment of the rotor 1 according to the present invention. The rotor body 1c is provided with a hole 1a for accommodating the separated sample and a hole 1b for fitting with a rotation shaft of a driving unit for rotating the rotor body 1c .
The sample receiving hole 1a of the data body 1c is closed by a cover 3. Two disk-shaped heat radiating portions 2 are attached to the upper and lower portions of the rotor body 1c , and have a structure in which the outer peripheral portion of the heat radiating portion 2 is thinned. Heat radiating part 2 the rotor body 1
close contact with c It should be noted that to ensure the heat transfer area between the rotor body 1c. The heat radiating part 2 Rotabo
It is advantageous in terms of heat transfer if it is integrally formed with the die 1c . To give an actual example, our rotor 120A for small ultracentrifuges
T has a shape as shown in Fig. 6 and has a maximum outer diameter of 79mm, a total height of about 48mm, and an effective heat radiation area (excluding metal surfaces with low emissivity).
125 cm 2 . When this was operated by a small ultracentrifuge equipped with a refrigerator, the rotor was turned off at room temperature -30 ° C.
° C. When this is operated by a small ultracentrifuge equipped with an electronic cooling device whose rotor chamber temperature drops only to −20 ° C., the rotor temperature becomes 6 ° C. This is 0 ° C even at -20 ° C
In order to be able to cool down, the heat radiation area must be increased. The required area can be obtained by solving Equation 3, where the surface area of the rotor needs to be 178 cm 2 .
What is necessary is just to give the heat radiation part of 3 cm < 2 > or more to the rotor 1. FIG.
In the case where the method shown in FIG. 1 is adopted, if the disc-shaped heat radiating portion 2 having a diameter of 100 mm is attached to the lower portion of the rotor body 1c, the rotor is kept at 0 ° C. even if the rotor chamber can only be cooled down to −20 ° C.
Can be cooled.

【0011】 σ(TR4−TC14)AR1{εR-1+(εC-1−1)AR1/AC}−1= σ(TR4−TC24)AR2{εR-1+(εC-1−1)AR2/AC}-1…(数3) σ :ステファン・ボルツマン定数 5.669×1
-8W/m24 TR :ロータの温度 273k(0
℃) TC1:ロータ室表面温度(冷凍機) 243k(−3
0℃) TC2:ロータ室表面温度(電子冷却)253k(−2
0℃) AR1:120ATロータの表面積 1.25×10
-22 AR2:ロータを0℃に冷却するのに必要な面積 AC :ロータ室の表面積 0.106m2 εR :ロータ表面の輻射率 0.9 εC :ロータ室表面の輻射率 0.9
[0011] σ (TR 4 -TC1 4) AR1 {εR -1 + (εC -1 -1) AR1 / AC} -1 = σ (TR 4 -TC2 4) AR2 {εR -1 + (εC -1 - 1) AR2 / AC} -1 (Equation 3) σ: Stefan-Boltzmann constant 5.669 × 1
0 -8 W / m 2 k 4 TR: rotor temperature 273 k (0
° C) TC1: rotor chamber surface temperature (refrigerator) 243k (-3
TC2: rotor chamber surface temperature (electronic cooling) 253k (-2
0 ° C) AR1: Surface area of 120AT rotor 1.25 × 10
-2 m 2 AR2: Area required to cool rotor to 0 ° C. AC: Surface area of rotor chamber 0.106 m 2 εR: Emissivity of rotor surface 0.9 εC: Emissivity of rotor chamber surface 0.9

【0012】[0012]

【発明の効果】本発明によれば、ロータボディの外周に
円板状の放熱部を一体に設けることで、ロータの放熱面
積を増やしロータの放熱を効率的に行うことができる。
また、本発明によれば、円板状の放熱部をカバーに設
け、この放熱部の外周の厚みを中央の厚みより薄く形成
することで、遠心力による応力を小さくして放熱部の破
損を防ぐことができる。
According to the present invention, the outer periphery of the rotor body is
By providing a disk-shaped heat radiating section integrally, the heat radiating surface of the rotor
The product can be increased and the heat radiation of the rotor can be performed efficiently.
Further, according to the present invention, a disk-shaped heat radiating portion is provided on the cover.
The thickness of the outer periphery of this heat radiation part is formed thinner than the thickness of the center.
This reduces the stress caused by centrifugal force and
Loss can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明になる超遠心機用ロータの一実施例を
示す一部断面側面図である。
FIG. 1 is a partially sectional side view showing one embodiment of a rotor for an ultracentrifuge according to the present invention.

【図2】 図1のA−A線断面図である。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】 図1のB−B線断面図である。FIG. 3 is a sectional view taken along line BB of FIG. 1;

【図4】 本発明になる超遠心機用ロータの他の実施例
を示す一部断面側面図である。
FIG. 4 is a partial sectional side view showing another embodiment of the rotor for an ultracentrifuge according to the present invention.

【図5】 本発明になる超遠心機用ロータの更に他の実
施例を示す一部断面側面図である。
FIG. 5 is a partial sectional side view showing still another embodiment of the rotor for an ultracentrifuge according to the present invention.

【図6】 従来の超遠心機ロータを示す一部断面側面図
である。
FIG. 6 is a partially sectional side view showing a conventional ultracentrifuge rotor.

【符号の説明】[Explanation of symbols]

1はロータ、1aは試料収納穴、1bは回転軸との嵌合
部、1cはロータボディ、2は放熱、3はカバ、3
aは放熱である。
1 the fitting portion of the rotor, 1a is a sample receiving hole, 1b and the rotary shaft, 1c rotor body, 2 is the heat radiating portion, 3 cover, 3
a is a heat radiation part .

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 分離試料を収納する複数の穴を有するロ
ータボディと、該ロータボディの上部開口部を閉塞可能
なカバーとを有した遠心分離機用ロータにおいて、前記
ロータボディの外周に円板状の放熱部を一体に設ける
とを特徴とした遠心分離機用ロータ。
1. A method according to claim 1 , wherein said hole has a plurality of holes for storing separated samples.
Rotor body and upper opening of the rotor body can be closed
In centrifuge rotor having a a cover, wherein
A centrifugal separator rotor characterized in that a disk-shaped heat radiating portion is integrally provided on the outer periphery of a rotor body .
【請求項2】 前記ロータボディの最大外径より大きい
径を有する前記放熱部を前記ロータボディの下部に設け
ことを特徴とした請求項1記載の遠心分離機用ロー
タ。
2. The rotor body is larger than a maximum outer diameter.
The heat radiating portion having a diameter is provided at a lower portion of the rotor body.
Centrifuge rotor of claim 1 wherein characterized in that that.
【請求項3】 前記放熱部の外周の厚みは、テーパ形状
により中央の厚みより薄く形成することを特徴とした請
求項1又は請求項2の何れか記載の遠心分離機用ロー
タ。
3. The thickness of the outer periphery of the heat radiating portion is tapered.
, Characterized by being formed thinner than the center thickness by
The rotor for a centrifuge according to claim 1 or claim 2 .
【請求項4】 前記ロータボディの外周に複数の前記放
熱部を設けることを特徴とした請求項1記載の遠心分離
機用ロータ。
4. A plurality of said discharge members are provided on an outer periphery of said rotor body.
Centrifuge rotor of claim 1, wherein that said Rukoto provided thermal unit.
【請求項5】 分離試料を収納する複数の穴を有するロ
ータボディと、該ロータボディの上部開口部を閉塞可能
なカバーとを有した遠心分離機用ロータにおいて、前記
カバーは円板状の放熱部を有しており、該放熱部の外周
の厚みは中央の厚みより薄く形成することを特徴とした
遠心分離機用ロータ。
5. A rotor having a plurality of holes for storing separated samples.
Rotor body and upper opening of the rotor body can be closed
A centrifugal separator rotor having a
The cover has a disc-shaped heat radiating portion, and the outer periphery of the heat radiating portion is provided.
The thickness of is characterized by being formed thinner than the center thickness
Rotor for centrifuge.
JP24458593A 1993-09-30 1993-09-30 Centrifuge rotor Expired - Fee Related JP3324225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24458593A JP3324225B2 (en) 1993-09-30 1993-09-30 Centrifuge rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24458593A JP3324225B2 (en) 1993-09-30 1993-09-30 Centrifuge rotor

Publications (2)

Publication Number Publication Date
JPH0796217A JPH0796217A (en) 1995-04-11
JP3324225B2 true JP3324225B2 (en) 2002-09-17

Family

ID=17120914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24458593A Expired - Fee Related JP3324225B2 (en) 1993-09-30 1993-09-30 Centrifuge rotor

Country Status (1)

Country Link
JP (1) JP3324225B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6063017A (en) * 1997-04-10 2000-05-16 Sorvall Products, L.P. Method and apparatus capable of preventing vertical forces during rotor failure

Also Published As

Publication number Publication date
JPH0796217A (en) 1995-04-11

Similar Documents

Publication Publication Date Title
US6401808B1 (en) Cooling apparatus for electronic devices and method
MXPA97005853A (en) Motors for te fans
US5551241A (en) Thermoelectric cooling centrifuge
JP2001512899A (en) heatsink
EP0125834A2 (en) Alternators
US6918749B2 (en) Compressor with aluminum housing and at least one aluminum rotor
US20200309913A1 (en) Enclosure for an optoelectronic sensor and lidar sensor
JP3324225B2 (en) Centrifuge rotor
EP0316404A1 (en) Improved thermoelectric cooling design.
GB2062365A (en) Electric motor
EP0218434A2 (en) X-ray tube
JP5829333B2 (en) Centrifuge with compressor cooling
USH312H (en) Rotating anode x-ray tube
JPH06335202A (en) Totally-enclosed fan-cooled rotating electric machine
US6824357B2 (en) Turbomolecular pump
EP1479089A1 (en) A device for generating x-rays
US5433080A (en) Thermoelectric cooling centrifuge
JP3289519B2 (en) centrifuge
JP4757972B2 (en) Motor fan
JPH073915B2 (en) Heat dissipation system
JP2002026560A (en) Electronic device cooling unit
CN109222690B (en) Broken wall machine
JPS58207849A (en) Squirrel cage rotor
JP2561668Y2 (en) Portable dust collection circular saw
CN217063424U (en) Brushless external rotor electric machine with efficient heat dissipation

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080705

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090705

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090705

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100705

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110705

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110705

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120705

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120705

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130705

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees