JP3322185B2 - Method for eliminating aggregation in molecular weight measurement of PVC by SEC - Google Patents

Method for eliminating aggregation in molecular weight measurement of PVC by SEC

Info

Publication number
JP3322185B2
JP3322185B2 JP26980897A JP26980897A JP3322185B2 JP 3322185 B2 JP3322185 B2 JP 3322185B2 JP 26980897 A JP26980897 A JP 26980897A JP 26980897 A JP26980897 A JP 26980897A JP 3322185 B2 JP3322185 B2 JP 3322185B2
Authority
JP
Japan
Prior art keywords
molecular weight
pvc
sec
sample
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26980897A
Other languages
Japanese (ja)
Other versions
JPH11108910A (en
Inventor
礼男 真鍋
健一 川村
毅 豊田
博昭 南
定雄 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Wiring Systems Ltd
Original Assignee
Sumitomo Wiring Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Wiring Systems Ltd filed Critical Sumitomo Wiring Systems Ltd
Priority to JP26980897A priority Critical patent/JP3322185B2/en
Publication of JPH11108910A publication Critical patent/JPH11108910A/en
Application granted granted Critical
Publication of JP3322185B2 publication Critical patent/JP3322185B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、SEC(Size
Exclusion Chromatograph
y)による分子量測定に際して、PVC(ポリ塩化ビニ
ル)の凝集を有効に解消するPVCのSECによる分子
量測定に際しての凝集の解消法に関するものである。
The present invention relates to a SEC (Size)
Exfusion Chromatograph
The present invention relates to a method of effectively eliminating the aggregation of PVC (polyvinyl chloride) when measuring the molecular weight by y), and to the method of eliminating the aggregation when measuring the molecular weight of PVC by SEC.

【0002】[0002]

【従来の技術】ポリマーの分子量を測定することは物性
を知る上で重要なことであり、SECはポリマーの平均
分子量と同様に分子量分布を迅速に測定するための手段
として知られている。
2. Description of the Related Art Measuring the molecular weight of a polymer is important to know its physical properties, and SEC is known as a means for rapidly measuring the molecular weight distribution as well as the average molecular weight of a polymer.

【0003】そして、分子量や分子量分布の測定に際し
ては、溶液中のポリマーの分子サイズに基づき、ポリマ
ーは溶液中で分子レベルまで分散している必要がある。
When measuring the molecular weight and the molecular weight distribution, the polymer needs to be dispersed to the molecular level in the solution based on the molecular size of the polymer in the solution.

【0004】一方、PVCは、室温で良溶媒のTHF
(テトラヒドロフラン)に溶解するとその溶液中にマク
ロモリキュラー凝集の存在が見いだされることがあり、
分子量や分子量分布の測定に影響を及ぼすという問題が
あった。
On the other hand, PVC is a good solvent THF at room temperature.
When dissolved in (tetrahydrofuran), the presence of macromolecular aggregates may be found in the solution,
There is a problem that it affects the measurement of molecular weight and molecular weight distribution.

【0005】そこで、PVC溶液中の凝集を解消させる
方法として、従来、THFのPVC溶液に15分間超音
波処理すると凝集が解消し、THFに少量の非イオン性
物質を添加するとPVCの劣化を同時に防止できるとい
う方法(第1従来方法)や、PVCをTHF中で90
℃、2時間加熱することによって凝集を解離させる方法
(第2従来方法)、およびTCB(1、2、4−トリク
ロロベンゼン)中で120℃、12時間加熱溶解すると
凝集のないPVC溶液が得られ、さらに110℃で高温
SECにより測定する方法(第3従来方法)が知られて
いる。
[0005] Therefore, as a method of eliminating aggregation in a PVC solution, conventionally, aggregation is eliminated by ultrasonically treating a PVC solution of THF for 15 minutes, and when a small amount of a nonionic substance is added to THF, degradation of PVC is simultaneously caused. Method (first conventional method) or PVC in THF
A method in which aggregation is dissociated by heating at 2 ° C. for 2 hours (second conventional method), and a PVC solution without aggregation is obtained by heating and dissolving in TCB (1,2,4-trichlorobenzene) at 120 ° C. for 12 hours. In addition, a method of measuring by high-temperature SEC at 110 ° C. (third conventional method) is known.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前記第
1従来方法によれば、超音波処理によって分子鎖が切断
され、本来の分子量および分子量分布が求められなくな
る可能性があった。
However, according to the first conventional method, there is a possibility that the molecular chain is cut by the ultrasonic treatment and the original molecular weight and molecular weight distribution cannot be obtained.

【0007】また、前記第2従来方法によれば、THF
は爆発性を有しているため、安全性の観点から加熱は好
ましくない。
Further, according to the second conventional method, THF
Is explosive, so heating is not preferred from the viewpoint of safety.

【0008】さらに、前記第3従来方法によれば、試料
の前処理に12時間と長時間を要し、しかも高温SEC
という特殊な装置でしか測定できないという難点があっ
た。
Further, according to the third conventional method, a long time of 12 hours is required for pretreatment of a sample, and a high temperature SEC is required.
There is a drawback that measurement can be performed only with such a special device.

【0009】そこで、本発明の課題は、劣化等の試料本
来の特性を損なわずに前処理でき、THFを用いた室温
での、より正確なSEC測定が可能なPVCのSECに
よる分子量測定に際しての凝集の解消法を提供すること
にある。
Accordingly, an object of the present invention is to provide a pretreatment which can be performed without deteriorating the original characteristics of the sample, such as deterioration, and which can perform more accurate SEC measurement at room temperature using THF. An object of the present invention is to provide a method for eliminating agglomeration.

【0010】[0010]

【課題を解決するための手段】上記の課題を解決するた
めの第1の技術的手段は、PVC試料を、移動相として
のTHFに室温で溶解し、SECにより分子量や分子量
分布の測定を行うPVCのSECによる分子量測定に際
して、平均重合度2350±200のPVCを、溶媒と
してTCBを用いて、濃度0.1%以下で、かつ加熱温
度140±2℃で6時間以上の加熱条件で、常時撹拌し
ながら加熱溶解し、その後、再沈させた樹脂を前記PV
C試料として使用する点にある。
A first technical means for solving the above-mentioned problem is to dissolve a PVC sample in THF as a mobile phase at room temperature and measure the molecular weight and molecular weight distribution by SEC. When measuring the molecular weight of PVC by SEC, PVC having an average degree of polymerization of 2350 ± 200 is constantly used under the heating conditions of a concentration of 0.1% or less and a heating temperature of 140 ± 2 ° C. for 6 hours or more using TCB as a solvent. Heat and dissolve while stirring, then reprecipitate the resin into the PV
C is used as a sample.

【0011】また、上記の課題を解決するための第2の
技術的手段は、PVC試料を、移動相としてのTHFに
室温で溶解し、SECにより分子量や分子量分布の測定
を行うPVCのSECによる分子量測定に際して、平均
重合度1300±50のPVCを、溶媒としてTCBを
用いて、濃度0.1%以下で、かつ加熱温度130±2
℃で6時間以上の加熱条件で、常時撹拌しながら加熱溶
解し、その後、再沈させた樹脂を前記PVC試料として
使用する点にある。
A second technical means for solving the above-mentioned problem is to dissolve a PVC sample in THF as a mobile phase at room temperature and measure the molecular weight and the molecular weight distribution by SEC. When measuring the molecular weight, PVC having an average degree of polymerization of 1300 ± 50, TCB as a solvent, a concentration of 0.1% or less, and a heating temperature of 130 ± 2.
The present invention is characterized in that the resin is heated and melted while constantly stirring under heating conditions of 6 ° C. or more for 6 hours, and then the reprecipitated resin is used as the PVC sample.

【0012】さらに、上記の課題を解決するための第3
の技術的手段は、PVC試料を、移動相としてのTHF
に室温で溶解し、SECにより分子量や分子量分布の測
定を行うPVCのSECによる分子量測定に際して、平
均重合度800±50のPVCを、溶媒としてTCBを
用いて、濃度0.1%以下で、かつ加熱温度130±2
℃で6時間以上の加熱条件で、常時撹拌しながら加熱溶
解し、その後、再沈させた樹脂を前記PVC試料として
使用する点にある。
Further, a third solution for solving the above-mentioned problem.
The technical means of using PVC samples as a mobile phase in THF
Is dissolved at room temperature, and the molecular weight and the molecular weight distribution are measured by SEC. When measuring the molecular weight by SEC, PVC having an average degree of polymerization of 800 ± 50 is used at a concentration of 0.1% or less using TCB as a solvent, and Heating temperature 130 ± 2
The present invention is characterized in that the resin is heated and melted while constantly stirring under heating conditions of 6 ° C. or more for 6 hours, and then the reprecipitated resin is used as the PVC sample.

【0013】また、上記各技術的手段において、加熱条
件における加熱時間を6時間としてもよい。
In each of the above technical means, the heating time under the heating condition may be 6 hours.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施形態を説明す
る。
Embodiments of the present invention will be described below.

【0015】試料として、JIS−K6721の塩化ビ
ニル樹脂試験法の比粘度測定法によって得られた、平均
重合度Pが2350、1300、800のPVC(三菱
化学株式会社製)を用いた。なお、これらの重合度Pは
一般的によく使用されており、製品の製造誤差として平
均重合度Pが2350では±200、平均重合度Pが1
300では±50、平均重合度Pが800では±50の
範囲のばらつきがあり、このばらつきの範囲も同様の結
果が得られると理解できる。
As a sample, PVC (manufactured by Mitsubishi Chemical Corporation) having an average degree of polymerization P of 2350, 1300, or 800, obtained by a specific viscosity measurement method of a vinyl chloride resin test method of JIS-K6721 was used. Incidentally, these polymerization degrees P are generally well used, and the production error of the product is ± 200 when the average polymerization degree P is 2350, and the average polymerization degree P is 1
It can be understood that there are variations in the range of ± 50 at 300 and ± 50 at an average polymerization degree P of 800, and similar results can be obtained in this range of variation.

【0016】また、溶媒として、TCB(1、2、4−
トリクロロベンゼン、1級、和光純薬工業株式会社
製)、THF(テトラヒドロフラン、高速液体クロマト
グラフ用、キシダ化学株式会社製)を用いた。
As a solvent, TCB (1, 2, 4-
Trichlorobenzene, 1st grade, manufactured by Wako Pure Chemical Industries, Ltd.) and THF (tetrahydrofuran, for high performance liquid chromatography, manufactured by Kishida Chemical Co., Ltd.) were used.

【0017】さらに、SEC測定に際し、凝集の検出と
絶対分子量の測定をするために、日本分光株式会社のT
RIROTAR−V HPLC装置にShodex K
F−806Lのリニヤ−カラムを2本接続し、検出器L
S(Light Scattering)(Wyatt
Technology社製のMini DAWN3角
度検出)の後に屈折率計RI(Refractive
Index Detector)(日本分光株式会社
製、RID−300)を設置した装置構成とした。デー
タ処理は測定装置に付属のデータ処理ソフトASTRA
(WyattTechnology社製)で行った。カ
ラムおよびRIは25±2℃の室温測定とした。
Further, in order to detect aggregation and measure the absolute molecular weight at the time of SEC measurement, the T
Shodex K on RIROTAR-V HPLC system
Two linear columns of F-806L are connected, and detector L
S (Light Scattering) (Wyatt
After a MiniDAWN3 angle detection manufactured by Technology, a refractometer RI (Refractive) is used.
An Index Detector (RID-300, manufactured by JASCO Corporation) was used. Data processing is data processing software ASTRA attached to the measuring device.
(Manufactured by Wyatt Technology). The column and RI were measured at room temperature of 25 ± 2 ° C.

【0018】また、PS(ポリスチレン)換算分子量を
求めるために、別途SEC(Waters社製、150
−CV)にカラム(Waters社製、ULTRA S
TYRAGEL LINEAR)2本を接続し、装置系
内の温度は30℃設定で行った。データ処理はSECデ
ータ処理ソフト820J(日本ウォーターズ株式会社
製)を用いた後、パーソナルコンピューター用表計算ソ
フトエクセル(マイクロソフト株式会社)で再処理し
た。なお、標準PSは、昭和電工株式会社製のSM−1
05(分子量、3.055×106 、2.352×10
6 、1.063×106 、4.56×105 、1.56
×105 、6.64×104 、2.86×104 、9.
9×103 、3.2×103 、1.3×103 )を用い
た。
Further, in order to determine the molecular weight in terms of PS (polystyrene), SEC (produced by Waters, 150
-CV) and a column (Waters, ULTRA S)
(TYRAGEL LINEAR) were connected, and the temperature in the apparatus system was set at 30 ° C. Data processing was performed using SEC data processing software 820J (manufactured by Nippon Waters Co., Ltd.) and then reprocessing with spreadsheet software for personal computers Excel (Microsoft Corporation). The standard PS is SM-1 manufactured by Showa Denko KK
05 (molecular weight, 3.055 × 10 6 , 2.352 × 10
6 , 1.063 × 10 6 , 4.56 × 10 5 , 1.56
× 10 5 , 6.64 × 10 4 , 2.86 × 10 4 , 9.
9 × 10 3 , 3.2 × 10 3 , 1.3 × 10 3 ).

【0019】そして、PVC試料として、以下の前処理
を行った。
The following pretreatment was performed as a PVC sample.

【0020】即ち、ジムロート環流管を取り付けた三角
フラスコ(100ml)に溶媒としてのTCB50ml
と試料としてのPVC0.05gを入れ(濃度0.1
%)、温度コントロール付きパイプヒーターを用いたオ
イルバス中で、マグネチックスターラーで常時撹拌しな
がら加熱溶解した。この加熱条件は、120℃で12時
間、130℃で6時間および12時間、140℃で6時
間および12時間、150℃で6時間で行った。
That is, 50 ml of TCB as a solvent was placed in an Erlenmeyer flask (100 ml) equipped with a Dimroth reflux tube.
And 0.05 g of PVC as a sample (concentration 0.1
%), In an oil bath using a pipe heater with temperature control, and heated and melted while constantly stirring with a magnetic stirrer. The heating was performed at 120 ° C. for 12 hours, 130 ° C. for 6 hours and 12 hours, 140 ° C. for 6 hours and 12 hours, and 150 ° C. for 6 hours.

【0021】この際、試料の熱劣化を防止するために、
0.1w/v%のBHT(2、6−ジ−tert−ブチ
ル−4−メチルフェノール)を添加した。
At this time, in order to prevent thermal deterioration of the sample,
0.1% w / v BHT (2,6-di-tert-butyl-4-methylphenol) was added.

【0022】なお、オイルバス中の温度は、設定値±2
℃でコントロールされている。
The temperature in the oil bath is set at ± 2.
Controlled in ° C.

【0023】そして、溶解されたPVC溶液を30分間
室温放冷後、その3倍量のメタノールを添加し、樹脂を
再沈させ、0.65μmのフィルター上で捕集し、エチ
ルエーテルで洗浄後、室温で1時間、さらに乾燥機によ
り50℃で1時間乾燥したものをPVC試料とした。
After cooling the dissolved PVC solution at room temperature for 30 minutes, 3 times the amount of methanol was added to precipitate the resin, the resin was reprecipitated, collected on a 0.65 μm filter, and washed with ethyl ether. The sample was dried at room temperature for 1 hour and further at 50 ° C. for 1 hour by a dryer to obtain a PVC sample.

【0024】そして、この前処理されたPVC試料を
0.01g秤量し、移動相としてのTHFを加え、濃度
0.1%に調整し、2時間放置して溶解し、SECへの
注入量は100μlとして測定した。
Then, 0.01 g of the pre-treated PVC sample was weighed, THF as a mobile phase was added, the concentration was adjusted to 0.1%, and the mixture was left to dissolve for 2 hours. It was measured as 100 μl.

【0025】先ず、前記前処理を行わない通常測定方法
である未処理のPVC試料のSEC測定結果を図8ない
し図10に示す。
First, FIGS. 8 to 10 show the SEC measurement results of an untreated PVC sample which is a normal measurement method without performing the pretreatment.

【0026】即ち、図8は平均重合度Pが800のPV
C試料のSEC測定結果を示しており、この図よりRI
のクロマトグラムにおいて保持容量VR が14.0ml
から15.0mlの間、即ち高分子量側の裾野にメイン
ピークと比べて小さいピークが現れている。また、LS
のクロマトグラムでも同様に現れているが、メインピー
クの強度と比べると著しく大きいことが分かる。これは
LSが低濃度でも高分子の検出感度が高いことを反映し
ている。
FIG. 8 shows PV having an average degree of polymerization P of 800.
The SEC measurement result of the C sample is shown.
14.0ml storage capacitor V R in the chromatogram of
Between 1 and 15.0 ml, that is, a peak smaller than the main peak appears at the bottom of the high molecular weight side. Also, LS
The chromatogram also shows the same, but it can be seen that the intensity is significantly larger than the intensity of the main peak. This reflects that the detection sensitivity of the polymer is high even at a low LS concentration.

【0027】また、保持容量VR と分子量の関係を示す
プロット曲線は、保持容量VR が15.6mlを境にし
て曲線の勾配が急変していることが分かる。保持容量V
R が15.6mlより大きい領域では、ほぼ直線の関係
が得られている。これに対して、保持容量VR が14.
0mlから15.0の間は、保持容量VR に関係なく同
じ分子量を示しており、分子量が1.0×106 でほぼ
一定となっている。この部分は、いわゆる凝集と称する
部分に相当する(凝集ピーク)。
Further, plots a curve showing the relationship between the storage capacitor V R and molecular weight, it can be seen that the holding capacity V R is changed suddenly slope of the curve in the boundary 15.6 ml. Retention capacity V
In the region where R is larger than 15.6 ml, a substantially linear relationship is obtained. In contrast, the holding capacitor V R 14.
Between the 15.0 0 ml shows the same molecular weight regardless of the storage capacitor V R, the molecular weight is almost constant at 1.0 × 10 6. This part corresponds to a part called so-called aggregation (aggregation peak).

【0028】さらに、保持容量VR が15.0mlから
15.6mlの領域で、急勾配の直線になっているの
は、凝集と正常に分離された分子量の大きい分子とが混
在している領域と考えられる。
Further, in the region where the holding capacity V R is from 15.0 ml to 15.6 ml, the steep straight line is the region where aggregation and normally separated high molecular weight molecules are mixed. it is conceivable that.

【0029】図9および図10は平均重合度Pが130
0および2350のPVC試料のそれぞれのSEC測定
結果を示しており、各図において、RIのクロマトグラ
ムでは明確に凝集ピークが現れていないが、LSのクロ
マトグラムでは高分子領域にコブ状のピークが明確に現
れている。また、保持容量VR と分子量を示すプロット
曲線においても、平均重合度Pが1300で保持容量V
R が15.2ml、平均重合度Pが2350で保持容量
R が14.8mlより小さい領域で勾配が大きくなっ
ていることが認められる。
9 and 10 show that the average degree of polymerization P is 130.
The SEC measurement results of the PVC samples 0 and 2350 are shown. In each figure, no clear aggregation peak appears in the RI chromatogram, but a bumpy peak appears in the polymer region in the LS chromatogram. Clearly appearing. Also in Plot showing the storage capacitor V R and the molecular weight, the average degree of polymerization P holding capacitor V in 1300
R is 15.2 ml, retention capacity V R average degree of polymerization P is at 2350 is observed that the gradient 14.8ml smaller area is large.

【0030】従って、RIおよびLSの各クロマトグラ
ムにおいて、高分子側の裾野のピークがないこと、およ
びLSによる保持容量VR と分子量の関係を示すプロッ
ト曲線が、全領域で同じ勾配を持つ直線にあることが凝
集が解消されたか否かの判断基準といえる。
[0030] Thus, in the chromatogram of the RI and LS, straight with no peaks of the polymer side-skirt, and plot a curve showing the relationship between the storage capacitor V R and the molecular weight by the LS, the same gradient in the entire region Is a criterion for determining whether or not the cohesion has been eliminated.

【0031】次に、前記前処理されたPVC試料のSE
C測定結果を図1ないし図7に示す。
Next, the SE of the pretreated PVC sample was
C measurement results are shown in FIGS. 1 to 7.

【0032】即ち、図1および図2は平均重合度Pが2
350のPVC試料で、前処理において、図1は加熱温
度130℃で6時間、図2は加熱温度140℃で6時間
の加熱条件とされたPVC試料のSEC測定結果を示し
ている。
That is, FIGS. 1 and 2 show that the average degree of polymerization P is 2
FIG. 1 shows the SEC measurement results of a PVC sample having a heating temperature of 130 ° C. for 6 hours and a heating temperature of 140 ° C. for 6 hours.

【0033】RIのクロマトグラムでは、いずれの図に
おいても図10と同様、凝集ピークは明瞭に認められな
い。一方、LSのクロマトグラムでは、図10の場合と
比較して、凝集ピークが著しく解消されており、ほとん
ど認めらないことが分かる。即ち、図1では、まだ若干
の凝集ピークが認められ、これに対し図2では、ほぼ解
消されている。
In the RI chromatogram, no aggregation peak is clearly observed in any of the figures, as in FIG. On the other hand, in the LS chromatogram, it can be seen that the aggregation peak is significantly eliminated and hardly recognized as compared with the case of FIG. That is, a slight aggregation peak is still recognized in FIG. 1, whereas it is almost completely eliminated in FIG.

【0034】また、保持容量VR と分子量の関係を示す
プロット曲線において、図1では保持容量VR が14.
7mlに、図2では保持容量VR が14.6mlに変曲
点があり、図10に比較して高分子量側に移動してい
る。そして、高分子量側の曲線の勾配は、図10に比較
して小さく、特に図2では、主領域の曲線の勾配にほぼ
等しいことが認められる。
Further, in a plot curve showing the relationship between the storage capacitor V R and the molecular weight, the retention capacitor V R in FIG. 1 is 14.
In 7 ml, 2 in the holding capacitor V R is has inflection point 14.6 ml, is moving compared to the high molecular weight side in FIG. 10. Then, the slope of the curve on the high molecular weight side is smaller than that in FIG. 10, and in particular, in FIG. 2, it is recognized that the slope of the curve in the main region is substantially equal.

【0035】以上のことから、加熱温度140℃で6時
間の加熱条件で前処理することにより、凝集をほぼ完全
に解消させることができ、加熱温度130℃で6時間の
加熱条件ではまだ若干の凝集が残っていることが分か
る。即ち、この点は図1と図2におけるLSのクロマト
グラムを重ね書きした図3により容易に比較できる。
From the above, by performing the pretreatment under the heating condition of 140 ° C. for 6 hours, the coagulation can be almost completely eliminated. It can be seen that aggregation remains. That is, this point can be easily compared with FIG. 3 in which the chromatograms of the LS in FIGS. 1 and 2 are overwritten.

【0036】[0036]

【表1】 [Table 1]

【0037】また、表1は平均重合度Pが2350のP
VC試料における前処理の加熱条件に応じたそれぞれの
絶対分子量および未処理の絶対分子量の本SEC/LS
/RIシステムで測定された測定値(3回の平均値)を
示しており、表1に示されるようにLSにより求めた絶
対分子量について、未処理のPVCと前処理されたPV
Cの相互の分子量を比較すると、加熱温度130℃で6
時間の加熱条件では、前処理により未処理の場合と比較
して数平均分子量Mn、重量平均分子量Mw、Z平均分
子量Mzが各々約13%、21%、42%低下してい
る。さらに前処理時間、前処理温度の上昇と共に分子量
が低下している。
Table 1 shows that the average polymerization degree P is 2350.
The actual SEC / LS of the absolute molecular weight and the untreated absolute molecular weight according to the heating conditions of the pretreatment in the VC sample
3 shows the measured values (average value of three times) measured by the / RI system. As shown in Table 1, the absolute molecular weight determined by LS is shown in Table 1.
Comparing the molecular weights of C with each other, at a heating temperature of 130 ° C., 6
Under the heating condition of time, the number-average molecular weight Mn, the weight-average molecular weight Mw, and the Z-average molecular weight Mz are reduced by about 13%, 21%, and 42%, respectively, as compared with the case where the pretreatment is not performed. Further, the molecular weight decreases as the pretreatment time and the pretreatment temperature rise.

【0038】図4および図5は、平均重合度Pが235
0のPVC試料における加熱温度130℃で6時間およ
び加熱温度140℃で6時間の加熱条件で前処理した試
料と未処理の試料の分子量分布曲線をそれぞれ示してお
り、分子量1.0×106 以上の凝集領域の割合が大き
く減少し、分子量3.0×104 以下の低分子領域の割
合が増えているが、クロマトグラムの主領域の大きさに
は全く変化がない。従って、PVC試料の前処理によっ
ての熱分解による分子量の低下はないものと推定でき
る。また、前処理による分子量の低下率は、Z平均分子
量Mzが一番大きく、重量平均分子量Mw、数平均分子
量Mnの順で低下している。これらのことから、未処理
のPVC試料に比較して前処理されたPVC試料の平均
分子量が小さくなっているのは、凝集の解消によるもの
と理解できる。
FIGS. 4 and 5 show that the average degree of polymerization P was 235.
0 shows a molecular weight distribution curve of a sample pretreated under heating conditions of 130 ° C. for 6 hours and a heating temperature of 140 ° C. for 6 hours for a PVC sample of 0, and a molecular weight distribution curve of 1.0 × 10 6. Although the ratio of the above-mentioned aggregation region is greatly reduced, and the ratio of the low-molecular region having a molecular weight of 3.0 × 10 4 or less is increased, the size of the main region of the chromatogram does not change at all. Therefore, it can be estimated that the molecular weight does not decrease due to the thermal decomposition due to the pretreatment of the PVC sample. As for the rate of decrease in molecular weight due to the pretreatment, the Z average molecular weight Mz is the largest, and the weight average molecular weight Mw and the number average molecular weight Mn decrease in this order. From these facts, it can be understood that the reason why the average molecular weight of the pretreated PVC sample is smaller than that of the untreated PVC sample is due to the elimination of aggregation.

【0039】また、加熱温度140℃で12時間の加熱
条件の方が凝集の解消の点で好ましいが、前処理時間の
短縮化という点では加熱温度140℃で6時間の加熱条
件が好ましい。
The heating condition at a heating temperature of 140 ° C. for 12 hours is more preferable in terms of eliminating aggregation, but in terms of shortening the pretreatment time, the heating condition at a heating temperature of 140 ° C. for 6 hours is preferable.

【0040】なお、加熱温度150℃で6時間の加熱条
件では、分子量は他の処理温度に比べ高い値を示してお
り、一部架橋したのではないかと考えられるが、試料に
着色が見られることと、RIのクロマトグラムの低分子
方向へのシフトから熱劣化していると思われる。
Under the heating conditions of a heating temperature of 150 ° C. for 6 hours, the molecular weight shows a higher value as compared with the other processing temperatures, and it is considered that a part of the sample was crosslinked, but the sample is colored. From this fact and the shift of the RI chromatogram to the lower molecular direction, it is considered that thermal degradation has occurred.

【0041】以上のことから、平均重合度Pが2350
のPVC試料にあっては、加熱温度140℃で6時間の
加熱条件で、スターラーで常時撹拌しながら加熱溶解す
ることが、試料の熱劣化もなく、効率よく凝集の解消が
図れるPVC試料を提供できるものと理解できる。
From the above, the average degree of polymerization P was 2350
In the case of the above PVC sample, it is possible to efficiently dissolve agglomeration without heat degradation of the sample by heating and dissolving the sample while constantly stirring with a stirrer under the heating condition of 140 ° C. for 6 hours. Understand what you can do.

【0042】図6および図7は平均重合度Pが1300
および800のPVC試料で、加熱温度130℃で6時
間の加熱条件で前処理されたPVC試料によるSEC測
定結果をそれぞれ示している。
FIGS. 6 and 7 show that the average degree of polymerization P is 1300.
9 shows SEC measurement results of PVC samples which were pretreated under heating conditions of 130 ° C. for 6 hours for 800 and 800 PVC samples, respectively.

【0043】[0043]

【表2】 [Table 2]

【0044】[0044]

【表3】 [Table 3]

【0045】また、表2および表3はその際の絶対分子
量および未処理の絶対分子量のSEC/LS/RIシス
テムで測定された測定値(3回の平均値)をそれぞれ示
している。
Tables 2 and 3 show the absolute molecular weight and the untreated absolute molecular weight measured at that time measured by the SEC / LS / RI system (average of three measurements).

【0046】この場合、両者共に、RI、LSのクロマ
トグラム上の凝集ピークおよび保持容量VR と分子量の
関係を示すプロット曲線における水平な凝集領域が全く
認められない。
[0046] In this case, Both, RI, not observed at all horizontal clustering regions in a plot curve representing the relationship between the aggregate peak and the storage capacitor V R and the molecular weight of the chromatogram of LS.

【0047】特に、平均重合度Pが800のPVC試料
については、上記のことから、完全に凝集ピークが消失
していることが理解できる。また、平均重合度Pが13
00のPVC試料については、保持容量VR と分子量の
関係を示すプロット曲線より、図9に示される場合と比
較して急勾配の直線領域が短く、かつ穏やかな勾配とな
っており、ほぼ一定の勾配を持つ直線で近似してもよい
ほどに改善されている。
In particular, for the PVC sample having an average degree of polymerization P of 800, it can be understood from the above that the aggregation peak completely disappeared. The average degree of polymerization P is 13
For 00 of the PVC samples from plots curves showing the relationship between the storage capacitor V R and molecular weight, short linear region of the steep compared to the case shown in FIG. 9, and has a gentle slope, substantially constant Is improved so that it can be approximated by a straight line having a gradient of

【0048】なお、加熱温度130℃で12時間の加熱
条件でも同様に行ったが、ほとんど同じであった。
The heating was carried out at 130 ° C. for 12 hours for 12 hours.

【0049】以上のことから、平均重合度Pが1300
および800のPVC試料にあっては、加熱温度130
℃で6時間の加熱条件で、スターラーで常時撹拌しなが
ら加熱溶解することが、試料の熱劣化もなく、効率よく
凝集の解消が図れるPVC試料を提供できるものと理解
できる。
From the above, the average degree of polymerization P was 1300
And 800 PVC samples, heating temperature 130
It can be understood that heating and dissolving while constantly stirring with a stirrer under heating conditions of 6 ° C. for 6 hours can provide a PVC sample that can efficiently eliminate aggregation without thermal degradation of the sample.

【0050】なお、各平均重合度PのPVC試料におけ
る前処理において、加熱温度が120℃で12時間で
は、凝集が完全に解消されず、不十分であった。また、
加熱溶解に際して、撹拌を断続的に行った場合には凝集
が残る割合が多く、連続的に常時攪拌することが好まし
い。
In the pretreatment of the PVC sample having each average polymerization degree P, when the heating temperature was 120 ° C. for 12 hours, the aggregation was not completely eliminated and was insufficient. Also,
At the time of heating and dissolving, when stirring is performed intermittently, a large percentage of aggregation remains, and it is preferable to continuously stir constantly.

【0051】さらに、前処理の工程において、PVC試
料のTCBに溶かす際の濃度を2倍にした場合には、凝
集が完全に消失せず、濃度0.1%以下の希薄溶液下で
溶解することが必要である。
Further, in the pretreatment step, when the concentration of the PVC sample when it is dissolved in TCB is doubled, the aggregation is not completely eliminated, and the PVC sample is dissolved in a dilute solution having a concentration of 0.1% or less. It is necessary.

【0052】また、検出器にLSを用いているため、絶
対分子量が求められ、凝集の解消によってより正確な分
子量を求めることができる。
Further, since LS is used for the detector, the absolute molecular weight can be obtained, and a more accurate molecular weight can be obtained by eliminating aggregation.

【0053】[0053]

【発明の効果】以上のように、本発明のPVCのSEC
による分子量測定に際しての凝集の解消法によれば、P
VC試料の所定の前処理によってTHFを用いた室温で
のSEC測定に際し、劣化等の試料本来の特性を損なわ
ずに、凝集が解消され、より正確な分子量や分子量分布
のSEC測定が行えるという利点がある。
As described above, the SEC of the PVC of the present invention is as described above.
According to the method for eliminating aggregation when measuring the molecular weight by
The advantage that the SEC measurement at room temperature using THF by predetermined pretreatment of the VC sample eliminates aggregation without deteriorating the sample's original characteristics such as deterioration, and enables more accurate SEC measurement of molecular weight and molecular weight distribution. There is.

【0054】また、加熱時間を6時間とすることによっ
て、測定に支障が生じない範囲で効率化が図れるという
利点がある。
Further, by setting the heating time to 6 hours, there is an advantage that the efficiency can be improved within a range that does not hinder the measurement.

【図面の簡単な説明】[Brief description of the drawings]

【図1】RIとLSのクロマトグラムと、分子量と保持
容量の関係を示す図である。
FIG. 1 is a diagram showing chromatograms of RI and LS, and the relationship between molecular weight and retention capacity.

【図2】RIとLSのクロマトグラムと、分子量と保持
容量の関係を示す図である。
FIG. 2 is a diagram showing chromatograms of RI and LS, and the relationship between molecular weight and retention capacity.

【図3】図1と図2におけるLSのクロマトグラムを重
ね書きした図である。
FIG. 3 is a diagram in which the chromatograms of the LS in FIGS. 1 and 2 are overwritten.

【図4】分子量分布曲線を示す図である。FIG. 4 is a diagram showing a molecular weight distribution curve.

【図5】分子量分布曲線を示す図である。FIG. 5 is a diagram showing a molecular weight distribution curve.

【図6】RIとLSのクロマトグラムと、分子量と保持
容量の関係を示す図である。
FIG. 6 is a diagram showing chromatograms of RI and LS, and the relationship between molecular weight and retention capacity.

【図7】RIとLSのクロマトグラムと、分子量と保持
容量の関係を示す図である。
FIG. 7 is a diagram showing chromatograms of RI and LS, and the relationship between molecular weight and retention capacity.

【図8】未処理のPVC試料におけるRIとLSのクロ
マトグラムと、分子量と保持容量の関係を示す図であ
る。
FIG. 8 is a diagram showing a chromatogram of RI and LS in an untreated PVC sample, and a relationship between molecular weight and retention capacity.

【図9】未処理のPVC試料におけるRIとLSのクロ
マトグラムと、分子量と保持容量の関係を示す図であ
る。
FIG. 9 is a diagram showing a chromatogram of RI and LS in an untreated PVC sample, and a relationship between molecular weight and retention capacity.

【図10】未処理のPVC試料におけるRIとLSのク
ロマトグラムと、分子量と保持容量の関係を示す図であ
る。
FIG. 10 is a diagram showing a chromatogram of RI and LS in an untreated PVC sample, and a relationship between molecular weight and retention capacity.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 南 博昭 三重県四日市市西末広町1番14号 住友 電装株式会社内 (72)発明者 森 定雄 愛知県名古屋市中村区井深町4番8号 (56)参考文献 特開 平1−98963(JP,A) 特開 平8−271494(JP,A) 特開 平2−8740(JP,A) 特開 平4−84761(JP,A) 特開 平4−84760(JP,A) 特開 平3−210475(JP,A) 特開 平4−172248(JP,A) 特開 平8−73646(JP,A) 特開 平9−210929(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 30/06 G01N 30/88 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Hiroaki Minami 1-114, Nishisuehiro-cho, Yokkaichi-shi, Mie Sumitomo Wiring Systems, Ltd. (72) Inventor Sadao Mori 4-8, Ibuka-cho, Nakamura-ku, Nagoya-shi 56) References JP-A-1-98963 (JP, A) JP-A-8-271494 (JP, A) JP-A-2-8740 (JP, A) JP-A-4-84761 (JP, A) JP-A-4-84760 (JP, A) JP-A-3-210475 (JP, A) JP-A-4-172248 (JP, A) JP-A-8-73646 (JP, A) JP-A-9-210929 (JP , A) (58) Field surveyed (Int. Cl. 7 , DB name) G01N 30/06 G01N 30/88

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 PVC試料を、移動相としてのTHFに
室温で溶解し、SECにより分子量や分子量分布の測定
を行うPVCのSECによる分子量測定に際して、 平均重合度2350±200のPVCを、溶媒としてT
CBを用いて、濃度0.1%以下で、かつ加熱温度14
0±2℃で6時間以上の加熱条件で、常時撹拌しながら
加熱溶解し、その後、再沈させた樹脂を前記PVC試料
として使用することを特徴とするPVCのSECによる
分子量測定に際しての凝集の解消法。
1. A PVC sample is dissolved in THF as a mobile phase at room temperature, and the molecular weight and the molecular weight distribution are measured by SEC. When measuring the molecular weight by SEC of PVC, PVC having an average degree of polymerization of 2350 ± 200 is used as a solvent. T
Using CB, a concentration of 0.1% or less and a heating temperature of 14%
Under the heating condition of 0 ± 2 ° C. for 6 hours or more, the resin is heated and dissolved while being constantly stirred, and then the reprecipitated resin is used as the PVC sample. Solution method.
【請求項2】 PVC試料を、移動相としてのTHFに
室温で溶解し、SECにより分子量や分子量分布の測定
を行うPVCのSECによる分子量測定に際して、 平均重合度1300±50のPVCを、溶媒としてTC
Bを用いて、濃度0.1%以下で、かつ加熱温度130
±2℃で6時間以上の加熱条件で、常時撹拌しながら加
熱溶解し、その後、再沈させた樹脂を前記PVC試料と
して使用することを特徴とするPVCのSECによる分
子量測定に際しての凝集の解消法。
2. A PVC sample is dissolved in THF as a mobile phase at room temperature, and the molecular weight and the molecular weight distribution are measured by SEC. When measuring the molecular weight by SEC of PVC, PVC having an average polymerization degree of 1300 ± 50 is used as a solvent. TC
B, the concentration is 0.1% or less, and the heating temperature is 130%.
Dissolving agglomeration during molecular weight measurement by SEC of PVC, characterized in that the resin is heated and melted while constantly stirring under heating conditions of ± 2 ° C for 6 hours or more, and then the reprecipitated resin is used as the PVC sample. Law.
【請求項3】 PVC試料を、移動相としてのTHFに
室温で溶解し、SECにより分子量や分子量分布の測定
を行うPVCのSECによる分子量測定に際して、 平均重合度800±50のPVCを、溶媒としてTCB
を用いて、濃度0.1%以下で、かつ加熱温度130±
2℃で6時間以上の加熱条件で、常時撹拌しながら加熱
溶解し、その後、再沈させた樹脂を前記PVC試料とし
て使用することを特徴とするPVCのSECによる分子
量測定に際しての凝集の解消法。
3. A PVC sample is dissolved in THF as a mobile phase at room temperature, and the molecular weight and the molecular weight distribution are measured by SEC. When measuring the molecular weight by SEC of PVC, PVC having an average polymerization degree of 800 ± 50 is used as a solvent. TCB
With a concentration of 0.1% or less and a heating temperature of 130 ±
A method for eliminating aggregation when measuring the molecular weight of PVC by SEC, wherein the resin is heated and melted while being constantly stirred at 2 ° C. for 6 hours or more, and then the reprecipitated resin is used as the PVC sample. .
【請求項4】 前記加熱条件における加熱時間を6時間
とすることを特徴とする請求項1、2または3記載のP
VCのSECによる分子量測定に際しての凝集の解消
法。
4. The P according to claim 1, wherein the heating time under said heating condition is 6 hours.
A method for eliminating aggregation when measuring the molecular weight by VC SEC.
JP26980897A 1997-10-02 1997-10-02 Method for eliminating aggregation in molecular weight measurement of PVC by SEC Expired - Fee Related JP3322185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26980897A JP3322185B2 (en) 1997-10-02 1997-10-02 Method for eliminating aggregation in molecular weight measurement of PVC by SEC

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26980897A JP3322185B2 (en) 1997-10-02 1997-10-02 Method for eliminating aggregation in molecular weight measurement of PVC by SEC

Publications (2)

Publication Number Publication Date
JPH11108910A JPH11108910A (en) 1999-04-23
JP3322185B2 true JP3322185B2 (en) 2002-09-09

Family

ID=17477470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26980897A Expired - Fee Related JP3322185B2 (en) 1997-10-02 1997-10-02 Method for eliminating aggregation in molecular weight measurement of PVC by SEC

Country Status (1)

Country Link
JP (1) JP3322185B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7366020B2 (en) * 2017-12-11 2023-10-20 マルバーン パナリティカル リミテッド Determination of particle size distribution by size exclusion chromatography

Also Published As

Publication number Publication date
JPH11108910A (en) 1999-04-23

Similar Documents

Publication Publication Date Title
Muthukumar et al. Fractal dimension of a crosslinking polymer at the gel point
Horkay et al. Thermodynamic Properties of Poly (vinyl alcohol) and Poly (vinyl alcohol-vinyl acetate) Hydrogels
Guillaneuf et al. Using apparent molecular weight from SEC in controlled/living polymerization and kinetics of polymerization
Dubin et al. Substrate–polymer interactions in liquid exclusion chromatography (GPC) in N, N‐dimethylformamide
Lee et al. Thermal field-flow fractionation and multiangle light scattering of polyvinyl acetate with broad polydispersity and ultrahigh molecular weight microgel components
Domard et al. Application of gel permeation chromatography to polyelectrolytes: Salt rejection mechanism and molecular‐weight distribution
Podzimek et al. Characterization of molecular structure of acrylic copolymers prepared via emulsion polymerization using A4F‐MALS technique
Baselga et al. Effect of crosslinker on swelling and thermodynamic properties of polyacrylamide gels
Pajevic et al. Diffusion of linear polymer chains in methyl methacrylate gels
Abdel‐Alim et al. Molecular aggregation in poly (vinyl chloride). A novel analytical technique
JP3322185B2 (en) Method for eliminating aggregation in molecular weight measurement of PVC by SEC
He et al. Photoinduced Mechanical Cloaking of Diarylethene‐Crosslinked Microgels
Coelho et al. Characterization of suspension poly (vinyl chloride) resins and narrow polystyrene standards by size exclusion chromatography with multiple detectors: Online right angle laser-light scattering and differential viscometric detectors
Dušek et al. Network formation in the free-radical copolymerization of a bismaleimide and styrene
Richter et al. Gelation Studies on a Radical Chain Cross‐Linking Copolymerization Process: Comparison of the Critical Exponents Obtained by Dynamic Light Scattering and Rheology
Kirkland et al. Polymer characterization by thermal field flow fractionation with a continuous viscosity detector
Michel et al. New evidence of the nonequilibrium nature of the “slow modes” of diffusion in polyelectrolyte solutions
Mingozzi et al. Tacticity Distribution of Polypropene by Preparative and Analytical Temperature-Rising Elution Fractionation (TREF)
Chen et al. Molecular weight distribution in a poly (vinyl chloride–vinyl acetate) copolymer
Ouano Solution properties of polymers by low angle laser light scattering photometry
Manabe et al. Sample pretreatment for aggregate‐free PVC molecular weight measurement by size‐exclusion chromatography
US5304002A (en) Method of determining blend time in stirred tanks
Lin et al. Comblike polymer electrolyte with main chain glass transition near room temperature
Müller et al. Determination of the degree of swelling and crosslinking of latex particles by analytical ultracentrifugation
Xuexin et al. Self-diffusion of linear and 4-and 18-armed star polyisoprenes in tetrachloromethane solution

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees