JP3321612B2 - Combination structure of electrodes of electroosmotic dehydrator - Google Patents
Combination structure of electrodes of electroosmotic dehydratorInfo
- Publication number
- JP3321612B2 JP3321612B2 JP26195993A JP26195993A JP3321612B2 JP 3321612 B2 JP3321612 B2 JP 3321612B2 JP 26195993 A JP26195993 A JP 26195993A JP 26195993 A JP26195993 A JP 26195993A JP 3321612 B2 JP3321612 B2 JP 3321612B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- sludge
- positive electrode
- positive
- negative electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Treatment Of Sludge (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は電気浸透法による汚泥の
脱水および/又は洗浄装置に用いる電極の組合せ構造に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combination structure of electrodes used in an apparatus for dewatering and / or washing sludge by electroosmosis.
【0002】[0002]
【従来の技術】従来脱水難度の高い無機及び有機汚泥の
脱水および/又は洗浄に電気浸透法が用いられている。
電気浸透法を用いる脱水処理では汚泥中の粒子が水に対
して負電位に帯電(ゼーター電位)していることを利用
し被処理汚泥中に対向して設けた電極間に直流電圧を印
加することにより正電位に帯電している水分を負極側に
移動させて汚泥の脱水および/又は洗浄が行われる。2. Description of the Related Art Conventionally, an electroosmosis method has been used for dehydrating and / or washing inorganic and organic sludge having a high degree of difficulty in dewatering.
In the dehydration treatment using the electroosmosis method, a DC voltage is applied between electrodes provided in the sludge to be treated, utilizing the fact that particles in the sludge are charged to a negative potential with respect to water (zeta potential). As a result, the moisture charged to the positive potential is moved to the negative electrode side, and the sludge is dehydrated and / or washed.
【0003】[0003]
【発明が解決しようとする課題】この場合使用される電
極としては通電性のよい金属またはカーボン等の平板、
筒状および棒状体が用いられ、正負極の対向面を互いに
平行にした状態で用いられている。しかし、この方法で
は一定電圧の印加状態での通電量の増加に必要な電極、
特に正電極の面積の確保に限界があり、汚泥処理に長時
間を必要とする。In this case, the electrode used in this case is a flat plate made of a metal or carbon having good electrical conductivity,
Cylindrical and rod-like bodies are used, with the opposing surfaces of the positive and negative electrodes parallel to each other. However, in this method, the electrodes necessary for increasing the amount of electricity when a constant voltage is applied,
In particular, there is a limit in securing the area of the positive electrode, and a long time is required for sludge treatment.
【0004】すなわち、これら正負電極の中、汚泥の被
処理域の底面に配置した負電極は汚泥の圧下重および下
方に分離される水分によって汚泥と厳密かつ均一に接触
するが、上面に配置された正電極は汚泥の性状によって
は必ずしも均一に接触せず、電極の有効面積が充分に確
保されない。この傾向は脱水が進行しかつ汚泥の被処理
域の上方部分が通電時の加熱によって乾燥されると特に
著しくなり、場合によっては汚泥の上面が正電極からは
なれて実質的な通電が行われなくなる。That is, among these positive and negative electrodes, the negative electrode disposed on the bottom surface of the sludge treatment area makes strict and uniform contact with the sludge due to the pressure of the sludge and the moisture separated downward, but is disposed on the upper surface. The positive electrode does not always contact uniformly depending on the properties of the sludge, and the effective area of the electrode is not sufficiently ensured. This tendency is particularly remarkable when dehydration proceeds and the upper part of the sludge treatment area is dried by heating at the time of energization, and in some cases, the upper surface of the sludge separates from the positive electrode and substantially no energization is performed. .
【0005】本発明の目的は前記従来の技術の問題点に
鑑みなされたもので、正電極の面積の増加と負電極に対
する組合せ位置を改良することにより電気浸透による脱
水処理に際して電流効率、脱水効率または汚染汚泥の洗
浄における洗浄水の移動効率の向上を計るための電気浸
透脱水装置の正負電極の組合せ構造を提供することにあ
る。An object of the present invention has been made in view of the above-mentioned problems of the prior art, and it has been proposed to increase the area of the positive electrode and to improve the combination position with respect to the negative electrode to improve the current efficiency and dehydration efficiency in the dehydration treatment by electroosmosis. Another object of the present invention is to provide a combined structure of positive and negative electrodes of an electroosmotic dewatering apparatus for improving the transfer efficiency of cleaning water in cleaning contaminated sludge.
【0006】[0006]
【課題を達成するための手段】前記本発明の目的は汚泥
の被処理域上面および底面において対向して互いに平行
に設けた正極および負極間に直流電圧を印加して汚泥の
水分含有率を電気浸透によって低下させる脱水装置に用
いる電極において、前記被処理域の底部に位置された負
極に対して正極の一部を前記負極に対して垂直方向に突
出して対向するように配置したことを特徴とする前記電
気浸透脱水装置の電極組合せ構造によって達成される。
尚電気浸透法による汚泥処理には、通常の汚泥の脱水に
加えて汚泥中の有害物質を洗浄水によって洗浄除去した
後または洗浄と同時に脱水する処理も知られており、本
発明の汚泥の脱水とはこれら双方の処理を含む。SUMMARY OF THE INVENTION It is an object of the present invention to apply a DC voltage between a positive electrode and a negative electrode which are opposed to each other on the top and bottom surfaces of a sludge treatment area, and apply a DC voltage to reduce the water content of the sludge. In the electrode used for the dehydration device to be lowered by permeation, a part of the positive electrode is disposed so as to be opposed to the negative electrode located at the bottom of the processing area in a direction perpendicular to the negative electrode. This is achieved by the electrode combination structure of the electroosmotic dehydrator described above.
In addition, in the sludge treatment by the electroosmosis method, in addition to the usual dewatering of sludge, a treatment of removing harmful substances in sludge by washing water or dewatering simultaneously with washing is also known. Includes both of these processes.
【0007】[0007]
【作用】本発明は電気浸透法による汚泥の脱水および/
又は汚染汚泥の洗浄処理装置において、被処理域の底面
に設置された負電極とこの負電極に対してその一部が垂
直方向に突出して対向するように配置した正電極との間
に直流電圧が印加され、土壌粒子に対して正に帯電され
た汚泥中の水および/又は汚泥に供給された水を負電極
側に移行させることにより汚泥の脱水又は洗浄が行われ
る。According to the present invention, sludge dewatering by electroosmosis and / or
Alternatively, in a cleaning apparatus for contaminated sludge, a DC voltage is applied between a negative electrode installed on the bottom surface of the treatment area and a positive electrode arranged so that a part of the negative electrode protrudes vertically and faces the negative electrode. Is applied, and the water in the sludge positively charged with respect to the soil particles and / or the water supplied to the sludge is transferred to the negative electrode side, so that the sludge is dehydrated or washed.
【0008】こゝで、図1(A)、(B)、(C)に示
すように、水平に配置された負電極Iに対して正電極II
Aを従来のように平行に組合わせる場合(図1A)に対
して、正極の一部が垂直方向へ突出して対向する場合と
しては、たとえば図1Bに示す櫛形の正電極IIBおよび
図1Cに示す波型の正電極IICが考えられる。Here, as shown in FIGS. 1A, 1B and 1C, a negative electrode I disposed horizontally and a positive electrode II are disposed.
In contrast to the case where A is combined in parallel as in the conventional case (FIG. 1A), the case where a part of the positive electrode protrudes in the vertical direction and opposes, for example, as shown in FIG. 1B is a comb-shaped positive electrode IIB and FIG. A corrugated positive electrode IIC is conceivable.
【0009】図1Aの電極構造の場合では、負電極IIと
平行な正電極IAが汚泥の上面に接する際にその接触が
図に示すように必ずしも安全で均一ではなく、この状態
は脱水が進行して汚泥の上方の部分が乾燥するにつれて
顕著となる。したがって従来の電極構造では正電極の有
効接触面積が減少して充分な通電量が確保できない。In the case of the electrode structure shown in FIG. 1A, when the positive electrode IA parallel to the negative electrode II contacts the upper surface of the sludge, the contact is not always safe and uniform as shown in the figure. It becomes more noticeable as the upper part of the sludge dries. Therefore, in the conventional electrode structure, the effective contact area of the positive electrode decreases, and a sufficient amount of current cannot be secured.
【0010】一方、たとえば図1Bに示す本発明IBの
垂直部分が汚泥S中に貫入されてその両面が汚泥と充分
に接触するため大きな接触面積が得られる。On the other hand, for example, the vertical portion of the present invention IB shown in FIG. 1B penetrates into the sludge S, and both surfaces thereof sufficiently contact the sludge, so that a large contact area is obtained.
【0011】また図1Cに示す波型の電極構造の場合に
も、正電極IICを汚泥の上面に載置するとその下向きの
斜面が汚泥面に圧接して充分な接触が得られこの場合に
も大きな有効接触面積が得られ、図1B、1Cの場合で
は大きな通電量によって短時間に脱水が行われる。Also in the case of the corrugated electrode structure shown in FIG. 1C, when the positive electrode IIC is placed on the upper surface of the sludge, the downward slope is pressed against the sludge surface to obtain sufficient contact. A large effective contact area is obtained, and in the case of FIGS. 1B and 1C, dehydration is performed in a short time by a large amount of electricity.
【0012】この場合、図1Bおよび1Cに示した夫々
の電極構造の場合の通電量の増加は後述する実施例で示
すように電極面積の増大率よりもさらに大きくなってい
る。その理由は必ずしも明らかではないが、通常の電気
浸透脱水装置では処理される汚泥等に重力による脱水が
生じており、その処理の初期に状態からすでに汚泥の被
処理域中の水分に垂直方向での分布が生じている。この
ような場合従来の正負電極の平行配置の場合では被処理
域中の水分の少ない汚泥の上方部分ほど電気抵抗が増加
して、全体としての通電量がこの部分で制約される。こ
れに対して本発明においては、正電極の電極面積の増大
に加えて正電極が負電極に対して垂直方向に突出して対
向する部分(櫛形および波形の下方部分)を有している
ために、水分量の多い被処理域の下方部分ではこれら対
向部分と負電極との間で大きな電流密度による脱水作用
が生じ、これによって全体としての通電量が増大し、か
つ効率的で均一な脱水が生じるものと考えられる。In this case, the increase in the amount of electricity in each of the electrode structures shown in FIGS. 1B and 1C is larger than the increase rate of the electrode area, as will be described in an embodiment described later. Although the reason is not always clear, in the usual electroosmotic dewatering equipment, the sludge to be treated is dewatered by gravity, and in the initial stage of the treatment, the sludge is already in a state perpendicular to the moisture in the sludge treatment area. Distribution has occurred. In such a case, in the case of the conventional parallel arrangement of the positive and negative electrodes, the electrical resistance increases in the upper part of the sludge with a small amount of moisture in the processing target area, and the amount of current as a whole is restricted in this part. On the other hand, in the present invention, in addition to the increase in the electrode area of the positive electrode, the positive electrode has a portion (comb-shaped portion and a lower portion of the waveform) which protrudes vertically and opposes the negative electrode. In the lower part of the processing area having a large amount of water, a dehydration action occurs due to a large current density between these opposed parts and the negative electrode, thereby increasing the amount of electricity as a whole, and achieving efficient and uniform dehydration. It is thought to occur.
【0013】さらに図1B、1Cの場合では、負電極よ
りも正電極の面積の方が大きいので正負電極間に一定電
流を通電した場合、電流密度は汚泥水分の高い被処理域
の下方である負電極の周辺に向かうほど大きくなり、こ
れによっても通電による脱水は被処理域の上下部分を通
して均等に行われ、したがって全体としての実質的な脱
水時間がさらに短縮されることになるものと考えられ
る。Further, in FIGS. 1B and 1C, the area of the positive electrode is larger than that of the negative electrode. Therefore, when a constant current is applied between the positive and negative electrodes, the current density is below the area to be treated with high sludge moisture. It is thought that the dehydration by energization is performed evenly through the upper and lower portions of the processing target area, and therefore the substantial dehydration time as a whole is further reduced. .
【0014】電気浸透による脱水に際しては正負電極間
の電圧の印加による前記水と土壌粒子の負の帯電によっ
て脱水が生じるが、この現象は通常の電気分解よりもか
なり低い電圧で生じる。電圧を増加させることによって
脱水作用もそれに伴って上昇するが、電圧が電解質とし
ての汚泥の電気分解電圧を越えると電解によって特に負
電極付近で汚泥のpH電位が上昇し電気浸透による脱水
効果が妨げられる。このため印加電圧は電気浸透には充
分であるが実質的に電解を生じないような低電圧とする
ことが必要であり、汚泥脱水および/又は洗浄の際の印
加電圧は電極間距離に関して約0.1〜1.0 V/cm と
することが好ましい(1〜10 cm/V )。In the dehydration by electroosmosis, dehydration occurs due to the negative charging of the water and the soil particles due to the application of a voltage between the positive and negative electrodes. This phenomenon occurs at a much lower voltage than in ordinary electrolysis. By increasing the voltage, the dehydration effect also increases, but if the voltage exceeds the electrolysis voltage of the sludge as an electrolyte, electrolysis raises the pH potential of the sludge, especially near the negative electrode, preventing the dewatering effect by electroosmosis. Can be For this reason, the applied voltage needs to be low enough that it is sufficient for electroosmosis but does not substantially cause electrolysis, and the applied voltage during sludge dewatering and / or washing is about 0 with respect to the distance between the electrodes. It is preferably set to 0.1 to 1.0 V / cm (1 to 10 cm / V).
【0015】尚従来の平行配置の構造電極の場合では、
被処理域の正電極に接する側の汚泥の部分が通電抵抗に
よる発熱で乾燥状態となるため、汚泥と正電極面との間
に部分的な剥離を生じて通電量が著しく低下したり、通
電が実質的に行われなくなるおそれがある。[0015] In the case of a conventional parallel-arranged structural electrode,
The sludge on the side of the treated area that is in contact with the positive electrode is in a dry state due to heat generated by the current-carrying resistance, causing partial exfoliation between the sludge and the positive electrode surface. May not be performed substantially.
【0016】しかし、本発明の電極組合せ構造では前記
のように脱水が全体として均一に進行するため、被処理
域の上方の汚泥のみが乾燥状態となることはなく、ま
た、電極の構造が櫛型又は波型のように部分的に垂直方
向成分を有する立体的な形態をとるため、正電極の隣接
する傾斜面もしくは垂直面間に汚泥部分が密着挟持され
る状態となり、正極面から汚泥が剥離するおそれが減少
する。However, in the electrode combination structure of the present invention, since the dehydration proceeds uniformly as described above, only the sludge above the area to be treated does not become dry, and the structure of the electrode is comb-like. In order to take a three-dimensional form having a vertical component partially like a mold or a wavy shape, a sludge portion is tightly held between adjacent inclined surfaces or vertical surfaces of the positive electrode, and sludge is discharged from the positive electrode surface. The risk of peeling is reduced.
【0017】尚本発明における前記正極としては図1
B、Cに示す櫛形および波型の他種々の形態のものが可
能であり、またこれら正電極は今日は種々の寸法、形状
のものを予め組立てゝおき用途に応じて汚泥脱水槽に脱
着可能にしておくことが好ましい。The positive electrode in the present invention is shown in FIG.
Various types other than the comb type and the corrugated type shown in B and C are possible, and these positive electrodes can be of various sizes and shapes pre-assembled in advance and can be attached to and detached from the sludge dewatering tank according to the intended use. It is preferable to keep it.
【0018】[0018]
【実施例】以下本発明を図面に示す実施例によって説明
する。図2は本発明を適用する汚泥脱水および/又は洗
浄装置の概要を示す説明図である。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to embodiments shown in the drawings. FIG. 2 is an explanatory view showing an outline of a sludge dewatering and / or washing apparatus to which the present invention is applied.
【0019】図2中、500 mm x 500 mm x 500 mmの汚泥
脱水槽1の底部に450 mm x 450 mmx 10 mm の負電極鉄
板2が水平に設置されている。これに対して脱水槽1の
上方に平均電極間距離を300mmとして下記寸法形状
の正電極(高さ方向は拡大して図示)が交換、着脱可能
に設けられている。In FIG. 2, a 450 mm × 450 mm × 10 mm negative electrode iron plate 2 is horizontally installed at the bottom of a sludge dewatering tank 1 of 500 mm × 500 mm × 500 mm. On the other hand, a positive electrode (illustrated in an enlarged manner in the height direction) having the following dimensions and shapes with an average inter-electrode distance of 300 mm is provided above the dewatering tank 1 so as to be replaceable and removable.
【0020】(1) 負電極2に対して平行配置される450
mm(巾) x 450 mm (長)x 10 mm (厚)の正極鉄板2
A(従来例:図中一点鎖線で示す)、(2) 450 mm(巾)
x 450 mm (長)x 10mm(厚)の鉄板に高さ50mmの垂
直板5枚を長さ方向に等間隔で負電極2に対して直角に
配置した正電極板3B(本発明実施例:図中実線で示
す)および 頂角80°の長手方向に連続した等ピッ
チの波形を有する 450 mm (巾) x450 mm (投影長)x
10 mm (厚)の鉄板を波形を下向きにして負電極鉄板
2に対して配置した正電極3C(本発明実施例:図中点
線で示す)。(1) 450 arranged in parallel with the negative electrode 2
mm (width) x 450 mm (length) x 10 mm (thick) positive iron plate 2
A (conventional example: indicated by the dashed line in the figure), (2) 450 mm (width)
A positive electrode plate 3B in which five vertical plates having a height of 50 mm are arranged at equal intervals in the length direction and perpendicular to the negative electrode 2 on an iron plate of x450 mm (length) x 10 mm (thickness) (Example of the present invention: 450 mm (width) x 450 mm (projection length) x with a uniform pitch continuous waveform in the longitudinal direction with an apex angle of 80 °
Positive electrode 3C in which a 10 mm (thick) iron plate is arranged with respect to the negative electrode iron plate 2 with the waveform downward, (Example of the present invention: shown by a dotted line in the figure).
【0021】負電極2および正電極3には直流電源4の
(−)および(+)端子が夫々接続されており、脱水槽
1の底部には汚泥処理によって脱水された水の排水パイ
プ5およびバルブ6が設けられている。その他図中、7
は電気浸透装置を汚泥の洗浄処理装置として用いる場合
に脱水槽1に洗浄液を供給するための洗浄液タンク、8
はその供給圧の調節器、9は送液パイプを示す。The (-) and (+) terminals of a DC power supply 4 are connected to the negative electrode 2 and the positive electrode 3, respectively. A valve 6 is provided. In other figures, 7
Is a cleaning liquid tank for supplying a cleaning liquid to the dewatering tank 1 when the electroosmosis apparatus is used as a sludge cleaning processing apparatus;
Denotes a regulator of the supply pressure, and 9 denotes a liquid feed pipe.
【0022】実施例1 前記脱水槽1に含水率84%の下水汚泥75kgを充填
し、各実験毎に正極3A(従来例)、3Bおよび3C
(本発明)を互いに交換して取付け、直流電源4から定
電圧15Vで電流を供給し電流値が0.3Aに減少する
点を目標値として電気浸透による汚泥の脱水処理を行っ
た。結果を表1に示す。Example 1 The dewatering tank 1 was filled with 75 kg of sewage sludge having a water content of 84%, and the positive electrodes 3A (conventional example), 3B and 3C were used for each experiment.
The present invention was exchanged and mounted, and a current was supplied from the DC power supply 4 at a constant voltage of 15 V, and a sludge dewatering process by electroosmosis was performed with a target point at which the current value decreased to 0.3 A. Table 1 shows the results.
【0023】[0023]
【表1】 (A) (B) (C) 電極間距離 300 mm 300 mm 300 mm 電源電圧 (V) 15V 15V 15V 初期電流値(A) 3.0A 6.0A 8.2A 最終電流値(A) 0.3A 0.3A 0.3A 脱水(通電)時間 24 hr 15 hr 12 hr 初期汚泥含水率 84% 84% 84% 最終汚泥含水率 77% 65% 62% 脱水量 22.88kg 40.72kg 43.42kg 最終汚泥重量 52.12kg 34.28kg 31.58kg(A) (B) (C) Distance between electrodes 300 mm 300 mm 300 mm Power supply voltage (V) 15 V 15 V 15 V Initial current value (A) 3.0 A 6.0 A 8.2 A Final current value (A) ) 0.3A 0.3A 0.3A Dehydration (energization) time 24 hr 15 hr 12 hr Initial sludge water content 84% 84% 84% Final sludge water content 77% 65% 62% Dewatering amount 22.88 kg 40.72 kg 43 .42 kg Final sludge weight 52.12 kg 34.28 kg 31.58 kg
【0024】前記表1の実験結果からも明らかなよう
に、正負電極を平行に配置した図1Aに相当する従来の
電極構造に比較して、たとえば図1Bに相当する本発明
の電極組合せ構造の正極3Bを用いた場合には、初期電
流値が約2倍に増大し、最終設定処理時点までの所要時
間が約38%に短縮され、さらにその時点での脱水量が
約80%以上増大している。As is clear from the experimental results shown in Table 1, as compared with the conventional electrode structure corresponding to FIG. 1A in which the positive and negative electrodes are arranged in parallel, for example, the electrode combination structure of the present invention corresponding to FIG. When the positive electrode 3B is used, the initial current value increases about twice, the time required until the final setting processing time is reduced to about 38%, and the dehydration amount at that time increases by about 80% or more. ing.
【0025】このような効果は正電極の形状を図1Cに
相当する波型3Cとした場合にはさらに顕著になる。こ
れは槽1内の被処理汚泥に対して正電極3Cの垂直方向
への傾斜部分がその波型構造により各部にわたってより
均一に対応するため、通電作用がより均一に与えられる
ためと考えられる。Such an effect becomes more remarkable when the shape of the positive electrode is corrugated 3C corresponding to FIG. 1C. This is presumably because the slanted portion of the positive electrode 3C in the vertical direction with respect to the sludge to be treated in the tank 1 more uniformly responds to each portion by the corrugated structure, so that the energizing action is more uniformly applied.
【0026】実施例2 前記処理槽1に含水率25%の汚染汚泥100kgを充
填し、洗浄液タンク7から洗浄水をパイプ9より送水
し、実施例1で用いた正極3A、3B、3Cを互いに交
換しながら設置して直流を通電し脱水洗浄を行った。Example 2 The treatment tank 1 was filled with 100 kg of contaminated sludge having a water content of 25%, washing water was supplied from a washing liquid tank 7 through a pipe 9, and the positive electrodes 3A, 3B and 3C used in Example 1 were connected to each other. It was installed while replacing, and a direct current was supplied to perform dehydration washing.
【0027】結果を表2に示す。尚表2中、ブランクの
欄は電気浸透洗浄時間と同一の時間で通水のみによる洗
浄を行った結果を示す。The results are shown in Table 2. Note that, in Table 2, the blank column shows the results of washing with only water passing for the same time as the electroosmotic washing time.
【0028】[0028]
【表2】 ブランク (A) (B) (C) 電極間距離 300 mm 300 mm 300 mm 300 mm 電圧 − 15V 15V 15V 電流値 − 0.4A 0.8A 1.1A (初期〜最終一定) 単位時間通水量 175 ml/hr 760 ml/hr 1020 ml/hr 1250 ml/hr 通水(通電)時間 24hr 24hr 24hr 24hr 総通水量 4,200 ml 18,240 ml 24,480 ml 30,000 ml [Table 2] Blank (A) (B) (C) Distance between electrodes 300 mm 300 mm 300 mm 300 mm Voltage -15 V 15 V 15 V Current-0.4 A 0.8 A 1.1 A (initial to final constant) Unit time Water flow 175 ml / hr 760 ml / hr 1020 ml / hr 1250 ml / hr Water flow (energization) time 24 hr 24 hr 24 hr 24 hr Total water flow 4,200 ml 18,240 ml 24,480 ml 30,000 ml
【0029】表2に示すように電気浸透による汚染汚泥
の通水洗浄において、正負電極を対向配置した場合従来
電極、3Aに比較して本発明による電極構造3Bの場合
では電流値が2倍に増大し、それにともなって単位時間
通水量が約1/3増加した。また前記実施例1の場合と
同様に、前記の効果は正極を波型3Cとした場合にさら
に顕著となる。As shown in Table 2, the current value of the electrode structure 3B according to the present invention is twice that of the conventional electrode and 3A when the positive and negative electrodes are opposed to each other in the washing of contaminated sludge by electroosmosis. The amount of water per unit time increased by about 1/3. Further, as in the case of the first embodiment, the above-mentioned effect becomes more remarkable when the positive electrode is a corrugated 3C.
【0030】実施例3 汚泥脱水槽の寸法形状を500x500x800mm、電
極間距離を600mmとした以外は実施例1と同様にして
汚泥の脱水実験を行った。結果を表3に示す。Example 3 A sludge dewatering experiment was conducted in the same manner as in Example 1 except that the dimensions and shape of the sludge dewatering tank were set to 500 × 500 × 800 mm and the distance between the electrodes was set to 600 mm. Table 3 shows the results.
【0031】[0031]
【表3】 (A) (B) (C) 電極間距離 600 mm 600 mm 600 mm 電源電圧 (V) 15V 15V 15V 初期電流値(A) 1.8A 4.2A 6.8A 最終電流値(A) 0.3A 0.3A 0.3A 脱水(通電)時間 46 hr 24 hr 22 hr 初期汚泥含水率 84% 84% 84% 最終汚泥含水率 80% 67% 65% 脱水量 30kg 77kg 69kg 最終汚泥重量 120kg 73kg 69kg(A) (B) (C) Distance between electrodes 600 mm 600 mm 600 mm Power supply voltage (V) 15 V 15 V 15 V Initial current value (A) 1.8 A 4.2 A 6.8 A Final current value (A) 0.3A 0.3A 0.3A Dewatering (energization) time 46 hr 24 hr 22 hr Initial sludge water content 84% 84% 84% Final sludge water content 80% 67% 65% Dewatering amount 30kg 77kg 69kg Final sludge weight 120kg 73kg 69kg
【0032】実施例4 実施例3と同様の汚泥脱水槽および電極構造を用いて実
施例2と同様な洗浄実験を行った。結果を表3に示す。Example 4 Using the same sludge dewatering tank and electrode structure as in Example 3, the same cleaning experiment as in Example 2 was performed. Table 3 shows the results.
【0033】[0033]
【表4】 ブランク (A) (B) (C) 電極間距離 − 600 mm 600 mm 600 mm 電圧 − 15V 15V 15V 電流値 − 0.2A 0.6A 0.9A (初期〜最終一定) 単位時間通水量 180 ml/hr 670 ml/hr 985 ml/hr 1210 ml/hr 通水(通電)時間 24hr 24hr 24hr 24hr 総通水量 4,300 ml 16,080 ml 23,640 ml 29,040 ml [Table 4] Blank (A) (B) (C) Distance between electrodes-600 mm 600 mm 600 mm Voltage-15 V 15 V 15 V Current-0.2 A 0.6 A 0.9 A (initial to final constant) Unit time pass Water volume 180 ml / hr 670 ml / hr 985 ml / hr 1210 ml / hr Water flow (energization) time 24 hr 24 hr 24 hr 24 hr Total water flow 4,300 ml 16,080 ml 23,640 ml 29,040 ml
【0034】[0034]
【発明の効果】以上のように本発明によれば電気浸透に
よる汚泥の脱水または汚染汚泥の洗浄に際して、脱水処
理槽の底部に水平に配置した負電極に組合せる正電極の
一部を垂直方向に突出するような形状、たとえば櫛型又
は波型等としてあるので、通電の際の電極の有効接触面
積が増大し、また被処理域各部での通電による脱水もし
くは通水が均一化され、その結果脱水もしくは洗浄処理
時間が著しく短縮される。As described above, according to the present invention, when dewatering sludge by electro-osmosis or washing contaminated sludge, a part of the positive electrode combined with the negative electrode horizontally arranged at the bottom of the dewatering tank is moved vertically. Since it has a shape that protrudes into, for example, a comb shape or a corrugated shape, the effective contact area of the electrode at the time of energization is increased, and dehydration or water flow by energization in each part of the processing area is uniformized, As a result, the time for the dehydration or washing process is significantly reduced.
【図1】本発明の電極組合せ構造の作用を示す説明図で
ある。FIG. 1 is an explanatory diagram showing the operation of an electrode combination structure according to the present invention.
【図2】本発明の電極組合せ構造を用いた電気浸透によ
る汚泥脱水および/または洗浄装置の概要を示す説明図
である。FIG. 2 is an explanatory view showing an outline of a sludge dewatering and / or washing device by electroosmosis using the electrode combination structure of the present invention.
1…汚泥脱水/洗浄処理槽 2…負電極 3A、3B、3C…正電極 4…直流電源 5…排水パイプ 6…排水バルブ 7…洗浄液タンク 8…圧力調整器 9…送液パイプ DESCRIPTION OF SYMBOLS 1 ... Sludge dewatering / washing tank 2 ... Negative electrode 3A, 3B, 3C ... Positive electrode 4 ... DC power supply 5 ... Drain pipe 6 ... Drain valve 7 ... Cleaning liquid tank 8 ... Pressure regulator 9 ... Liquid feed pipe
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B01D 35/06 B01D 61/56 C02F 11/12 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) B01D 35/06 B01D 61/56 C02F 11/12
Claims (5)
て対向して互いに平行に設けた正極および負極間に直流
電圧を印加して汚泥の水分含有率を電気浸透によって低
下させる脱水装置に用いる電極において、前記被処理域
の底部に位置された負極に対して正極の一部を前記負極
に対して垂直方向に突出して対向するように配置したこ
とを特徴とする前記電気浸透脱水装置の電極組合せ構
造。1. An electrode used in a dehydrator for applying a DC voltage between a positive electrode and a negative electrode which are opposed to each other on an upper surface and a bottom surface of a sludge treatment area and are parallel to each other to reduce the water content of the sludge by electroosmosis. The electrode combination of the electroosmotic dehydration apparatus, wherein a part of the positive electrode is disposed so as to project perpendicularly to the negative electrode and face the negative electrode located at the bottom of the processing target area. Construction.
するように櫛型に形成した請求項1記載の電気浸透脱水
装置の電極組合せ構造。2. The electrode combination structure for an electroosmotic dehydrator according to claim 1, wherein the positive electrode is formed in a comb shape so that a part of the positive electrode protrudes from the negative electrode.
するように波型に形成した請求項1記載の電気浸透脱水
装置の電極組合せ構造。3. The electrode combination structure for an electroosmotic dehydrator according to claim 1, wherein the positive electrode is formed in a corrugated shape so that a part of the positive electrode projects from the negative electrode.
電圧に関して1〜10 cm/V に保持設置する請求項1記
載の電気浸透脱水装置の電極組合せ構造。4. The electrode combination structure for an electroosmotic dehydrator according to claim 1, wherein the average distance between the positive and negative electrodes is maintained at 1 to 10 cm / V with respect to the applied voltage.
着脱可能とした請求項1記載の電気浸透脱水装置の電極
組合せ構造。5. The electrode combination structure for an electroosmotic dehydrator according to claim 1, wherein the positive electrode is integrally combined and detachable from the electroosmotic device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26195993A JP3321612B2 (en) | 1993-09-25 | 1993-09-25 | Combination structure of electrodes of electroosmotic dehydrator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26195993A JP3321612B2 (en) | 1993-09-25 | 1993-09-25 | Combination structure of electrodes of electroosmotic dehydrator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0796300A JPH0796300A (en) | 1995-04-11 |
JP3321612B2 true JP3321612B2 (en) | 2002-09-03 |
Family
ID=17369036
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26195993A Expired - Fee Related JP3321612B2 (en) | 1993-09-25 | 1993-09-25 | Combination structure of electrodes of electroosmotic dehydrator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3321612B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4203810B2 (en) * | 2003-12-08 | 2009-01-07 | 富士電機ホールディングス株式会社 | Organic waste treatment method and system |
-
1993
- 1993-09-25 JP JP26195993A patent/JP3321612B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0796300A (en) | 1995-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4004994A (en) | Electrochemical removal of contaminants | |
US4244804A (en) | Slime and sludge dewatering | |
US4755305A (en) | Continuous dewatering method | |
EP0784501B1 (en) | Dewatering process | |
US4671874A (en) | Continuous dewatering apparatus | |
CA2171061A1 (en) | Method, apparatus and system for continuously treating water body | |
Gopalakrishnan et al. | Optimal off-time in interrupted electroosmotic dewatering | |
JP3321612B2 (en) | Combination structure of electrodes of electroosmotic dehydrator | |
US3692661A (en) | Apparatus for removing pollutants and ions from liquids | |
JPH0685845B2 (en) | Electro-osmotic dehydrator | |
EP1167299A4 (en) | Apparatus and method for hydrothermal electrolysis | |
CN210454867U (en) | Filler conveying device for micro-electrolysis filler wastewater treatment | |
CN112851058A (en) | Alternating-current voltage auxiliary belt type filter pressing equipment and sludge high-dryness dewatering method | |
CA2474176C (en) | Process and apparatus for treating sludge | |
EP1642868A1 (en) | Process and apparatus for treating sludge | |
US4398295A (en) | Apparatus for regenerating activated carbon | |
US5693214A (en) | Apparatus for and method of separation to water and colloidal particles by agglomeration | |
KR100639114B1 (en) | Electrodewatering device for sludge | |
JPH0687927B2 (en) | Sludge dewatering device | |
KR100603135B1 (en) | Electrical dehydrator convenient for supplying electricity | |
KR100336507B1 (en) | Electrode watering System for Separating Water from Sludge | |
SU927919A1 (en) | Device for cleaning the filters of operating water wells | |
Rojo | Apparatus for Removing Impurities from Waste Water | |
KR810001369B1 (en) | Method for treatment of azueous dispersions | |
JPS62125810A (en) | Method for electroosmosis dehydration |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |