JP3322281B2 - Method for producing ether compound - Google Patents

Method for producing ether compound

Info

Publication number
JP3322281B2
JP3322281B2 JP12394393A JP12394393A JP3322281B2 JP 3322281 B2 JP3322281 B2 JP 3322281B2 JP 12394393 A JP12394393 A JP 12394393A JP 12394393 A JP12394393 A JP 12394393A JP 3322281 B2 JP3322281 B2 JP 3322281B2
Authority
JP
Japan
Prior art keywords
pressure
reaction
hydrogen
acetal
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12394393A
Other languages
Japanese (ja)
Other versions
JPH06128184A (en
Inventor
達哉 江川
憲二 最上
泰宏 川口
延晃 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP12394393A priority Critical patent/JP3322281B2/en
Publication of JPH06128184A publication Critical patent/JPH06128184A/en
Application granted granted Critical
Publication of JP3322281B2 publication Critical patent/JP3322281B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、エーテル化合物の製造
方法に関し、詳しくはアセタールまたはケタール化合物
を水素添加することにより、溶剤,潤滑油などとして広
い用途を持つ有用なエーテル化合物を効率よく製造する
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an ether compound, and more particularly to a method for efficiently producing a useful ether compound having a wide range of uses as a solvent, a lubricating oil and the like by hydrogenating an acetal or a ketal compound. About the method.

【0002】[0002]

【従来の技術】アセタール化合物やケタール化合物から
エーテル化合物を製造する方法としては、例えば実験化
学講座第20巻(第4版、丸善)には、酸とアルカリ金
属水素化物の組合せ,珪素試薬,ジボランなどを用いる
方法が示されている。しかし、これらの反応は、水素化
剤として非常に高価なアルカリ金属水素化物,ジボラ
ン,珪素試薬を化学量論量使用するので、工業的な製法
としては好ましくない。また、酸触媒と接触水素化を組
み合わせた方法が知られている。W.L.Howard
〔J.Org.Chem.26,1026(196
1)〕によれば、塩酸の存在下にアルミナにロジウムを
担持させた触媒でケタールの接触水素化分解によりエー
テルを生成したことが報告されている。米国特許第40
88700号明細書には環状アセタールである1,3−
ジオキソラン類を三フッ化硼素,三塩化アルミニウムな
どのルイス酸存在下、白金もしくはロジウム触媒で接触
水素化分解し、エーテル化合物を製造する方法が示され
ている。しかしながら、これらの製造法では塩酸,三フ
ッ化硼素,三塩化アルミニウムなどを使用しているの
で、通常の装置を使用した場合、その腐食が問題とな
り、特別な処理を必要とし、好ましくない。
2. Description of the Related Art Methods for producing ether compounds from acetal compounds and ketal compounds are described in, for example, Experimental Chemistry Lecture Vol. 20 (4th edition, Maruzen), which describes a combination of an acid and an alkali metal hydride, a silicon reagent, and diborane. A method using such a method is shown. However, these reactions are not preferable as an industrial production method because stoichiometric amounts of very expensive alkali metal hydride, diborane, and silicon reagent are used as hydrogenating agents. Further, a method combining an acid catalyst and catalytic hydrogenation is known. W. L. Howard
[J. Org. Chem. 26, 1026 (196
According to 1)], it has been reported that ether was produced by catalytic hydrogenolysis of ketal with a catalyst in which rhodium was supported on alumina in the presence of hydrochloric acid. US Patent No. 40
No. 88700 describes cyclic acetal 1,3-
A method for producing an ether compound by catalytic hydrogenolysis of dioxolanes with a platinum or rhodium catalyst in the presence of a Lewis acid such as boron trifluoride or aluminum trichloride is disclosed. However, in these production methods, hydrochloric acid, boron trifluoride, aluminum trichloride and the like are used. Therefore, when an ordinary apparatus is used, corrosion thereof becomes a problem and a special treatment is required, which is not preferable.

【0003】そこで、酸を使用しない方法として、例え
ば特開昭58−4739号公報および特開昭58−17
7929号公報には、炭素担持させたパラジウム触媒で
アセタール類を水素化分解し、エーテル化合物を製造す
る方法が提案されている。この方法では、酸を使用しな
いので、装置の腐食の問題はないが、原料アセタールの
転化率において満足できるものではなかった。すなわ
ち、生成物と原料とを分離し、原料をリサイクルする操
作が必要となり、好ましくない。さらには生成したエー
テルが蒸留などでは分離精製不可能な場合は、製品中に
アセタールが残ることになる。一般にアセタール類は安
定性、特に耐加水分解性に欠け、その結果生じたアルデ
ヒドが酸化,還元,重縮合等を起こし、製品性状を著し
く損なうこととなり、問題となる。したがって、その適
用範囲は狭いものであると言わざるをえない。このよう
に、充分な反応活性を持ち、選択性がよく、さらに装置
腐食などを起こさないアセタールあるいはケタール化合
物からのエーテル化合物の製造方法は、まだ見出されて
おらず、その開発が強く望まれている。
[0003] Therefore, as a method not using an acid, for example, JP-A-58-4739 and JP-A-58-17.
No. 7929 proposes a method for producing an ether compound by hydrogenating and decomposing acetal with a palladium catalyst supported on carbon. In this method, since no acid is used, there is no problem of corrosion of the apparatus, but the conversion of the raw acetal was not satisfactory. That is, an operation of separating the product and the raw material and recycling the raw material is required, which is not preferable. Further, when the produced ether cannot be separated and purified by distillation or the like, acetal remains in the product. Acetals generally lack stability, particularly hydrolysis resistance, and the resulting aldehydes cause oxidation, reduction, polycondensation, etc., which significantly impairs the properties of the product, causing a problem. Therefore, its application range must be narrow. As described above, a method for producing an ether compound from an acetal or ketal compound having sufficient reaction activity, good selectivity, and causing no apparatus corrosion or the like has not been found yet, and its development is strongly desired. ing.

【0004】[0004]

【発明が解決しようとする課題】本発明は、前記従来技
術の問題点を解消し、充分な反応活性を有し、選択性に
優れ、さらに装置腐食などを起こさない、アセタールあ
るいはケタール化合物からのエーテル化合物の製造方法
を提供することを目的とするものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, has sufficient reaction activity, has excellent selectivity, and does not cause corrosion of equipment. It is an object of the present invention to provide a method for producing an ether compound.

【0005】[0005]

【課題を解決するための手段】本発明者らは、酸性質お
よび水素化能を有する固体触媒が前記目的に適合しうる
ことを見出し、本発明を完成するに至った。すなわち、
本発明は、一般式(I)
Means for Solving the Problems The present inventors have found that a solid catalyst having an acid property and a hydrogenating ability can meet the above-mentioned object, and have completed the present invention. That is,
The present invention relates to a compound of the formula (I)

【0006】[0006]

【化5】 Embedded image

【0007】〔式中、R1 およびR2 はそれぞれ炭化水
素基または主鎖および/または側鎖にエーテル性酸素を
含む炭化水素基を表し、R3 ,R4 およびR5 はそれぞ
れ水素,炭化水素基または主鎖および/または側鎖にエ
ーテル性酸素を含む炭化水素基を表し、R1 〜R5 はそ
れぞれ同一であっても異なっていてもよい。〕で示され
るアセタールまたはケタール化合物を酸性質および水素
化能を有する固体触媒の存在下で水素と反応させること
を特徴とする一般式(II)または(III)
Wherein R 1 and R 2 each represent a hydrocarbon group or a hydrocarbon group containing ethereal oxygen in the main chain and / or side chain, and R 3 , R 4 and R 5 represent hydrogen, hydrocarbon Represents a hydrogen group or a hydrocarbon group containing etheric oxygen in the main chain and / or side chain, and R 1 to R 5 may be the same or different. Reacting the acetal or ketal compound of formula (II) or (III) with hydrogen in the presence of a solid catalyst having acidity and hydrogenation ability

【0008】[0008]

【化6】 Embedded image

【0009】〔式中、R1 ,R2 ,R3 ,R4 およびR
5 は前記と同じである。〕で示されるエーテル化合物の
製造方法を提供するものである。
[Wherein R 1 , R 2 , R 3 , R 4 and R
5 is the same as above. And a method for producing an ether compound represented by the formula:

【0010】本発明の方法においては、出発原料として
上記一般式(I)で示されるアセタール化合物またはケ
タール化合物を用いる。上記一般式(I)において、R
1 およびR2 はそれぞれメチル基,エチル基,n−プロ
ピル基,イソプロピル基等の炭化水素基または式:
In the method of the present invention, an acetal compound or a ketal compound represented by the above general formula (I) is used as a starting material. In the above general formula (I), R
1 and R 2 each represent a hydrocarbon group such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group or a formula:

【0011】[0011]

【化7】 Embedded image

【0012】〔式中、Rは炭素数1〜10の炭化水素基
を表し、mは1〜500の整数を表す。〕で示されるよ
うな、主鎖および/または側鎖にエーテル性酸素を含む
炭化水素基を表す。また、R3 ,R4 およびR5 は、そ
れぞれ水素あるいは前記R1 およびR2 と同じもの、あ
るいは式:
[Wherein, R represents a hydrocarbon group having 1 to 10 carbon atoms, and m represents an integer of 1 to 500. And a hydrocarbon group containing etheric oxygen in the main chain and / or side chain. R 3 , R 4 and R 5 are each hydrogen or the same as R 1 and R 2 described above;

【0013】[0013]

【化8】 Embedded image

【0014】〔式中、Rは炭素数1〜10の炭化水素基
を示し、mは1〜500の整数を示す。〕などを表す。
本発明においては、上記一般式(I)で表されるアセタ
ールまたはケタール化合物を、酸性質および水素化能を
有する固体触媒の存在で水素と反応させることにより、
一般式(II) または(III)
[Wherein, R represents a hydrocarbon group having 1 to 10 carbon atoms, and m represents an integer of 1 to 500. ] And so on.
In the present invention, by reacting the acetal or ketal compound represented by the general formula (I) with hydrogen in the presence of a solid catalyst having acidity and hydrogenation ability,
General formula (II) or (III)

【0015】[0015]

【化9】 Embedded image

【0016】〔式中、R1 ,R2 ,R3 ,R4 およびR
5 は前記と同じである。〕で示されるエーテル化合物が
得られる。上記一般式(I)で示されるアセタールまた
はケタール化合物としては、一般式(IV)
[Wherein R 1 , R 2 , R 3 , R 4 and R
5 is the same as above. Is obtained. The acetal or ketal compound represented by the general formula (I) includes a compound represented by the general formula (IV)

【0017】[0017]

【化10】 Embedded image

【0018】〔式中、R6 およびR7 はそれぞれ炭素数
1〜20の炭化水素基またはエーテル性酸素を含む炭化
水素基を表し、nは1〜500の整数を表す。〕で示さ
れる化合物が好ましく、この場合エーテル化合物とし
て、一般式(V)または(VI)
[In the formula, R 6 and R 7 each represent a hydrocarbon group having 1 to 20 carbon atoms or a hydrocarbon group containing ethereal oxygen, and n represents an integer of 1 to 500. In this case, a compound represented by the general formula (V) or (VI)

【0019】[0019]

【化11】 Embedded image

【0020】〔式中、R6 ,R7 およびnは前記と同じ
である。〕で示される化合物が得られる。上記一般式
(IV) で示される化合物には、一般式(IX)
Wherein R 6 , R 7 and n are the same as above. Is obtained. The compound represented by the general formula (IV) includes a compound represented by the general formula (IX)

【0021】[0021]

【化12】 Embedded image

【0022】〔式中、R6 およびnは前記と同じであ
る。〕で示される化合物が含有される場合があり、この
ような混合物においては、得られるエーテル化合物は前
記一般式(V)の化合物、あるいは一般式(V)の化合
物と(VI) の化合物との混合物となる。また、一般式
(I)で示されるアセタールおよびケタール化合物とし
て、一般式(VII) R8 CH(OR9)2 ・・・(VII) 〔式中、R8 およびR9 はそれぞれ炭素数1〜20の炭
化水素基を表す。〕で示される化合物も好ましく用いら
れる。この場合、エーテル化合物として、一般式(VII
I) R8 CH2 OR9 ・・・(VIII) 〔式中、R8 およびR9 は前記と同じである。〕で示さ
れる化合物が得られる。
Wherein R 6 and n are as defined above. In such a mixture, the resulting ether compound is a compound of the general formula (V) or a compound of the general formula (V) and a compound of the formula (VI). It becomes a mixture. Further, as the acetal and ketal compounds represented by formula (I), the general formula (VII) R 8 CH (OR 9) 2 ··· (VII) wherein, R 8 and R 9 are each 1 to carbon atoms Represents 20 hydrocarbon groups. ] Are also preferably used. In this case, the ether compound represented by the general formula (VII
I) R 8 CH 2 OR 9 (VIII) wherein R 8 and R 9 are the same as above. Is obtained.

【0023】本発明の方法は、水素化触媒と固体酸触媒
の2種類を組合わせた触媒または水素化能を有する金属
を担持した固体酸触媒を用いるものである。水素化触媒
としては、特に制限はなく、一般的に使用される各種の
水素化触媒を使用することができ、例えば、ニッケ
ル,パラジウム,ロジウム,白金,ルテニウムなどの金
属の単独またはこれらを主成分としたもの、 上記の
金属触媒成分を活性炭、アルミナ、珪藻土などに担持し
た触媒、ラネーニッケル、ラネーコバルトなどのラネ
ー型触媒が特に有効である。固体酸触媒としては、特に
制限はなく、一般的に使用される各種のものを使用する
ことができ、例えば、活性白土,酸性白土,各種ゼオラ
イト,イオン交換樹脂,シリカ−アルミナ,ヘテロポリ
酸などが特に有効である。また、水素化能を有する金属
を担持した固体酸触媒としては、例えば、各種ゼオライ
トにニッケル,パラジウム,ロジウム,白金,ルテニウ
ムなどを担持した触媒などが特に有効である。
The method of the present invention comprises:Hydrogenation catalyst and solid acid catalyst
Catalyst or metal with hydrogenation ability combining two types of
-Loaded solid acid catalystIs used. Hydrogenation catalyst
There are no particular restrictions on various commonly used
Hydrogenation catalysts can be used, such as nickel
Gold such as metal, palladium, rhodium, platinum, ruthenium
Genus alone or those containing these as main components, above
Metal catalyst component supported on activated carbon, alumina, diatomaceous earth, etc.
Catalyst, Raney nickel, Raney cobalt, etc.
-Type catalysts are particularly effective. Particularly as solid acid catalysts,
There is no restriction, use various commonly used things
For example, activated clay, acid clay, various zeora
Site, ion exchange resin, silica-alumina, heteropoly
Acids and the like are particularly effective. Also,Metals with hydrogenation ability
As a solid acid catalyst carryingFor example, various Zeoli
Nickel, palladium, rhodium, platinum, ruthenium
A catalyst supporting a catalyst or the like is particularly effective.

【0024】本発明の方法を実施する際に好適な触媒量
は、反応基質に対して水素化触媒を0.1〜50重量%、
固体酸触媒を0.1〜50重量%であり、水素化能を有す
る固体酸触媒を使用する場合は、反応基質に対し0.1〜
50重量%である。この量が0.1重量%未満では反応が
充分に進行しないし、50重量%を超えると原料に対し
て触媒量が多くなりすぎ、生産性が低下するという不都
合がある。本発明においては、上記のような触媒の存在
下に一般式(I)で示されるアセタールまたはケタール
化合物を水素と反応させるが、水素ガスとアセタールま
たはケタール化合物のモル比を1:10〜200:1と
して接触させるのが好ましい。このモル比が上記範囲よ
り低いと反応が充分に進行しないし、上記範囲を超える
と生産性が低下するという不都合が生じる。
The amount of the catalyst suitable for carrying out the process of the present invention is 0.1 to 50% by weight of the hydrogenation catalyst based on the reaction substrate.
The solid acid catalyst is 0.1 to 50% by weight.
50% by weight. If the amount is less than 0.1% by weight, the reaction does not proceed sufficiently, and if it exceeds 50% by weight, the amount of the catalyst becomes too large with respect to the raw material, and there is a disadvantage that productivity is lowered. In the present invention, the acetal or ketal compound represented by the general formula (I) is reacted with hydrogen in the presence of the above-described catalyst, and the molar ratio of hydrogen gas to the acetal or ketal compound is 1:10 to 200: It is preferred to make contact as 1. When the molar ratio is lower than the above range, the reaction does not proceed sufficiently, and when the molar ratio is higher than the above range, the productivity is lowered.

【0025】また、本発明の方法により水素化反応を実
施するのに好適な反応条件としては、反応温度10〜2
50℃,水素ガス分圧1〜200kg/cm2 ,反応時
間は回分式の反応の場合には0.1〜10時間、液相流通
系で反応させる場合には反応液の重量空間速度(WHS
V)=0.01〜100/hr、水素ガスのガス空間速度
(GHSV)=100〜10000/hrである。さら
に、溶媒を用いることなく反応を行うことができるが、
反応条件下で安定な溶媒であれば使用しても差し支えな
い。使用しうる溶媒としては、例えば、ヘキサン,ヘプ
タン,オクタンなどの炭化水素系溶媒を挙げることがで
きる。
The reaction conditions suitable for carrying out the hydrogenation reaction according to the method of the present invention include a reaction temperature of 10-2.
50 ° C., hydrogen gas partial pressure 1 to 200 kg / cm 2 , reaction time is 0.1 to 10 hours for a batch type reaction, and weight hourly space velocity (WHS) of a reaction solution for a reaction in a liquid phase flow system.
V) = 0.01 to 100 / hr, and the gas space velocity (GHSV) of hydrogen gas = 100 to 10000 / hr. Furthermore, the reaction can be performed without using a solvent,
Any solvent that is stable under the reaction conditions may be used. Examples of the solvent that can be used include hydrocarbon solvents such as hexane, heptane, and octane.

【0026】上記のような反応により、上記一般式
(I)で示されるアセタールまたはケタール化合物か
ら、該アセタールまたはケタールを構成していた−OR
1 または−OR2 基が脱離して水素原子で置換され、一
般式(II)または(III)で示されるエーテル化合物が生
成する。この反応において、R1 〜R5 のうちのいずれ
かがエーテル性酸素を含む炭化水素基を表す場合でも、
そのエーテル性酸素には水素は作用せず、専らアセター
ルまたはケタール性酸素部分に作用することが明らかと
なった。反応終了後、反応混合物は通常のろ過またはデ
カンテーションにより触媒と分離することができる。分
離した触媒は、特別な処理なしに再使用することができ
る。生成物は、必要に応じて、蒸留,抽出,洗浄,乾燥
などの操作を行って製品とすることができる。
By the reaction as described above, the acetal or ketal compound represented by the above general formula (I) is converted from the acetal or ketal compound into -OR which constitutes the acetal or ketal.
The 1 or —OR 2 group is eliminated and replaced with a hydrogen atom to produce an ether compound represented by the general formula (II) or (III). In this reaction, even when any of R 1 to R 5 represents a hydrocarbon group containing ethereal oxygen,
It has been found that hydrogen does not act on the etheric oxygen but acts exclusively on the acetal or ketal oxygen portion. After completion of the reaction, the reaction mixture can be separated from the catalyst by usual filtration or decantation. The separated catalyst can be reused without special treatment. The product can be made into a product by performing operations such as distillation, extraction, washing, and drying as necessary.

【0027】[0027]

【実施例】次に、実施例により本発明をさらに詳細に説
明するが、本発明はこれらによって制限されるものでは
ない。 触媒調製例1 ラネーニッケル(川研ファインケミカル社製,商品名M
300T)100g(含水状態)をフラスコに取り、無
水エタノール100gを加えてよく混合した。その後、
静置してラネーニッケルを沈降させ、デカンテーション
により上澄み液を除去した。フラスコ内に残ったラネー
ニッケルに対し、上記の操作を5回行った。
Next, the present invention will be described in more detail by way of examples, which should not be construed as limiting the present invention. Catalyst Preparation Example 1 Raney Nickel (manufactured by Kawaken Fine Chemical Company, trade name M
100T (water-containing state) was placed in a flask, and 100 g of absolute ethanol was added thereto and mixed well. afterwards,
The Raney nickel was allowed to settle by standing, and the supernatant was removed by decantation. The above operation was performed five times on Raney nickel remaining in the flask.

【0028】触媒調製例2 ゼオライト(東ソー社製,商品名HSZ330HUA)
20gを100mlのナス型フラスコに入れ、150℃
の油浴につけ、油回転式の真空ポンプで1時間減圧状態
にした。室温まで冷却後、乾燥窒素で常圧にした。 触媒調製例3 活性白土(和光純薬社製)20gを100mlのナス型
フラスコに入れ、150℃の油浴につけ、油回転式の真
空ポンプで1時間減圧状態にした。室温まで冷却後、乾
燥窒素で常圧にした。
Catalyst Preparation Example 2 Zeolite (manufactured by Tosoh Corporation, trade name: HSZ330HUA)
20 g was put into a 100 ml eggplant-shaped flask,
And the pressure was reduced by an oil rotary vacuum pump for 1 hour. After cooling to room temperature, the pressure was adjusted to normal pressure with dry nitrogen. Catalyst Preparation Example 3 20 g of activated clay (manufactured by Wako Pure Chemical Industries) was placed in a 100 ml eggplant-shaped flask, placed in a 150 ° C. oil bath, and evacuated with an oil rotary vacuum pump for 1 hour. After cooling to room temperature, the pressure was adjusted to normal pressure with dry nitrogen.

【0029】実施例1 SUS−316L製の1リットルのオートクレーブにア
セトアルデヒドジエチルアセタール100g,n−ヘプ
タン100g,触媒調製例1で調製したラネーニッケル
3.0g(エタノールの湿った状態で)および触媒調製例
2で調製したゼオライト3.0gを入れた。オートクレー
ブ内に水素を導入して水素圧10kg/cm2 とし、約
30秒間攪拌した後、脱圧した。再びオートクレーブ内
に水素を導入して水素圧を10kg/cm2 とし、約3
0秒間攪拌した後、脱圧した。その後、水素圧を30k
g/cm2 とし、攪拌しながら30分で130℃に昇温
した。130℃で2時間30分反応させた。昇温中およ
び昇温後反応が起こり、水素圧の減少が認められた。な
お、昇温に伴う圧力の増加、反応に伴う圧力の減少は適
時減圧、加圧して水素圧を30kg/cm2 に維持して
反応を行った。反応終了後、20℃まで冷却した後減圧
し常圧とした。反応液についてガスクロマトグラフィー
により定性および定量分析を行った。アセトアルデヒド
ジエチルアセタール転化率は94.9%、ジエチルエーテ
ル選択率は68.3%であった。
Example 1 In a 1 liter autoclave made of SUS-316L, 100 g of acetaldehyde diethyl acetal, 100 g of n-heptane, Raney nickel prepared in Catalyst Preparation Example 1
3.0 g (in the wet state of ethanol) and 3.0 g of the zeolite prepared in Catalyst Preparation Example 2 were charged. Hydrogen was introduced into the autoclave to a hydrogen pressure of 10 kg / cm 2 , stirred for about 30 seconds, and then depressurized. Hydrogen was introduced again into the autoclave to adjust the hydrogen pressure to 10 kg / cm 2 ,
After stirring for 0 seconds, the pressure was released. After that, the hydrogen pressure was increased to 30k
g / cm 2 and the temperature was raised to 130 ° C. in 30 minutes with stirring. The reaction was performed at 130 ° C. for 2 hours and 30 minutes. Reaction occurred during and after the heating, and a decrease in hydrogen pressure was observed. In addition, the pressure was increased and the pressure decreased due to the temperature increase, and the reaction was carried out while maintaining the hydrogen pressure at 30 kg / cm 2 by appropriately reducing and increasing the pressure. After the completion of the reaction, the pressure was reduced to 20 ° C., and then reduced to normal pressure. The reaction liquid was subjected to qualitative and quantitative analysis by gas chromatography. The conversion of acetaldehyde diethyl acetal was 94.9% and the selectivity for diethyl ether was 68.3%.

【0030】実施例2 SUS−316L製の1リットルのオートクレーブにプ
ロピオンアルデヒドジエチルアセタール100g,n−
オクタン100g,触媒調製例1で調製したラネーニッ
ケル6.0g(エタノールの湿った状態で)および触媒調
製例2で調製したゼオライト6.0gを入れた。オートク
レーブ内に水素を導入して水素圧10kg/cm2
し、約30秒間攪拌した後、脱圧した。再びオートクレ
ーブ内に水素を導入して水素圧を10kg/cm2
し、約30秒間攪拌した後、脱圧した。その後水素圧を
30kg/cm2 とし、攪拌しながら30分で130℃
に昇温した。130℃で1時間30分反応させた。昇温
中および昇温後反応が起こり、水素圧の減少が認められ
た。なお、昇温に伴う圧力の増加、反応に伴う圧力の減
少は適時減圧、加圧して水素圧を30kg/cm2 に調
整して反応を行った。反応終了後、20℃まで冷却した
後減圧し常圧とした。反応液についてガスクロマトグラ
フィーにより定性および定量分析を行った。プロピオン
アルデヒドジエチルアセタール転化率は97.0%、エチ
ルn−プロピルエーテル選択率は72.0%であった。
Example 2 100 g of propionaldehyde diethyl acetal was added to a 1 liter autoclave made of SUS-316L,
100 g of octane, 6.0 g of Raney nickel prepared in Catalyst Preparation Example 1 (in the wet state of ethanol) and 6.0 g of zeolite prepared in Catalyst Preparation Example 2 were charged. Hydrogen was introduced into the autoclave to a hydrogen pressure of 10 kg / cm 2 , stirred for about 30 seconds, and then depressurized. Hydrogen was again introduced into the autoclave to a hydrogen pressure of 10 kg / cm 2 , stirred for about 30 seconds, and then depressurized. Thereafter, the hydrogen pressure was adjusted to 30 kg / cm 2, and 130 ° C. for 30 minutes while stirring.
The temperature rose. The reaction was carried out at 130 ° C. for 1 hour and 30 minutes. Reaction occurred during and after the heating, and a decrease in hydrogen pressure was observed. In addition, the pressure was increased and the pressure was decreased due to the temperature rise, and the reaction was carried out by adjusting the hydrogen pressure to 30 kg / cm 2 by appropriately reducing and increasing the pressure. After the completion of the reaction, the pressure was reduced to 20 ° C., and then reduced to normal pressure. The reaction liquid was subjected to qualitative and quantitative analysis by gas chromatography. The conversion of propionaldehyde diethyl acetal was 97.0%, and the selectivity for ethyl n-propyl ether was 72.0%.

【0031】実施例3 (1)原料の調製 滴下ロート,冷却管および攪拌機を取り付けた5リット
ルのガラスフラスコにトルエン1000g,アセトアル
デヒドジエチルアセタール500gおよび三フッ化硼素
ジエチルエーテル錯体5.0gを入れた。滴下ロートにエ
チルビニルエーテル2500gを入れ、2時間30分か
けて滴下した。この間に反応が開始し、反応液の温度が
上昇したが、氷水浴で冷却しながら約25℃に保持し
た。滴下終了後5分間攪拌し、反応混合物を洗浄槽中に
移し、5%水酸化ナトリウム水溶液1000mlで3回
洗浄し、さらに水1000mlで3回洗浄した。ロータ
リーエバポレーターを用い、減圧下に溶媒および未反応
の原料を除去し、生成物2833gを得た。このものの
1H−NMRスペクトルを図1に示す。このスペクトル
図から、生成物は下記の式(A)および(B)の構造を
有することが判明した。また、生成物の動粘度は100
℃で5.18cStであり、40℃で38.12cStであ
った。
Example 3 (1) Preparation of Raw Materials In a 5-liter glass flask equipped with a dropping funnel, a condenser and a stirrer, 1,000 g of toluene, 500 g of acetaldehyde diethyl acetal and 5.0 g of boron trifluoride diethyl ether complex were placed. 2500 g of ethyl vinyl ether was put into the dropping funnel and dropped over 2 hours and 30 minutes. During this time, the reaction started and the temperature of the reaction solution rose, but was kept at about 25 ° C. while cooling in an ice water bath. After completion of the dropwise addition, the mixture was stirred for 5 minutes, the reaction mixture was transferred to a washing tank, and washed three times with 1000 ml of a 5% aqueous sodium hydroxide solution, and further washed three times with 1,000 ml of water. Using a rotary evaporator, the solvent and unreacted raw materials were removed under reduced pressure to obtain 2833 g of a product. Of this one
FIG. 1 shows the 1 H-NMR spectrum. From this spectrum diagram, it was found that the product had the structures of the following formulas (A) and (B). The kinematic viscosity of the product is 100
It was 5.18 cSt at 40 ° C and 38.12 cSt at 40 ° C.

【0032】[0032]

【化13】 Embedded image

【0033】なお、分子数の比は(A):(B)=4.
5:1であり、nの平均値は5.6であった。 (2)SUS−316L製の1リットルのオートクレー
ブに上記(1)で製造したオリゴマー200g,触媒調
製例1で調製したラネーニッケル6.0g(エタノールの
湿った状態で)および触媒調製例2で調製したゼオライ
ト6.0gを入れた。オートクレーブ内に水素を導入して
水素圧10kg/cm2 とし、約30秒間攪拌した後、
脱圧した。再びオートクレーブ内に水素を導入して水素
圧を10kg/cm2 とし、約30秒間攪拌した後、脱
圧した。この操作をさらに1回行った後、水素圧を25
kg/cm2 とし、攪拌しながら30分で140℃に昇
温した。140℃で2時間反応させた。昇温中および昇
温後反応が起こり、水素圧の減少が認められた。なお、
昇温に伴う圧力の増加、反応に伴う圧力の減少は適時減
圧、加圧して水素圧を25kg/cm2 に調整して反応
を行った。反応終了後、室温まで冷却した後減圧して常
圧とした。ヘキサン100mlを加えた後30分静置
し、触媒を沈降させ、反応液をデカンテーションにより
除いた。ヘキサン溶液は反応液と合わせ、ろ紙を用いて
ろ過を行った。なお、触媒はさらに実施例5で再使用し
た。ロータリーエバポレーターを用いて減圧下にヘキサ
ン,水分等を除去した。収量は162gであった。この
ものの 1H−NMRスペクトルを図2に示す。このスペ
クトル図から、原料アセタールは式(C)
The ratio of the number of molecules is (A) :( B) = 4.
5: 1 and the average value of n was 5.6. (2) In a 1-liter autoclave made of SUS-316L, 200 g of the oligomer prepared in (1) above, 6.0 g of Raney nickel prepared in Catalyst Preparation Example 1 (in a wet state of ethanol), and prepared in Catalyst Preparation Example 2 6.0 g of zeolite were charged. After introducing hydrogen into the autoclave to a hydrogen pressure of 10 kg / cm 2 and stirring for about 30 seconds,
Depressurized. Hydrogen was again introduced into the autoclave to a hydrogen pressure of 10 kg / cm 2 , stirred for about 30 seconds, and then depressurized. After performing this operation one more time, the hydrogen pressure was increased to 25%.
and kg / cm 2, the temperature of the mixture reached 140 ° C. for 30 minutes. The reaction was performed at 140 ° C. for 2 hours. Reaction occurred during and after the heating, and a decrease in hydrogen pressure was observed. In addition,
The reaction was carried out by adjusting the hydrogen pressure to 25 kg / cm 2 by appropriately reducing and increasing the pressure to increase the pressure due to the temperature rise and decrease the pressure due to the reaction. After the completion of the reaction, the reaction mixture was cooled to room temperature and then reduced to normal pressure. After adding 100 ml of hexane, the mixture was allowed to stand for 30 minutes to precipitate the catalyst, and the reaction solution was removed by decantation. The hexane solution was combined with the reaction solution, and filtered using a filter paper. The catalyst was reused in Example 5. Hexane, water and the like were removed under reduced pressure using a rotary evaporator. The yield was 162 g. Its 1 H-NMR spectrum is shown in FIG. From this spectrum diagram, the raw material acetal is represented by the formula (C)

【0034】[0034]

【化14】 Embedded image

【0035】(Etはエチル基を示す。)で示されるエ
ーテル化合物となることが分かり、その転化率は100
%であった。また、動粘度は100℃で4.90cStで
あり、40℃で29.50cStであった。なお、上記式
(B)のエチルビニルエーテルオリゴマーも上記式
(C)で示されるエーテル化合物となった。
(Et represents an ethyl group), and the conversion is 100.
%Met. The kinematic viscosity was 4.90 cSt at 100 ° C. and 29.50 cSt at 40 ° C. In addition, the ethyl vinyl ether oligomer of the above formula (B) was also an ether compound represented by the above formula (C).

【0036】実施例4 SUS−316L製の1リットルのオートクレーブに実
施例3(1)で製造したオリゴマー200g,触媒調製
例1で調製したラネーニッケル20g(エタノールの湿
った状態で)および触媒調製例2で調製したゼオライト
20gを入れた。オートクレーブ内に水素を導入して水
素圧7kg/cm2 とし、約30秒間攪拌した後、脱圧
した。この操作をさらに1回行った後、水素圧を7kg
/cm2とし、攪拌しながら30分で130℃に昇温し
た。130℃で2時間30分反応させた。昇温中および
昇温後反応が起こり、水素圧の減少が認められた。な
お、昇温に伴う圧力の増加、反応に伴う圧力の減少は適
時減圧、加圧して水素圧を7kg/cm2 に調整して反
応を行った。反応終了後、室温まで冷却した後減圧して
常圧とした。反応混合物をろ過し、溶液部をロータリー
エバポレーターを用いて減圧下に水分等を除去した。収
量は160gであった。これにより、原料アセタールは
実施例3(2)で得られたのと同じエーテル化合物が得
られ、その転化率は100%であった。また、動粘度は
100℃で4.77cStであり、40℃で30.27cS
tであった。
Example 4 In a 1 liter autoclave made of SUS-316L, 200 g of the oligomer prepared in Example 3 (1), 20 g of Raney nickel prepared in Catalyst Preparation Example 1 (in a wet state of ethanol) and Catalyst Preparation Example 2 20 g of the zeolite prepared in the above. Hydrogen was introduced into the autoclave to a hydrogen pressure of 7 kg / cm 2 , stirred for about 30 seconds, and then depressurized. After performing this operation once more, the hydrogen pressure was reduced to 7 kg.
/ Cm 2 and the temperature was raised to 130 ° C. in 30 minutes with stirring. The reaction was performed at 130 ° C. for 2 hours and 30 minutes. Reaction occurred during and after the heating, and a decrease in hydrogen pressure was observed. In addition, the pressure was increased and the pressure was decreased due to the temperature rise. The reaction was carried out by appropriately reducing and increasing the pressure to adjust the hydrogen pressure to 7 kg / cm 2 . After the completion of the reaction, the reaction mixture was cooled to room temperature and then reduced to normal pressure. The reaction mixture was filtered, and water and the like were removed from the solution portion under reduced pressure using a rotary evaporator. The yield was 160 g. As a result, the same ether compound as that obtained in Example 3 (2) was obtained as the raw material acetal, and the conversion was 100%. The kinematic viscosity is 4.77 cSt at 100 ° C. and 30.27 cS at 40 ° C.
t.

【0037】実施例5 実施例3(2)で触媒が残留したオートクレーブ内に実
施例3(1)で製造したオリゴマー200gを入れ、実
施例3(2)と同様にして反応を行った。収量は164
gであった。これにより、原料アセタールは実施例3
(2)で得られたのと同じエーテル化合物が得られ、そ
の転化率は100%であった。また、動粘度は100℃
で4.93cStであり、40℃で29.13cStであっ
た。
Example 5 200 g of the oligomer produced in Example 3 (1) was placed in an autoclave in which the catalyst remained in Example 3 (2), and the reaction was carried out in the same manner as in Example 3 (2). Yield 164
g. Thus, the raw material acetal was obtained in Example 3.
The same ether compound as obtained in (2) was obtained, and its conversion was 100%. The kinematic viscosity is 100 ° C
Was 4.93 cSt and 29.13 cSt at 40 ° C.

【0038】実施例6 (1)原料の調製 実施例3(1)において、アセトアルデヒドジエチルア
セタールを450g、三フッ化ホウ素ジエチルエーテル
錯体を4.5g、エチルビニルエーテルを2800gとし
た以外は、実施例3(1)と同様に反応を行った。収量
は3175gであった。このものの構造は実施例3
(1)と同様であった。ただし、動粘度は100℃で6.
79cSt、40℃で59.68cStであり、なお分子
数の比は(A):(B)=8:1、nの平均値は6.8で
あった。 (2)SUS−316L製の1リットルのオートクレー
ブに上記(1)で製造したオリゴマー200g,触媒調
製例1で調製したラネーニッケル10g(エタノールの
湿った状態で)および触媒調製例3で調製した活性白土
15gを入れた。オートクレーブ内に水素を導入して水
素圧10kg/cm2 とし、約30秒間攪拌した後、脱
圧した。再びオートクレーブ内に水素を導入して水素圧
10kg/cm2 とし、約30秒間攪拌した後、脱圧し
た。この操作をさらに1回行った後、水素圧を30kg
/cm2 とし、攪拌しながら40分で150℃に昇温し
た。150℃で1時間反応させた。昇温中および昇温後
反応が起こり、水素圧の減少が認められた。なお、昇温
に伴う圧力の増加、反応に伴う圧力の減少は適時減圧、
加圧して水素圧を30kg/cm2 に調整して反応を行
った。反応終了後、室温まで冷却した後減圧して常圧と
した。反応混合物をろ過し、溶液部をロータリーエバポ
レーターを用いて減圧下に水分等を除去した。収量は1
58gであった。これにより、原料アセタールは実施例
3(2)で得られたのと同じエーテル化合物が得られ、
その転化率は100%であった。また、動粘度は100
℃で7.06cStであり、40℃で57.32cStであ
った。
Example 6 (1) Preparation of raw materials Example 3 (1) was repeated except that acetaldehyde diethyl acetal was 450 g, boron trifluoride diethyl ether complex was 4.5 g, and ethyl vinyl ether was 2800 g. The reaction was carried out in the same manner as in (1). The yield was 3175 g. The structure of this is the third embodiment.
Same as (1). However, the kinematic viscosity is 6.
79 cSt, 40.degree. C., 59.68 cSt, the ratio of the number of molecules was (A) :( B) = 8: 1, and the average value of n was 6.8. (2) In a 1-liter autoclave made of SUS-316L, 200 g of the oligomer prepared in (1) above, 10 g of Raney nickel prepared in Catalyst Preparation Example 1 (in a wet state of ethanol), and activated clay prepared in Catalyst Preparation Example 3 15g was put. Hydrogen was introduced into the autoclave to a hydrogen pressure of 10 kg / cm 2 , stirred for about 30 seconds, and then depressurized. Hydrogen was introduced again into the autoclave to a hydrogen pressure of 10 kg / cm 2 , stirred for about 30 seconds, and then depressurized. After performing this operation once more, the hydrogen pressure was increased to 30 kg.
/ Cm 2 and the temperature was raised to 150 ° C. in 40 minutes with stirring. The reaction was performed at 150 ° C. for 1 hour. Reaction occurred during and after the heating, and a decrease in hydrogen pressure was observed. In addition, the pressure increase due to the temperature increase, the pressure decrease due to the reaction is timely decompression,
The reaction was carried out by adjusting the hydrogen pressure to 30 kg / cm 2 by pressurization. After the completion of the reaction, the reaction mixture was cooled to room temperature and then reduced to normal pressure. The reaction mixture was filtered, and water and the like were removed from the solution portion under reduced pressure using a rotary evaporator. Yield 1
The weight was 58 g. As a result, the same ether compound as that obtained in Example 3 (2) was obtained as the raw material acetal,
Its conversion was 100%. The kinematic viscosity is 100
It was 7.06 cSt at 40 ° C and 57.32 cSt at 40 ° C.

【0039】実施例7 SUS−316L製の1リットルのオートクレーブに実
施例3(1)で製造したオリゴマー200g,触媒調製
例2で調製したゼオライト10gおよびPd/C(Pd
5%担持:和光純薬社製)5.0gを入れた。オートクレ
ーブ内に水素を導入して水素圧7kg/cm2 とし、約
30秒間攪拌した後、脱圧した。再びオートクレーブ内
に水素を導入して水素圧7kg/cm2 とし、約30秒
間攪拌した後、脱圧した。この操作をさらに1回行った
後、水素圧を7kg/cm2 とし、攪拌しながら30分
で120℃に昇温した。120℃で7時間反応させた。
昇温中および昇温後反応が起こり、水素圧の減少が認め
られた。なお、昇温に伴う圧力の増加、反応に伴う圧力
の減少は適時減圧、加圧して水素圧を7kg/cm 2
調整して反応を行った。反応終了後、室温まで冷却した
後減圧して常圧とした。反応混合物をろ過し、溶液部を
ロータリーエバポレーターを用いて減圧下に水分等を除
去した。収量は167.2gであった。これにより、原料
アセタールは実施例3(2)で得られたのと同じエーテ
ル化合物が得られ、その転化率は100%であった。ま
た、動粘度は100℃で5.28cStであり、40℃で
32.93cStであった。
Example 7 A 1-liter autoclave made of SUS-316L was prepared.
200 g of oligomer produced in Example 3 (1), catalyst preparation
10 g of the zeolite prepared in Example 2 and Pd / C (Pd
(5% loading: manufactured by Wako Pure Chemical Industries, Ltd.). Oat crepe
Hydrogen is introduced into the chamber and hydrogen pressure is 7kg / cmTwoAnd about
After stirring for 30 seconds, the pressure was released. Again in the autoclave
Hydrogen is introduced into the reactor and hydrogen pressure is 7kg / cmTwoAnd about 30 seconds
After stirring for a while, the pressure was released. This operation was performed once more
Then, the hydrogen pressure is 7kg / cmTwo30 minutes with stirring
To 120 ° C. The reaction was performed at 120 ° C. for 7 hours.
Reaction occurred during and after heating, and hydrogen pressure decreased.
Was done. In addition, pressure increase due to temperature rise, pressure due to reaction
Decrease and reduce the pressure as needed to increase the hydrogen pressure to 7 kg / cm TwoTo
The reaction was performed with adjustment. After the completion of the reaction, the resultant was cooled to room temperature.
Thereafter, the pressure was reduced to normal pressure. The reaction mixture is filtered and the solution
Use a rotary evaporator to remove water, etc. under reduced pressure.
I left. The yield was 167.2 g. As a result,
Acetal is the same ether as obtained in Example 3 (2).
The compound was obtained and its conversion was 100%. Ma
The kinematic viscosity is 5.28 cSt at 100 ° C, and at 40 ° C
It was 32.93 cSt.

【0040】実施例8 SUS−316L製の1リットルのオートクレーブに実
施例3(1)で製造したオリゴマー200g,触媒調製
例2で調製したゼオライト20gおよびRu/C(Ru
5%担持:和光純薬社製)20gを入れた。オートクレ
ーブ内に水素を導入して水素圧30kg/cm2 とし、
約30秒間攪拌した後、脱圧した。再びオートクレーブ
内に水素を導入して水素圧30kg/cm2 とし、約3
0秒間攪拌した後、脱圧した。この操作をさらに1回行
った後水素圧を30kg/cm2とし、攪拌しながら3
0分で130℃に昇温した。130℃で1時間反応させ
た。昇温中および昇温後反応が起こり、水素圧の減少が
認められた。なお、昇温に伴う圧力の増加、反応に伴う
圧力の減少は適時減圧、加圧して水素圧を30kg/c
2 に調整して反応を行った。反応終了後、室温まで冷
却した後減圧して常圧とした。反応混合物をろ過し、溶
液部をロータリーエバポレーターを用いて減圧下に水分
等を除去した。収量は156gであった。これにより、
原料アセタールは実施例3(2)で得られたのと同じエ
ーテル化合物が得られ、その転化率は100%であっ
た。また、動粘度は100℃で5.18cStであり、4
0℃で31.53cStであった。
Example 8 In a 1-liter autoclave made of SUS-316L, 200 g of the oligomer prepared in Example 3 (1), 20 g of the zeolite prepared in Catalyst Preparation Example 2 and Ru / C (Ru
5% supported: manufactured by Wako Pure Chemical Industries, Ltd.). Hydrogen was introduced into the autoclave to a hydrogen pressure of 30 kg / cm 2 ,
After stirring for about 30 seconds, the pressure was released. Hydrogen was introduced again into the autoclave to a hydrogen pressure of 30 kg / cm 2 ,
After stirring for 0 seconds, the pressure was released. After this operation was performed once more, the hydrogen pressure was adjusted to 30 kg / cm 2, and the mixture was stirred for 3 hours.
The temperature was raised to 130 ° C. in 0 minutes. The reaction was performed at 130 ° C. for 1 hour. Reaction occurred during and after the heating, and a decrease in hydrogen pressure was observed. In addition, the pressure increase due to the temperature rise and the pressure decrease due to the reaction are reduced and pressurized as appropriate to increase the hydrogen pressure to 30 kg / c.
The reaction was performed after adjusting to m 2 . After the completion of the reaction, the reaction mixture was cooled to room temperature and then reduced to normal pressure. The reaction mixture was filtered, and water and the like were removed from the solution portion under reduced pressure using a rotary evaporator. The yield was 156 g. This allows
As the starting acetal, the same ether compound as that obtained in Example 3 (2) was obtained, and its conversion was 100%. The kinematic viscosity is 5.18 cSt at 100 ° C.
It was 31.53 cSt at 0 ° C.

【0041】実施例9 SUS−316L製の2リットルのオートクレーブにN
i−珪藻土15gおよびヘキサン350gを入れた。オ
ートクレーブ内を水素で置換した後、水素圧を30kg
/cm2 とした。攪拌しながら30分間で150℃に昇
温し、30分触媒の活性化処理を行った。冷却後、オー
トクレーブに実施例3(1)で製造したオリゴマー30
0g,触媒調製例2のゼオライト15gを入れた。オー
トクレーブ内に水素を導入し、水素圧30kg/cm2
とし、約30秒間攪拌した後脱圧した。再びオートクレ
ーブ内に水素を導入し、水素圧30kg/cm2 とし、
約30秒間攪拌した後脱圧した。この操作をさらに一回
行った後、水素圧を30kg/cm2 とし攪拌しながら
30分で130℃に昇温し、130℃で1時間反応し
た。昇温中および昇温後反応が起こり、水素圧の減少が
認められた。なお、昇温に伴う圧力の増加、反応に伴う
圧力の減少は適時減圧、加圧して水素圧を30kg/c
2 とし反応を行った。反応終了後室温まで冷却した後
減圧して常圧とした。反応混合物をろ過し溶液部をロー
タリーエバポレーターを用い減圧下、ヘキサン,水分等
を除去した。収量は240gであった。実施例3と同様
に原料アセタールの転化率は100%であった。動粘度
は100℃で5.38cSt、40℃で33.12cStで
あった。
Example 9 A 2-liter autoclave made of SUS-316L was charged with N.
15 g of i-diatomaceous earth and 350 g of hexane were charged. After replacing the inside of the autoclave with hydrogen, the hydrogen pressure was increased to 30 kg.
/ Cm 2 . The temperature was raised to 150 ° C. for 30 minutes with stirring, and the catalyst was activated for 30 minutes. After cooling, the oligomer 30 prepared in Example 3 (1) was placed in an autoclave.
0 g and 15 g of the zeolite of Catalyst Preparation Example 2 were added. Hydrogen was introduced into the autoclave, and the hydrogen pressure was 30 kg / cm 2
After stirring for about 30 seconds, the pressure was released. Hydrogen was introduced again into the autoclave, and the hydrogen pressure was adjusted to 30 kg / cm 2 .
After stirring for about 30 seconds, the pressure was released. After this operation was performed once more, the temperature was increased to 130 ° C. in 30 minutes with stirring at a hydrogen pressure of 30 kg / cm 2, and the reaction was carried out at 130 ° C. for 1 hour. Reaction occurred during and after the heating, and a decrease in hydrogen pressure was observed. In addition, the pressure increase due to the temperature rise and the pressure decrease due to the reaction are reduced and pressurized as appropriate to increase the hydrogen pressure to 30 kg / c.
m 2 and the reaction was carried out. After completion of the reaction, the reaction mixture was cooled to room temperature and then reduced in pressure to normal pressure. The reaction mixture was filtered, and hexane, water and the like were removed from the solution under reduced pressure using a rotary evaporator. The yield was 240 g. As in Example 3, the conversion of the starting acetal was 100%. The kinematic viscosity was 5.38 cSt at 100 ° C and 33.12 cSt at 40 ° C.

【0042】[0042]

【発明の効果】本発明の方法によれば、アセタール化合
物またはケタール化合物から高い転化率および選択率で
エーテル化合物を製造することができ、その際、装置腐
食の問題は起こらないので通常の製造装置を用いること
ができる。また、本発明の方法によれば、専らアセター
ルまたはケタールが水素化され、原料アセタールまたは
ケタール化合物がエーテル性酸素を含む炭化水素基を有
する場合でも、エーテル性酸素部分はそのまま残り、ア
セタールまたはケタール結合がエーテル結合に変わる。
According to the method of the present invention, an ether compound can be produced from an acetal compound or a ketal compound at a high conversion and a high selectivity. Can be used. Further, according to the method of the present invention, even when the acetal or ketal is exclusively hydrogenated and the raw acetal or ketal compound has a hydrocarbon group containing etheric oxygen, the etheric oxygen portion remains as it is, and the acetal or ketal bond is left. Changes to an ether bond.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例3(1)で製造した原料アセタールオリ
ゴマーの 1H−NMRスペクトル図である。
FIG. 1 is a 1 H-NMR spectrum of a raw acetal oligomer produced in Example 3 (1).

【図2】実施例3(2)で製造したエーテル化合物の 1
H−NMRスペクトル図である。
FIG. 2 shows one of the ether compounds produced in Example 3 (2).
It is an H-NMR spectrum figure.

フロントページの続き (72)発明者 清水 延晃 千葉県袖ケ浦市上泉1280番地 出光興産 株式会社内 (56)参考文献 特開 平1−102039(JP,A) 特開 昭61−33238(JP,A) 特開 昭61−249940(JP,A) 特開 昭57−128648(JP,A) 米国特許4088700(US,A) 米国特許2590598(US,A) W.L.Howard et a l.,J.Org.Chem.,1961, No.26,p.1026−1028 M.Verzele et al., J.Chem.Soc.,1963,p. 5598−5600 (58)調査した分野(Int.Cl.7,DB名) C07C 43/04 C07C 41/28 C08C 19/00 - 19/44 C08F 6/00 - 246/00 B01J 21/00 - 38/74 CA(STN) REGISTRY(STN)Continuation of the front page (72) Inventor Nobuaki Shimizu 1280 Kamiizumi, Sodegaura-shi, Chiba Idemitsu Kosan Co., Ltd. (56) References JP-A-1-102039 (JP, A) JP-A-61-33238 (JP, A) JP-A-61-249940 (JP, A) JP-A-57-128648 (JP, A) US Patent 4,088,700 (US, A) US Patent 2,590,598 (US, A) L. Howard et al. , J. et al. Org. Chem. , 1961, No. 1; 26, p. 1026-1028 M.P. Verzele et al. J., J .; Chem. Soc. , 1963, p. 5598-5600 (58) Fields investigated (Int. Cl. 7 , DB name) C07C 43/04 C07C 41/28 C08C 19/00-19/44 C08F 6/00-246/00 B01J 21 / 00-38/74 CA (STN) REGISTRY (STN)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一般式(I) 【化1】 〔式中、R1およびR2はそれぞれ炭化水素基または主鎖
および/または側鎖にエーテル性酸素を含む炭化水素基
を表し、R3,R4およびR5はそれぞれ水素,炭化水素
基または主鎖および/または側鎖にエーテル性酸素を含
む炭化水素基を表す。〕で示されるアセタールまたはケ
タール化合物を、水素化触媒と固体酸触媒(塩化アルミ
ニウムを除く)の2種類を組合わせた触媒または水素化
能を有する金属を担持した固体酸触媒(塩化アルミニウ
ムを除く)の存在下で水素と反応させることを特徴とす
る一般式(II)または(III) 【化2】 〔式中、R1,R2,R3,R4およびR5は前記と同じで
ある。〕で示されるエーテル化合物の製造方法。
1. A compound of the general formula (I) [In the formula, R 1 and R 2 each represent a hydrocarbon group or a hydrocarbon group containing ethereal oxygen in the main chain and / or side chain, and R 3 , R 4 and R 5 each represent a hydrogen, a hydrocarbon group or Represents a hydrocarbon group containing etheric oxygen in the main chain and / or side chain. The acetal or ketal compound represented by the formula (1) is hydrogenated with a solid acid catalyst (aluminum chloride).
(Excluding aluminum ) or a solid acid catalyst (aluminium chloride) supporting a metal capable of hydrogenation
Formula which comprises reacting with hydrogen in the presence of excluding arm) (II) or (III) ## STR2 ## Wherein R 1 , R 2 , R 3 , R 4 and R 5 are the same as above. ] The manufacturing method of the ether compound shown by this.
【請求項2】 一般式(I)で示されるアセタールまた
はケタール化合物が、一般式(IV) 【化3】 〔式中、R6およびR7はそれぞれ炭素数1〜20の炭化
水素基またはエーテル性酸素を含む炭化水素基を表し、
それらはたがいに同一であっても異なっていてもよい
し、R6は構成単位毎に同一であっても異なっていても
よく、nは1〜500の整数を表す。〕で示される化合
物であって、得られるエーテル化合物が、一般式(V)
または(VI) 【化4】 〔式中、R6,R7およびnは前記と同じである。〕で示
される化合物である請求項1記載のエーテル化合物の製
造方法。
2. An acetal or ketal compound represented by the general formula (I) is converted to a compound represented by the general formula (IV): Wherein R 6 and R 7 each represent a hydrocarbon group having 1 to 20 carbon atoms or a hydrocarbon group containing ethereal oxygen;
They may be the same or different, R 6 may be the same or different for each structural unit, and n represents an integer of 1 to 500. A compound represented by the general formula (V):
Or (VI) Wherein R 6 , R 7 and n are the same as above. The method for producing an ether compound according to claim 1, which is a compound represented by the formula:
【請求項3】 一般式(I)で示されるアセタールまた
はケタール化合物が、一般式(VII) R8CH(OR92 ・・・(VII) 〔式中、R8およびR9はそれぞれ炭素数1〜20の炭化
水素基を表し、それらはたがいに同一であっても異なっ
ていてもよい。〕で示される化合物であって、得られる
エーテル化合物が、一般式(VIII) R8CH2OR9 ・・・(VIII) 〔式中、R8およびR9は前記と同じである。〕で示され
る化合物である請求項1記載のエーテル化合物の製造方
法。
3. An acetal or ketal compound represented by the general formula (I) is represented by the general formula (VII): R 8 CH (OR 9 ) 2 ... (VII) wherein R 8 and R 9 each represent carbon Represents a hydrocarbon group of the formulas 1 to 20, which may be the same or different. Wherein the resulting ether compound is represented by the general formula (VIII): R 8 CH 2 OR 9 ... (VIII) wherein R 8 and R 9 are as defined above. The method for producing an ether compound according to claim 1, which is a compound represented by the formula:
JP12394393A 1992-09-07 1993-05-26 Method for producing ether compound Expired - Lifetime JP3322281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12394393A JP3322281B2 (en) 1992-09-07 1993-05-26 Method for producing ether compound

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-237842 1992-09-07
JP23784292 1992-09-07
JP12394393A JP3322281B2 (en) 1992-09-07 1993-05-26 Method for producing ether compound

Publications (2)

Publication Number Publication Date
JPH06128184A JPH06128184A (en) 1994-05-10
JP3322281B2 true JP3322281B2 (en) 2002-09-09

Family

ID=26460731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12394393A Expired - Lifetime JP3322281B2 (en) 1992-09-07 1993-05-26 Method for producing ether compound

Country Status (1)

Country Link
JP (1) JP3322281B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001122816A (en) * 1999-10-21 2001-05-08 Idemitsu Kosan Co Ltd Method for producing vinyl ether-based oligomer
JP4667761B2 (en) 2004-04-02 2011-04-13 出光興産株式会社 Refrigerator oil composition
JP5965659B2 (en) * 2012-02-09 2016-08-10 高砂香料工業株式会社 Method for producing ether compound

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
M.Verzele et al.,J.Chem.Soc.,1963,p.5598−5600
W.L.Howard et al.,J.Org.Chem.,1961,No.26,p.1026−1028

Also Published As

Publication number Publication date
JPH06128184A (en) 1994-05-10

Similar Documents

Publication Publication Date Title
RU2182571C2 (en) Method of synthesis of ether
JP3925940B2 (en) Method for producing ether compound
JPH06263677A (en) Production of ether alcohol
JP5441526B2 (en) Method for producing alicyclic alcohol
JP3322281B2 (en) Method for producing ether compound
JP4121647B2 (en) Method for producing alcohol
JP2001354598A (en) Method of producing adamantane
AU619463B2 (en) Process for the hydrogenation of bis-phenols
KR100632153B1 (en) Cyclohexanedimethanol compound and preparation method of the intermediate
JP3961938B2 (en) Production of tetrahydrogeraniol
JPH07223983A (en) Hydrogenation of acetylenic compound
JP4519255B2 (en) Process for producing optically active 3,7-dimethyl-6-octenol
JPH0374651B2 (en)
KR100529763B1 (en) Production method for benzenedimethanol compound
JP3881288B2 (en) Process for producing 5-arylpentanol
JP4200704B2 (en) Method for producing fluorinated benzonitrile
US3440272A (en) Ni/silane catalyst in hydrogenation of organic compounds
JP4140073B2 (en) Process for producing hexahydrophthalides
JP2023143030A (en) Method for producing 1,3-cyclopentanediol
JPS58225033A (en) Production of 7-oectene-1-ol
GB1581412A (en) Process for the hydrogenolysis of the acetals and ketals of organic hydrocarbons
CN114258389A (en) Branched alcohols formed by hydroformylation of vinylidene olefins and process for their preparation
JPS6148529B2 (en)
JPH0469351A (en) Production of 1,3-propanediol derivative
JPH09309853A (en) 2-(2-alkenyl)1,3-dialkoxypropane and production of 2,2-dialkyl-1,3-dialkoxypropane using alkenyl-1,3-dialkoxypropane as a raw material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080628

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090628

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090628

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100628

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100628

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110628

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120628

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120628

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130628

Year of fee payment: 11

EXPY Cancellation because of completion of term