JP3322023B2 - Power receiving rate control method - Google Patents

Power receiving rate control method

Info

Publication number
JP3322023B2
JP3322023B2 JP22384694A JP22384694A JP3322023B2 JP 3322023 B2 JP3322023 B2 JP 3322023B2 JP 22384694 A JP22384694 A JP 22384694A JP 22384694 A JP22384694 A JP 22384694A JP 3322023 B2 JP3322023 B2 JP 3322023B2
Authority
JP
Japan
Prior art keywords
power
sub
capacitor
control
power factor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22384694A
Other languages
Japanese (ja)
Other versions
JPH0898406A (en
Inventor
道雄 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP22384694A priority Critical patent/JP3322023B2/en
Publication of JPH0898406A publication Critical patent/JPH0898406A/en
Application granted granted Critical
Publication of JP3322023B2 publication Critical patent/JP3322023B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、受電点での力率を規
定値内に制御することで、受電点の力率を改善し、電力
料金の低減などを図るようにした受電力率制御方式に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention controls a power factor at a power receiving point within a specified value, thereby improving a power factor at the power receiving point and reducing a power rate. It is about the method.

【0002】[0002]

【従来の技術】従来の一般的な受電力率制御方式の一例
を図5に示した。この制御方式では、瞬時の無効電力
(Var)を検出し、この検出値が所定の規定値を超過
した場合には、一定周期毎に力率改善用のコンデンサを
投入または開放することで、受電力率を改善する方法が
知られている。図5の例では、瞬時無効電力が遅れ規定
値を越えた場合にはコンデンサC1、C2を投入し、ま
た同じく進み規定値を越えた場合にはコンデンサC2の
開放が行われる。なお、この場合において、力率は、例
えば電力会社の電気供給規定によれば、午前8時から午
後10時までの時間における平均力率が対象となり、ま
た瞬間力率が進み力率となる場合は瞬間力率は100%
とみなされる。
2. Description of the Related Art FIG. 5 shows an example of a conventional general power receiving rate control system. In this control method, instantaneous reactive power (Var) is detected, and when this detected value exceeds a predetermined specified value, a power factor improving capacitor is turned on or off at regular intervals to receive the power. Methods for improving the power factor are known. In the example of FIG. 5, the capacitors C1 and C2 are turned on when the instantaneous reactive power exceeds the prescribed delay value, and the capacitor C2 is opened when the leading reactive power exceeds the prescribed value. In this case, the power factor is, for example, an average power factor in the time from 8:00 am to 10:00 pm according to the electricity supply regulations of the power company, and the instantaneous power factor is a leading power factor. Is an instantaneous power factor of 100%
Is considered.

【0003】[0003]

【発明が解決しようとする課題】ところで、上記従来の
制御方式は、基本的には、瞬時無効電力の値が規定値を
越えた場合においてコンデンサの投入または開放によっ
て積算無効電力量を制御するようにしたものである。
The above conventional control system basically controls the integrated reactive power by turning on or off a capacitor when the instantaneous reactive power exceeds a specified value. It was made.

【0004】しかしながら、この従来の制御方式では、
力率改善用のコンデンサがサブ変電所側にだけ設置され
ている需要家側の電力系統の場合には、このようなコン
デンサを用いた単機能の自動力率改善装置をサブ変電所
毎に複数台設置するしか方法がなかった。そして、この
ように単機能の自動力率改善装置では、サブ変電所毎の
力率改善には寄与するものの、電力料金に影響する受変
電設備における受電点の力率改善には直接効果が出しに
くかった。
However, in this conventional control method,
In the case of a customer-side power system in which a power factor improvement capacitor is installed only on the sub-substation side, multiple single-function automatic power factor correction devices using such capacitors are installed for each sub-substation. There was no other way but to install the table. In this way, the single-function automatic power factor improvement device contributes to the power factor improvement at each sub-substation, but has a direct effect on the power factor improvement at the receiving point in the receiving substation equipment that affects the power rate. It was difficult.

【0005】つまり、受変電設備に纏まった力率改善用
のコンデンサを設置した系統の場合には、上記従来の制
御方式によって受電力率を有効に制御できるものの、こ
のようなコンデンサが複数のサブ変電所に分散設置され
た系統の場合には受電力率の制御が非常に困難であると
いう課題があった。
[0005] In other words, in the case of a system in which a power factor improving capacitor integrated in a power receiving and transforming facility is installed, the power receiving factor can be effectively controlled by the above-mentioned conventional control method. In the case of a system distributed and installed in a substation, there is a problem that it is very difficult to control a power receiving rate.

【0006】この発明は、上記の事情に鑑みてなされた
もので、サブ変電設備側だけに力率改善用のコンデンサ
が設置されている設備においても受変電設備における受
電点の力率制御を直接図ることができる受電力率制御方
式を提供することを目的とする。
The present invention has been made in view of the above circumstances, and even in a facility in which a power factor improving capacitor is installed only on the sub-transformation facility side, the power factor control of the power receiving point in the power receiving and transforming facility is directly performed. An object of the present invention is to provide a power receiving rate control method that can be achieved.

【0007】[0007]

【課題を解決するための手段】この発明は上記の目的を
達成するために、受変電設備および前記受変電設備に接
続された複数のサブ変電設備とから構成され、前記サブ
変電設備側だけに力率改善用のコンデンサが設置されて
いる電力系統における受電力率制御方式において、前記
受変電設備側には力率改善制御要否判定用計測値を取り
込む第1無効電力変換器を設け、前記サブ変電設備側に
は制御サブ変電判定用計測値を取り込む第2無効電力変
換器を設け、第1および第2無効電力変換器からの計測
値を演算処理する演算処理部を設け、この演算処理部で
計測値を演算処理し、その処理の結果によって受電力率
改善のための最適なコンデンサ組み合わせを決定してコ
ンデンサ用開閉器の投入・開放を制御する制御部を設
、この制御部は、力率改善用のコンデンサの投入、開
放制御する際に、投入制御において、進み側におけるサ
ブ変電設備における力率改善用のコンデンサを制御対象
から外してから、最大無効電力を発生するサブ変電設備
を順次検出し、該当するサブ変電設備における最適力率
改善用のコンデンサ制御の組合わせを決定し、それの投
入の可,不可を判別してから該当するコンデンサを投入
し、開放制御において、遅れ側におけるサブ変電設備に
おける力率改善用のコンデンサを制御対象から外してか
ら、最小無効電力を発生するサブ変電設備を順次検出
し、該当するサブ変電設備における最適力率改善用のコ
ンデンサ制御の組合わせを決定し、それの開放の可,不
可を判別してから該当するコンデンサを開放することを
特徴とする受電力率制御方式。
In order to achieve the above object, the present invention comprises a sub-station and a plurality of sub-stations connected to the sub-station, wherein only the sub-station is provided. In a power receiving factor control method in a power system in which a power factor improving capacitor is installed, a first reactive power converter is provided on the power receiving and transforming equipment side to capture a measurement value for power factor improvement control necessity determination, A second reactive power converter for taking in the measured value for control sub-transformation determination is provided on the sub-transformation facility side, and an arithmetic processing unit for arithmetically processing the measured values from the first and second reactive power converters is provided. the measured value arithmetic processing in parts, a control unit for controlling the charged and opening of the switch capacitor provided to determine the optimum capacitor combination for receiving power factor correction by the results of the processing, the control unit, Introduction of capacitor for rate improvement, open
When performing the release control, the
Control target for power factor improvement capacitors in substation facilities
Sub-station equipment that generates maximum reactive power after disconnecting
Are sequentially detected, and the optimal power factor in the
Determine the combination of capacitor control for improvement and invest in it.
After determining whether or not the capacitor can be turned on, insert the corresponding capacitor.
In the opening control, the substation equipment on the delay side
The power factor improvement capacitor in the control
Sub-stations that generate the least reactive power
The sub-station equipment for optimal power factor improvement.
Determine the combination of capacitor controls and allow or disengage them.
A power receiving rate control method characterized in that the applicable capacitor is opened after judging the possibility.

【0008】[0008]

【0009】[0009]

【作用】この発明によれば、上記のようにサブ変電設備
に設けられた力率改善用のコンデンサは、第1及び第2
無効電力変換器からの計測値を演算処理してからその処
理の結果に応じて投入・開放することによって受電力率
を制御するようにしたので、サブ変電設備側だけに力率
改善用のコンデンサが設置されている電力系統において
も受変電設備における受電点の力率制御を行うことがで
きる。
According to the present invention, the power factor improving capacitors provided in the sub-transformation facility as described above include the first and second capacitors.
The measured value from the reactive power converter is calculated and processed, and the power receiving rate is controlled by turning on and off according to the result of the processing. The power factor of the power receiving point in the power receiving and transforming equipment can be controlled also in the power system in which is installed.

【0010】[0010]

【実施例】以下、この発明の実施例を図面に基づいて説
明する。この実施例は、需要家側の受変電設備が、特高
受変電設備および複数のサブ変電設備から構成される電
力系統において、特高受変電設備側に力率改善用のコン
デンサが設置されず、サブ変電設備側にだけ力率改善用
のコンデンサが設置されている電力系統において、受電
力率の改善をするようにした制御方式である。
Embodiments of the present invention will be described below with reference to the drawings. In this embodiment, the power receiving and transforming equipment on the customer side is a power system composed of an extra high power receiving and transforming equipment and a plurality of sub-transformation equipments, and no power factor improving capacitor is installed on the extra high power receiving and transforming equipment side. In a power system in which a power factor improving capacitor is installed only on the sub-transformation facility side, this is a control method for improving the power receiving rate.

【0011】図1に、特高受変電設備SSと複数のサブ
変電設備SU1〜SUnの概要を示す。図1において、
A,B回線は同一に構成されていて、ESは接地開閉
器、TRFは切替開閉器、CBは遮断器、TFは変圧
器、SWは力率改善用コンデンサの開閉器、SCは力率
改善用コンデンサである。図1に示す特高受変電設備S
Sでは主変圧器2台で切換運転を行なっている。このた
め、変圧器TFの2次側では図示しないトータルCTに
より無効電力を計測する第1無効電力変換器11が設け
られている。また、図1のサブ変電設備SU1〜SUn
では、前記図5のような方式で、各サブ変電設備毎に第
2無効電力変換器12によって無効電力をそれぞれ計測
している。
FIG. 1 shows an outline of an extra high voltage substation SS and a plurality of sub substations SU1 to SUn. In FIG.
The A and B lines are configured the same, ES is a ground switch, TRF is a switch, CB is a circuit breaker, TF is a transformer, SW is a switch of a power factor improving capacitor, and SC is a power factor improving. It is a capacitor for use. Extra high voltage substation S shown in FIG.
In S, the switching operation is performed by two main transformers. For this reason, on the secondary side of the transformer TF, a first reactive power converter 11 that measures reactive power by a total CT (not shown) is provided. Further, the sub-stations SU1 to SUn of FIG.
5, the reactive power is measured by the second reactive power converter 12 for each sub-transformer facility in the manner as shown in FIG.

【0012】上記のようにして計測された無効電力は演
算処理部13で演算処理され、その処理結果がコンデン
サ投入・開放を制御する制御部14に入力される。制御
部14では処理結果から受電点の力率改善のための最適
なコンデンサ組み合わせを決定してコンデンサ用開閉器
SWの投入・開放を制御する出力を送出する。なお、各
回線の遮断器、コンデンサ用開閉器およびコンデンサの
故障信号を監視していて、故障信号があったときにはコ
ンデンサ用開閉器の制御は行わないようにしている。
The reactive power measured as described above is subjected to arithmetic processing in the arithmetic processing unit 13, and the processing result is input to the control unit 14 for controlling the opening and closing of the capacitor. The control unit 14 determines an optimum capacitor combination for improving the power factor at the power receiving point from the processing result, and sends out an output for controlling the opening / closing of the capacitor switch SW. The failure signals of the circuit breaker, the capacitor switch and the capacitor are monitored, and the control of the capacitor switch is not performed when there is a failure signal.

【0013】図2は、実施例の受電力率制御方式を適用
した装置の構成を示した。ここで、特高受変電設備およ
び各サブ変電設備には、機器の状態や故障あるいは計測
などのための信号を取り込んで、機器への入/切制御出
力を行うためのリモート入出力装置2がそれぞれ設置さ
れている。そして、これらのリモート入出力装置2はそ
れぞれ、各電力設備(特高受変電設備、サブ変電設備)
とこれらの制御に必要な信号、例えば機器状態信号、機
器故障信号、計測値信号、機器制御信号などの授受を行
う。そして、中央処理装置1は後述するように力率改善
のための自動制御処理を行い、リモート入出力装置2
は、中央処理装置1によって演算制御される。
FIG. 2 shows the configuration of an apparatus to which the power receiving rate control method of the embodiment is applied. Here, a remote input / output device 2 for taking in signals for device status, failure or measurement, and performing on / off control output to the device is installed in the extra high voltage substation and each sub-station. Each is installed. Each of these remote input / output devices 2 is connected to a respective power facility (extra high substation facility, sub-station facility).
And a signal necessary for these controls, for example, an equipment status signal, an equipment failure signal, a measurement value signal, and an equipment control signal. Then, the central processing unit 1 performs an automatic control process for improving the power factor as described later,
Is arithmetically controlled by the central processing unit 1.

【0014】上記の実施例の受電力率改善装置では、サ
ブ変電設備側に設置された複数の力率改善用のコンデン
サ(進相コンデンサ)の投入・開放によって無効電力を
許容範囲内に抑えて負荷の力率を改善している。ここ
で、例えば、電力会社との契約により、月間の平均力率
が85%を下回る場合には割増電力基本料金を支払う義
務があり、また逆に、平均力率が85%以上の場合には
基本料金が割引きされることから、このような受電力率
を改善することで、力率改善による電力節約の他、割引
によって電力料金の低減を更に図ることができる。
In the power receiving factor improving apparatus of the above-described embodiment, the reactive power is suppressed within an allowable range by turning on / off a plurality of power factor improving capacitors (advanced phase capacitors) installed on the sub-transformation facility side. The power factor of the load has been improved. Here, for example, due to a contract with a power company, if the monthly average power factor is lower than 85%, there is an obligation to pay a premium power basic fee, and conversely, if the average power factor is 85% or more, Since the basic fee is discounted, by improving such a power receiving rate, it is possible to further reduce the power fee by discounting, in addition to saving power by improving the power factor.

【0015】図3は本実施例の動作を説明するためのフ
ローチャートである。図3において、Var(1)は特
高変圧器の二次無効電力、SCは力率改善用のコンデン
サを意味する。また、図4は無効電力が進みリミットH
L、あるいは遅れリミットLLを越えた場合の実施例に
おける力率改善用のコンデンサの投入・開放(引き外
し)の一例を説明したものである。更に、表1に、制御
対象となるサブ変電設備における力率改善用のコンデン
サの設置の一例を示した。
FIG. 3 is a flowchart for explaining the operation of this embodiment. In FIG. 3, Var (1) denotes secondary reactive power of the extra-high voltage transformer, and SC denotes a power factor improving capacitor. FIG. 4 shows that the reactive power advances and the limit H
5 illustrates an example of turning on / off (tripping) of a power factor improving capacitor in the embodiment when L or the delay limit LL is exceeded. Further, Table 1 shows an example of installation of a power factor improving capacitor in the sub-substation equipment to be controlled.

【0016】[0016]

【表1】 [Table 1]

【0017】ここで、第1〜第3変電所がサブ変電設備
であり、また事務所棟もサブ変電設備の1つとみなす。
また各サブ変電設備における無効電力(Var)値は、
コンデンサの投入・開放の判定のために上記のように中
央処理装置に入力される。
Here, the first to third substations are regarded as sub-station facilities, and the office building is regarded as one of the sub-station stations.
The reactive power (Var) value in each sub-station is
The signal is input to the central processing unit as described above for determining whether the capacitor is turned on or off.

【0018】次に、図3、4を参照しつつ、実施例の動
作を説明する。1分毎に、特高変圧器の二次無効電力を
読み込み(S1)、投入・開放条件の判定を含むSCの
制御の要否を判断する(S2)。そして、5分間条件が
継続した場合には(S3)、力率改善用のコンデンサの
投入制御(S11〜S14)、あるいは開放制御(S2
1〜S24)を行う。この制御周期は、コンデンサの放
電時間を考慮し、例えば5分とする。ここで、上記表1
において、主幹CBが切の状態のサブ変電設備、あるい
は故障した力率改善用のコンデンサは、上記の制御対象
から除く。また、サブ変電設備に複数の力率改善用のコ
ンデンサがある場合には、必要により、これら複数のコ
ンデンサを同時に制御する。
Next, the operation of the embodiment will be described with reference to FIGS. Every minute, the secondary reactive power of the extra-high voltage transformer is read (S1), and it is determined whether SC control including determination of the ON / OFF condition is necessary (S2). If the condition continues for 5 minutes (S3), the power factor
Injection control (S11 to S14) or release control (S2
1 to S24). This control cycle is, for example, 5 minutes in consideration of the discharging time of the capacitor. Here, Table 1 above
In the above, the sub-transformation facility in which the main CB is off, or a failed power factor improving capacitor is excluded from the above-mentioned controlled objects. If there are a plurality of power factor improving capacitors in the sub-station, the plurality of capacitors are simultaneously controlled as necessary.

【0019】上記の力率改善用のコンデンサの投入制御
は、次のように行われる。まず、制御周期は5分とし、
この制御周期を中央処理装置のCPUのメモリ上に予め
設定しておく。また、この投入制御においては、進み側
におけるサブ変電設備における力率制御用のコンデンサ
は制御対象から外し、その制御は行わない。そして、最
大Varを発生するサブ変電設備を順次検出し(S1
1)、該当するサブ変電設備における最適SC制御の組
合せを決定し(S12)、投入の可、不可を判別した後
(S13)、該当するSCを投入する(S14)。
The above-described control of the input of the power factor improving capacitor is performed as follows. First, the control cycle is 5 minutes,
This control cycle is set in advance on the memory of the CPU of the central processing unit. In this input control, the power factor control capacitor in the sub-station on the leading side is excluded from the control target, and the control is not performed. Then, the sub-transformation facilities that generate the maximum Var are sequentially detected (S1).
1) The optimum SC control combination in the corresponding sub-station is determined (S12), and it is determined whether or not the SC can be turned on (S13). Then, the corresponding SC is turned on (S14).

【0020】ここで、上記の処理S11〜S14は、具
体的には、下式の結果が最小となるサブ変電設備の力率
改善用のコンデンサ(SC)を投入することで行われ
る。またこの場合、処理S13において、既に投入済み
のコンデンサは投入の対象から外される。なお、下式に
おいて、投入可能最適SC容量は、該当サブ変電設備の
組み合わせから適宜選定する。
Here, the above-mentioned processes S11 to S14 are specifically performed by inputting a power factor improving capacitor (SC) of the sub-transformer where the result of the following equation is minimized. Further, in this case, in the process S13, the already-input capacitors are excluded from the input targets. In the following formula, the optimal SC capacity that can be input is appropriately selected from the combination of the sub-substation facilities.

【0021】 |−(投入可能最適SC容量)+該当サブ変電設備の無
効電力値(+)| 一方、上記力率改善用のコンデンサの開放制御は、次の
ように行われる。まず、制御周期は30分とし、この制
御周期を中央処理装置のCPUのメモリ上に予め設定し
ておく。また、この開放制御においては、遅れ側におけ
るサブ変電設備における力率制御用のコンデンサは制御
対象から外し、その制御は行わない。そして、最小Va
rを発生するサブ変電設備を順次検出し(S21)、該
当するサブ変電設備における最適SC制御の組合せを決
定し(S22)、開放の可、不可を判別した後(S2
3)、該当するSCを開放する(S24)。
| − (Optimum SC capacity that can be input) + reactive power value (+) | of the corresponding sub-transformation facility | On the other hand, the opening control of the capacitor for improving the power factor is performed as follows. First, the control cycle is set to 30 minutes, and this control cycle is set in advance in the memory of the CPU of the central processing unit. In this opening control, the capacitor for power factor control in the sub-station on the delay side is excluded from the control target, and the control is not performed. And the minimum Va
r are sequentially detected (S21), the optimal SC control combination in the relevant sub-station is determined (S22), and it is determined whether opening is possible or not (S2).
3), release the corresponding SC (S24).

【0022】ここで、上記の処理S21〜S24は、具
体的には、下式の結果が最小となるサブ変電設備の力率
改善用のコンデンサ(SC)を投入することで行われ
る。またこの場合、処理S23において、既に開放済み
のコンデンサは遮断の対象から外される。
Here, the above-mentioned processes S21 to S24 are specifically performed by inputting a power factor improving capacitor (SC) of the sub-transformation facility in which the result of the following equation is minimized. Further, in this case, in the process S23, the capacitors that have already been opened are excluded from the targets of cutoff.

【0023】|(投入可能最適SC容量)+該当サブ変
電設備の無効電力値(−)| ここで、上記の制御処理において、進み側の設定値(q
1)や遅れ側の設定値(q2)等の設定は、中央処理装
置に備えられたCRT画面上において、キーボード入力
等により行われる。またこの場合、設定値q1と設定値
q2との間の調整幅は、コンデンサ投入・開放時におけ
る無効電力の変動(ハッチング)を防止するために、例
えば、コンデンサ容量の1.5倍程度の幅にされる。ま
た設定値q2は、設定値q1の1/4〜1/5程度に設
定される。
| (Optimum SC capacity that can be input) + reactive power value of the sub-substation (−) | In the above-described control processing, the set value (q
Settings such as 1) and the setting value (q2) on the delay side are performed by keyboard input or the like on a CRT screen provided in the central processing unit. In this case, the adjustment width between the set value q1 and the set value q2 is, for example, about 1.5 times as large as the capacitance of the capacitor in order to prevent the fluctuation (hatching) of the reactive power when the capacitor is turned on and off. To be. The set value q2 is set to about 程度 to 5 of the set value q1.

【0024】[0024]

【発明の効果】以上述べたように、この発明によれば、
受電設備側の無効電力の計測値と各サブ変電設備側の無
効電力の計測値を演算してコンデンサの投入・開放の制
御を判定して、サブ変電設備側に設けられた力率改善用
のコンデンサの投入・開放制御を行う構成としたので、
力率改善用のコンデンサがサブ変電設備側だけに設置さ
れた需要家側の電力系統においても、単機能の自動力率
改善装置を複数台設置する必要がない。そして、従来の
上記の単機能の自動力率改善装置ではサブ変電設備毎の
力率改善には寄与するものの、電力料金に影響する受電
点の直接的な力率改善は行えなかったが、この発明では
受変電設備における受電点の力率改善が直接できる結
果、電力料金の低減を効果的に行うことができる。
As described above, according to the present invention,
Calculate the reactive power measurement value on the power receiving equipment side and the reactive power measurement value on each sub-transformation equipment side to determine whether to turn on and off the capacitor. Because it is configured to control the opening and closing of the capacitor,
There is no need to install a plurality of single-function automatic power factor correction devices even in a customer-side power system in which power factor correction capacitors are installed only on the sub-transformation facility side. Although the above-described conventional single-function automatic power factor improving apparatus contributes to improving the power factor of each sub-transformation facility, it is not possible to directly improve the power factor of a power receiving point which affects the power rate. According to the present invention, the power factor at the power receiving point in the power receiving and transforming facility can be directly improved, so that the power rate can be effectively reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例を受変電設備に適用した例を
示す構成図である。
FIG. 1 is a configuration diagram showing an example in which an embodiment of the present invention is applied to a substation facility.

【図2】実施例の受電力率制御方式を適用した装置の構
成例の説明図である。
FIG. 2 is an explanatory diagram of a configuration example of a device to which a power reception rate control method according to an embodiment is applied.

【図3】実施例の動作を説明するフローチャートであ
る。
FIG. 3 is a flowchart illustrating the operation of the embodiment.

【図4】実施例における無効電力の変動を示すグラフで
ある。
FIG. 4 is a graph showing a change in reactive power in the example.

【図5】従来の受電力率制御方式の説明図である。FIG. 5 is an explanatory diagram of a conventional power receiving rate control method.

【符号の説明】[Explanation of symbols]

1…中央処理装置 2…リモート入出力装置 11、12…第1及びだい2無効電力変換器 13…演算処理部 14…制御部 REFERENCE SIGNS LIST 1 central processing unit 2 remote input / output device 11 and 12 first and second reactive power converters 13 arithmetic processing unit 14 control unit

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H02J 3/00 - 5/00 G05F 1/70 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H02J 3/00-5/00 G05F 1/70

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 受変電設備および前記受変電設備に接続
された複数のサブ変電設備とから構成され、前記サブ変
電設備側だけに力率改善用のコンデンサが設置されてい
る電力系統における受電力率制御方式において、 前記受変電設備側には力率改善制御要否判定用計測値を
取り込む第1無効電力変換器を設け、前記サブ変電設備
側には制御サブ変電判定用計測値を取り込む第2無効電
力変換器を設け、第1および第2無効電力変換器からの
計測値を演算処理する演算処理部を設け、この演算処理
部で計測値を演算処理し、その処理の結果によって受電
力率改善のための最適なコンデンサ組み合わせを決定し
てコンデンサ用開閉器の投入・開放を制御する制御部を
設け この制御部は、力率改善用のコンデンサの投入、開放制
御する際に、投入制御において、進み側におけるサブ変
電設備における力率改善用のコンデンサを制御対象から
外してから、最大無効電力を発生するサブ変電設備を順
次検出し、該当するサブ変電設備における最適力率改善
用のコンデンサ制御の組合わせを決定し、それの投入の
可,不可を判別してから該当するコンデンサを投入し、 開放制御において、遅れ側におけるサブ変電設備におけ
る力率改善用のコンデンサを制御対象から外してから、
最小無効電力を発生するサブ変電設備を順次検出し、該
当するサブ変電設備における最適力率改善用のコンデン
サ制御の組合わせを決定し、それの開放の可,不可を判
別してから該当するコンデンサを開放する ことを特徴と
する受電力率制御方式。
An electric power system comprising a power receiving and transforming facility and a plurality of sub-transformation facilities connected to the power receiving and transforming facility, wherein a power factor improving capacitor is installed only on the sub-transformer facility side. In the rate control method, a first reactive power converter that captures a measurement value for determining whether power factor improvement control is necessary is provided on the side of the substation equipment, and a control sub-transformation determination measurement value that captures a control substation determination value is provided on the sub-substation facility side. (2) a reactive power converter is provided, and an arithmetic processing unit for arithmetically processing the measured values from the first and second reactive power converters is provided. The arithmetic processing unit performs the arithmetic processing on the measured value, and receives the power based on the result of the processing. to determine the optimum capacitor combination for rate improvement provided a control unit for controlling the charged and opening of the switch capacitor, the control unit, the capacitor for power factor improvement is turned, the open system
Control, the sub-transformation on the leading side
From the control target to the power factor improvement capacitor in power equipment
Remove the sub-return equipment that generates the maximum reactive power
Detects the next and improves the optimal power factor in the corresponding sub-station
The combination of capacitor control for
After determining whether it is possible or not, turn on the corresponding capacitor, and in the open control,
After removing the power factor improving capacitor from the control target,
The sub-transformation facilities that generate the minimum reactive power are sequentially detected, and
Condensate for improving the optimal power factor in the corresponding sub-station
Control combination and determine whether it can be released.
A power receiving rate control method characterized by opening a corresponding capacitor after separating.
JP22384694A 1994-09-20 1994-09-20 Power receiving rate control method Expired - Fee Related JP3322023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22384694A JP3322023B2 (en) 1994-09-20 1994-09-20 Power receiving rate control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22384694A JP3322023B2 (en) 1994-09-20 1994-09-20 Power receiving rate control method

Publications (2)

Publication Number Publication Date
JPH0898406A JPH0898406A (en) 1996-04-12
JP3322023B2 true JP3322023B2 (en) 2002-09-09

Family

ID=16804643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22384694A Expired - Fee Related JP3322023B2 (en) 1994-09-20 1994-09-20 Power receiving rate control method

Country Status (1)

Country Link
JP (1) JP3322023B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100446378C (en) * 2006-04-30 2008-12-24 南宁微控技术有限公司 Dynamic capacity compensation controller and its switching mode

Also Published As

Publication number Publication date
JPH0898406A (en) 1996-04-12

Similar Documents

Publication Publication Date Title
US7582986B2 (en) Compensated inverse-time undervoltage load shedding systems
US10536000B2 (en) Grid independent operation control unit, power conditioner, and grid independent operation control method
JP2001506477A (en) Apparatus and method for uniformly distributing electrical loads in an n-phase power distribution network
US6008548A (en) Programmable logic controller for resonance control in complex capacitor switching
US10784677B2 (en) Enhanced utility disturbance monitor
CN110739697B (en) Low-voltage distribution network low-voltage treatment device and treatment method
US8164314B2 (en) Distributed capacitor bank controllers and methods thereof
US5633539A (en) Uninterruptible power supply input power walk-in
JP3322023B2 (en) Power receiving rate control method
Hosseini The operation and model of UPQC in voltage sag mitigation using EMTP by direct method
US10819098B2 (en) Flux based utility disturbance detector
RU180919U1 (en) CONTROLLER OF PROTECTION AGAINST FAN SHUT-OFFS WITH THE POSSIBILITY OF HARMONIC COMPENSATION
CN115792435A (en) Method for verifying qualification of protective electrical appliance of direct current system of transformer substation
AU2021288503B2 (en) Method and device for monitoring a three-phase network operated in a compensated manner for a tuning change of the arc suppression coil
JPH10174292A (en) Transforming device fitted with the capacitor for improvement of power factor contributing to countermeasure against higher harmonic waves
US5701241A (en) Recovery of transmitted power in an installation for transmission of high-voltage direct current
JP3725047B2 (en) Power converter
US11239659B2 (en) Microgrid autosynchronizing using remote recloser inputs and outputs
JP3432882B2 (en) Islanding detection method
CN117595317A (en) Single-phase control-based power grid unbalance management method and device
JP3022152B2 (en) Islanding detection method
RU192770U1 (en) CONTROLLER OF PROTECTION AGAINST CIRCUIT BREAKERS WITH THE POSSIBILITY OF COMPENSATION OF HARMONICS AND CORRECTION OF RELAY PROTECTION SETTINGS
WO2000046896A1 (en) Protection relay for a circuit breaker
JPH0261049B2 (en)
Wodrich High speed reactive compensation systems for industrial applications

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090628

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090628

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100628

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110628

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110628

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120628

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130628

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees