JP3321210B2 - Analysis and evaluation system for aspherical shapes - Google Patents

Analysis and evaluation system for aspherical shapes

Info

Publication number
JP3321210B2
JP3321210B2 JP27471992A JP27471992A JP3321210B2 JP 3321210 B2 JP3321210 B2 JP 3321210B2 JP 27471992 A JP27471992 A JP 27471992A JP 27471992 A JP27471992 A JP 27471992A JP 3321210 B2 JP3321210 B2 JP 3321210B2
Authority
JP
Japan
Prior art keywords
shape
aspherical
data
measurement data
evaluation system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27471992A
Other languages
Japanese (ja)
Other versions
JPH06129944A (en
Inventor
雅明 高井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP27471992A priority Critical patent/JP3321210B2/en
Publication of JPH06129944A publication Critical patent/JPH06129944A/en
Application granted granted Critical
Publication of JP3321210B2 publication Critical patent/JP3321210B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、非球面形状の解析評価
システム、特にライン走査型の形状測定機を用いる非球
面形状の解析評価システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aspherical shape analysis and evaluation system, and more particularly to an aspherical shape analysis and evaluation system using a line scanning type shape measuring instrument.

【0002】[0002]

【従来の技術】従来、非球面レンズ等の形状を評価する
場合には、高精度に仕上げたマスターレンズを用いてホ
ログラム手法で形状のずれを確認していたが、その形状
のずれ(誤差の値)を正確に把握することができないと
ともにマスターレンズが高価である等の問題があった。
そこで、近時、このような非球面形状を自動的に評価す
ることのできる評価システムが提案されている。
2. Description of the Related Art Conventionally, when evaluating the shape of an aspherical lens or the like, a shape deviation was confirmed by a hologram method using a master lens finished with high precision. Value) cannot be accurately grasped, and the master lens is expensive.
Therefore, recently, an evaluation system capable of automatically evaluating such an aspherical shape has been proposed.

【0003】この種の非球面形状の解析評価システムと
しては、例えば特開平3−33635号公報に記載され
たものがある。この評価システムは、フォームタリサー
フ(形状測定機)により測定を行い、複数の測定データ
を次式(1)のような非球面式に当てはめて、この式中
の係数等を推定することで回帰曲線を求め、各測定点で
のこの回帰曲線に対する偏差をグラフ表示するようにし
ている。
An example of this kind of aspherical shape analysis and evaluation system is disclosed in Japanese Patent Application Laid-Open No. 3-33635. This evaluation system measures by a form tally surf (shape measuring machine), applies a plurality of measurement data to an aspheric surface equation such as the following equation (1), and estimates a coefficient or the like in this equation to perform regression. A curve is obtained, and a deviation from the regression curve at each measurement point is graphically displayed.

【0004】[0004]

【数1】 (Equation 1)

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の非球面形状の解析評価システムにあっては、
上述のように複雑な非球面式の係数等を推定するため、
その処理にかなりの労力、手間がかかり、容易な測定が
できなかった。また、そのような労力を軽減するため
に、非球面式の係数のうち近軸曲率半径R以外の係数を
設計値に固定して、近軸曲率半径Rのみを変化させる
(入力を繰り返す)方法を採ることができるが、形状デ
ータに最も近い非球面式を得るとなるとやはり労力を必
要とするし、測定者の主観的判断が入ってしまうことか
ら正確な評価ができない。
However, in such a conventional aspherical shape analysis and evaluation system,
As described above, in order to estimate the coefficients and the like of a complex aspherical expression,
The process required considerable effort and labor, and could not be easily measured. In addition, in order to reduce such labor, a coefficient other than the paraxial curvature radius R among the coefficients of the aspheric expression is fixed to a design value, and only the paraxial curvature radius R is changed (input is repeated). However, if an aspherical expression closest to the shape data is obtained, labor is still required, and a subjective judgment of the measurer is involved, so that accurate evaluation cannot be performed.

【0006】そこで本発明は、測定者の主観的判断が入
らず、入力の手間のかからない非球面形状の解析評価シ
ステムを提供することを目的とし、さらに測定精度を高
精度にすることを目的とする。
Accordingly, an object of the present invention is to provide an analysis / evaluation system for an aspherical shape which does not require a subjective judgment of a measurer and does not require inputting, and further aims to improve the measurement accuracy. I do.

【0007】[0007]

【課題を解決するための手段】上記目的達成のため、請
求項1記載の発明は、非球面形状を測定する形状測定機
の測定データに基づいて該非球面形状を解析評価する非
球面形状の解析評価システムであって、前記形状測定機
からの測定データを取り込むデータ取り込み手段と、デ
ータ取り込み手段に取り込まれた測定データから非球面
軸の位置と傾きを探索し、該非球面軸の位置と傾きに基
づいて測定誤差を補正する補正手段と、所定の設計非球
面式の係数中で近軸曲率半径のみを変化させ、前記補正
手段により補正された形状測定データと設計非球面式に
基づく形状データとの偏差が最小となるような最適近軸
曲率半径を有する非球面式を自動的に推定する推定手段
と、前記形状測定データと最適近軸曲率半径を有する非
球面式に基づく形状データとの偏差を低周波成分と高周
波成分とに分離する分離手段と、を備えたことを特徴と
するものである。
In order to achieve the above object, the invention according to claim 1 is an analysis of an aspherical shape for analyzing and evaluating the aspherical shape based on measurement data of a shape measuring machine for measuring the aspherical shape. In an evaluation system, a data capturing unit that captures measurement data from the shape measuring device, and a position and a tilt of an aspheric axis are searched for from the measurement data captured by the data capturing unit. Correction means for correcting the measurement error based on, and only the paraxial radius of curvature is changed in the coefficients of the predetermined design aspherical expression, the shape measurement data corrected by the correction means and the shape data based on the design aspherical expression Estimating means for automatically estimating an aspheric expression having an optimum paraxial curvature radius such that a deviation of the shape measurement data is minimized;
The deviation from the shape data based on the spherical equation is calculated using the low frequency component and the high frequency.
And a separating means for separating into wave components .

【0008】[0008]

【作用】請求項1記載の発明では、非球面形状を測定し
た形状測定機からデータ取り込み手段に測定データが取
り込まれると、まず、補正手段によって非球面軸の位置
と傾きが求められ、該非球面軸の位置と傾きに基づいて
測定誤差が補正される。次いで、推定手段によって所定
の設計非球面式の係数中で近軸曲率半径のみを変化させ
つつ、前記補正がされた形状測定データと設計非球面式
に基づく形状データとの偏差が最小となるように最適近
軸曲率半径を有する非球面式が自動的に推定される。し
たがって、測定者の入力の手間がなくなり、しかも、主
観的判断も入らない正確な形状評価ができる。また、前
記形状測定データと最適近軸曲率半径を有する非球面式
に基づく形状データとの偏差を、低周波成分と高周波成
分とに分離することから、形状誤差成分と表面粗さ成分
を分けて評価でき、評価の精度を高めることができる。
According to the first aspect of the present invention, when measurement data is taken into the data acquisition means from the shape measuring device which measures the aspherical shape, first, the position and inclination of the aspherical axis are obtained by the correction means, and the aspherical surface is obtained. The measurement error is corrected based on the position and inclination of the axis. Next, the deviation between the corrected shape measurement data and the shape data based on the design aspherical expression is minimized while changing only the paraxial curvature radius in the coefficients of the predetermined design aspherical expression by the estimating means. Is automatically estimated with the optimal paraxial radius of curvature. Therefore, it is possible to eliminate the trouble of the input by the measurer and to perform the accurate shape evaluation without the subjective judgment. Also before
Aspherical expression with shape measurement data and optimal paraxial radius of curvature
The deviation from the shape data based on the
Component and surface roughness component
Can be evaluated separately, and the accuracy of the evaluation can be improved.

【0009】[0009]

【0010】[0010]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1〜図4は請求項1、2記載の発明に係る非球
面形状の解析評価システムの一実施例を示す図である。
まず、構成を説明する。
Embodiments of the present invention will be described below with reference to the drawings. FIGS. 1 to 4 show an embodiment of an aspherical shape analysis and evaluation system according to the first and second aspects of the present invention.
First, the configuration will be described.

【0011】図1(a)において、10はライン走査型の
形状測定機(例えば公知のフォームタリサーフ)であ
り、形状測定器10は非球面形状を有する被測定物(図示
していない)の形状を測定し、非球面形状評価システム
20にその測定データを送るようになっている。図1
(b)に示すように、非球面形状評価システム20は、デ
ータ取り込み回路21、第1演算回路22、第2演算回路23
および出力装置24を具備しており、データ取り込み回路
21は形状測定器10から送られてきた形状測定データを取
り込み、第1演算手段22との間でデータの授受を行なう
データ取り込み手段となっている。
In FIG. 1A, reference numeral 10 denotes a line scanning type shape measuring device (for example, a known form Talysurf), and the shape measuring device 10 is for measuring an object to be measured (not shown) having an aspherical shape. Measures shape and evaluates aspheric shape
The measurement data is sent to 20. FIG.
As shown in (b), the aspherical shape evaluation system 20 includes a data acquisition circuit 21, a first arithmetic circuit 22, and a second arithmetic circuit 23.
And data output circuit
Reference numeral 21 denotes a data capturing unit that captures the shape measurement data sent from the shape measuring device 10 and exchanges data with the first arithmetic unit 22.

【0012】第1演算回路22および第2演算回路23はマ
イクロコンピュータ等から構成されており、第1演算回
路22はデータ取り込み回路21内のデータから前記非球面
の非球面軸の位置を探索する探索回路、並びに、図2に
αで示す非球面軸の傾きを前記非球面軸に対するデータ
分布の左右対称性から求めてその傾きを補正する補正回
路(両回路により補正手段が構成される)として機能
し、更に、近軸曲率半径Rの最適な非球面式(以下、最
適R非球面式という)を推定する推定回路(推定手段)
として機能するようになっている。
The first arithmetic circuit 22 and the second arithmetic circuit 23 are constituted by a microcomputer or the like. The first arithmetic circuit 22 searches the position of the aspheric axis of the aspheric surface from the data in the data acquisition circuit 21. A search circuit and a correction circuit for correcting the inclination of the aspherical axis indicated by α in FIG. 2 by determining the inclination of the data distribution with respect to the aspherical axis from the left-right symmetry (both circuits constitute correction means) An estimating circuit (estimating means) that functions and further estimates an optimal aspherical expression having a paraxial curvature radius R (hereinafter referred to as an optimal R aspherical expression).
It is designed to function as.

【0013】この第1演算回路22においては、前記補正
回路によって非球面軸の傾きαが補正された時点で図3
に示すような座標系が設定でき、このときのデータが純
粋な被測定物の非球面形状データとなる。また、前記推
定回路は、図4に示すような形状データに基づいて、所
定の設計非球面式(式(1)と同様な非球面式)の係数
(式(1)のR、K、EJ に相当する)の中で近軸曲率半
径Rのみを設計値から変化させていきつつ、その近軸曲
率半径Rを有する非球面式に基づく形状データと前記補
正後の測定データとの偏差が最小となるような近軸曲率
半径R(以下、これを最適近軸曲率半径Rs という)を
自動的に推定することで、最適R非球面式を推定する。
この推定に際しては、最小2乗法、減衰最小2乗法、実
験的回帰分析等の手法が利用できる。
In the first arithmetic circuit 22, at the time when the inclination α of the aspherical axis is corrected by the correction circuit, FIG.
Can be set, and the data at this time becomes pure aspherical shape data of the measured object. Further, the estimation circuit calculates the coefficients (R, K, E of the equation (1)) of a predetermined design aspherical equation (an aspherical equation similar to the equation (1)) based on the shape data as shown in FIG. J ), the deviation between the shape data based on the aspherical formula having the paraxial radius of curvature R and the corrected measurement data while changing only the paraxial radius of curvature R from the design value. smallest such paraxial radius of curvature R (hereinafter, optimum near that axis curvature radius R s) the by automatically estimated, estimates the optimal R aspheric expression.
For this estimation, a method such as a least square method, a damped least square method, or an experimental regression analysis can be used.

【0014】第2演算回路23は、データ取り込み回路21
に取り込まれた各測定データと最適R非球面式に基づく
形状データとの偏差を算出する算出回路を含むととも
に、その偏差データから移動平均、多項式近似等の手法
で近似曲線を算出する近似曲線算出回路を含んでいる。
図4に示すように、この近似曲線は被測定物の被球面形
状の誤差成分(大きな誤差成分)に対応する偏差データ
の低周波成分を示すもので、その近似曲線と偏差データ
との偏差が被測定物の表面の粗さ成分(小さな誤差成
分)に対応する偏差データの高周波成分となっている。
すなわち、第2演算回路23は形状測定データと最適近軸
曲率半径を有する非球面式に基づく形状データとの偏差
を低周波成分と高周波成分とに分離する分離手段となっ
ている。
The second arithmetic circuit 23 includes a data acquisition circuit 21
Curve calculation which calculates the deviation between each measurement data taken into the device and the shape data based on the optimal R aspherical formula, and calculates an approximate curve from the deviation data by a method such as moving average or polynomial approximation Includes circuitry.
As shown in FIG. 4, this approximation curve indicates the low-frequency component of the deviation data corresponding to the error component (large error component) of the spherical surface shape of the measured object. This is a high-frequency component of deviation data corresponding to the roughness component (small error component) of the surface of the device under test.
That is, the second arithmetic circuit 23 is a separating unit that separates a deviation between the shape measurement data and the shape data based on the aspherical expression having the optimum paraxial curvature radius into a low-frequency component and a high-frequency component.

【0015】出力装置24は少なくとも最適R非球面式に
対応する曲線と前記近似曲線との双方を出力する装置と
なっており、近似曲線により非球面形状の誤差を画面表
示又は記録紙にプリントする。なお、形状誤差成分(大
きな誤差成分)の出力のみならず、表面粗さ成分の出力
が可能であることはいうまでもない。次に、作用を説明
する。
The output device 24 is a device for outputting at least both the curve corresponding to the optimum R aspherical surface equation and the approximated curve. The error of the aspherical shape is displayed on a screen or printed on recording paper by the approximated curve. . It goes without saying that not only the output of the shape error component (large error component) but also the output of the surface roughness component is possible. Next, the operation will be described.

【0016】まず、形状測定器10により被測定物の被球
面形状が測定され、その測定データが形状測定器10から
データ取り込み回路21に取り込まれると、第1演算回路
22の探索回路によって、まず、データ取り込み回路21内
の測定データから非球面軸の位置が探索され、次いで、
非球面軸の傾きαが前記非球面軸に対するデータ分布の
左右対称性から求められ、その傾きをゼロとした場合の
値になるよう測定データが補正される。この時点で、図
3に示すような座標系が設定され、被測定物の純粋な非
球面形状データが得られる。
First, the shape of the spherical surface of the object to be measured is measured by the shape measuring device 10 and the measured data is taken from the shape measuring device 10 into the data taking circuit 21.
First, the position of the aspherical axis is searched from the measurement data in the data acquisition circuit 21 by the search circuit 22.
The inclination α of the aspherical axis is obtained from the left-right symmetry of the data distribution with respect to the aspherical axis, and the measurement data is corrected so that the inclination α becomes zero. At this point, a coordinate system as shown in FIG. 3 is set, and pure aspherical shape data of the measured object is obtained.

【0017】次いで、このような形状データに基づい
て、所定の設計非球面式の複数の係数中で近軸曲率半径
Rのみを設計値から少しずつ変化させながら、最適R非
球面式が推定される。次に、第2演算回路23によって、
データ取り込み回路21に取り込まれた各測定データと最
適R非球面式に基づく形状データとの偏差が算出され、
その偏差データから近似曲線が算出され、更にその近似
曲線と測定データの偏差が算出されることで、被測定物
の非球面形状誤差が自動的に出力装置24により出力され
る。
Next, based on such shape data, the optimum R aspherical surface equation is estimated while only the paraxial radius of curvature R is gradually changed from the design value among a plurality of coefficients of the predetermined design aspherical surface equation. You. Next, by the second arithmetic circuit 23,
The deviation between each measurement data taken into the data taking-in circuit 21 and the shape data based on the optimal R aspherical formula is calculated,
An approximation curve is calculated from the deviation data, and a deviation between the approximation curve and the measurement data is calculated, so that the output device 24 automatically outputs the aspherical shape error of the measured object.

【0018】このように本実施例では、第1演算回路22
によって所定の設計非球面式の係数中で近軸曲率半径R
のみを変化させつつ、形状測定データ(傾きに対する補
正をしたデータ)と設計非球面式に基づく形状データと
の偏差が最小となるように最適R非球面式が自動的に推
定される。したがって、測定者による入力の手間がかか
らないとともに、測定者の主観的判断も入らなくなり、
正確な形状評価のできる解析評価システムとなる。
As described above, in the present embodiment, the first arithmetic circuit 22
Of the paraxial curvature radius R in the coefficients of the given design aspherical equation
The optimum R aspherical formula is automatically estimated so that the deviation between the shape measurement data (the data corrected for the inclination) and the shape data based on the design aspherical formula is minimized while changing only the aspherical formula. Therefore, the operator does not have to make any input, and the subjective judgment of the operator is not included.
It becomes an analysis evaluation system that can perform accurate shape evaluation.

【0019】また、上述のように、形状測定データと最
適近軸曲率半径を有する非球面式に基づく形状データと
の偏差を、低周波成分と高周波成分とに分離するから、
形状誤差成分と表面粗さ成分とを分けて評価することが
でき、従来かなり困難であった非球面形状誤差の評価を
高精度にできる。
Further, as described above, the deviation between the shape measurement data and the shape data based on the aspherical expression having the optimum paraxial curvature radius is separated into a low-frequency component and a high-frequency component.
The shape error component and the surface roughness component can be evaluated separately, and the evaluation of the aspherical shape error, which has been quite difficult in the past, can be performed with high accuracy.

【0020】[0020]

【発明の効果】請求項1記載の発明によれば、非球面形
状を測定した形状測定機からデータ取り込み手段に測定
データを取り込み、補正手段により非球面軸の位置と傾
きを求めて測定誤差を補正した後、推定手段により所定
の設計非球面式の係数中で近軸曲率半径のみを変化させ
つつ、前記補正をしたデータと設計非球面式に基づく形
状データとの偏差が最小となるように最適近軸曲率半径
を有する非球面式を自動的に推定するようにしているの
で、測定者の入力の手間をなくすことができるととも
に、主観的判断が入らないようにでき、正確な形状評価
のできる非球面形状の解析評価システムを提供すること
ができる。また、前記形状測定データと最適近軸曲率半
径を有する非球面式に基づく形状データとの偏差を、低
周波成分と高周波成分とに分離するので、形状誤差成分
と表面粗さ成分を分けて評価でき、評価の精度を高める
ことができる。
According to the first aspect of the present invention, the measurement data is fetched from the shape measuring instrument that measures the aspherical shape to the data fetching means, and the position and inclination of the aspherical axis are obtained by the correcting means to reduce the measurement error. After correction, the deviation between the corrected data and the shape data based on the design aspheric expression is minimized while changing only the paraxial curvature radius in the coefficients of the predetermined design aspheric expression by the estimating means. Since the aspherical expression having the optimal paraxial radius of curvature is automatically estimated, it is possible to eliminate the trouble of the input of the measurer and to prevent the subjective judgment from being entered, thereby enabling accurate shape evaluation. An analysis and evaluation system for an aspherical shape that can be provided can be provided. In addition, the shape measurement data and the optimal paraxial curvature half
The deviation from the shape data based on the aspherical expression with a diameter is low.
Since it is separated into a high frequency component and a high frequency component, the shape error component
And surface roughness components can be evaluated separately, improving the accuracy of evaluation
be able to.

【0021】[0021]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る非球面形状の解析評価システムの
一実施例を示す図で、(a)は全体の概略ブロック図、
(b)はその解析評価システムのブロック図である。
FIG. 1 is a diagram showing an embodiment of an aspherical shape analysis and evaluation system according to the present invention, wherein (a) is a schematic block diagram of the whole;
(B) is a block diagram of the analysis evaluation system.

【図2】その傾き補正前の形状測定データを示すグラフ
である。
FIG. 2 is a graph showing shape measurement data before the inclination correction.

【図3】その傾き補正後の形状測定データを示すグラフ
である。
FIG. 3 is a graph showing shape measurement data after the inclination correction.

【図4】最適非球面式に対する測定データの球面成分、
非球面成分および粗さ成分の関係を示す説明図である。
FIG. 4 shows the spherical component of the measured data for the optimal aspheric formula;
FIG. 3 is an explanatory diagram illustrating a relationship between an aspherical surface component and a roughness component.

【符号の説明】[Explanation of symbols]

10 形状測定機 20 非球面形状評価システム 21 データ取り込み回路(データ取り込み手段) 22 第1演算回路(補正手段、推定手段) 23 第2演算回路(分離手段) 10 Shape measuring machine 20 Aspherical surface shape evaluation system 21 Data acquisition circuit (Data acquisition means) 22 First operation circuit (Correction means, Estimation means) 23 Second operation circuit (Separation means)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】非球面形状を測定する形状測定機の測定デ
ータに基づいて該非球面形状を解析評価する非球面形状
の解析評価システムであって、 前記形状測定機からの測定データを取り込むデータ取り
込み手段と、 データ取り込み手段に取り込まれた測定データから非球
面軸の位置と傾きを探索し、該非球面軸の位置と傾きに
基づいて測定誤差を補正する補正手段と、 所定の設計非球面式の係数中で近軸曲率半径のみを変化
させ、前記補正手段により補正された形状測定データと
設計非球面式に基づく形状データとの偏差が最小となる
ような最適近軸曲率半径を有する非球面式を自動的に推
定する推定手段と、前記形状測定データと最適近軸曲率半径を有する非球面
式に基づく形状データとの偏差を低周波成分と高周波成
分とに分離する分離手段と、 を備えたことを特徴とする
非球面形状の解析評価システム。
1. An aspherical shape analysis / evaluation system for analyzing and evaluating an aspherical shape based on measurement data of a shape measuring device for measuring an aspherical shape, the data taking in the measurement data from the shape measuring device. Means for searching the position and inclination of the aspherical axis from the measurement data captured by the data capturing means, and correcting the measurement error based on the position and inclination of the aspherical axis; and a predetermined design aspherical type. An aspheric formula having an optimum paraxial curvature radius such that the deviation between the shape measurement data corrected by the correction means and the shape data based on the design aspheric formula is minimized by changing only the paraxial curvature radius in the coefficient. Estimating means for automatically estimating an aspheric surface having the shape measurement data and an optimum paraxial radius of curvature
The deviation from the shape data based on the
An aspherical shape analysis / evaluation system , comprising: a separation unit for separating an aspheric surface.
JP27471992A 1992-10-14 1992-10-14 Analysis and evaluation system for aspherical shapes Expired - Lifetime JP3321210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27471992A JP3321210B2 (en) 1992-10-14 1992-10-14 Analysis and evaluation system for aspherical shapes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27471992A JP3321210B2 (en) 1992-10-14 1992-10-14 Analysis and evaluation system for aspherical shapes

Publications (2)

Publication Number Publication Date
JPH06129944A JPH06129944A (en) 1994-05-13
JP3321210B2 true JP3321210B2 (en) 2002-09-03

Family

ID=17545622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27471992A Expired - Lifetime JP3321210B2 (en) 1992-10-14 1992-10-14 Analysis and evaluation system for aspherical shapes

Country Status (1)

Country Link
JP (1) JP3321210B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7236693B2 (en) 2005-03-22 2007-06-26 Globaltec Fireplaces, Inc. Flame simulator for use in an electric heater
JP2010190790A (en) * 2009-02-19 2010-09-02 Olympus Corp Surface shape measuring machine, surface shape measuring method and method for analyzing measured value of surface shape

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5275853B2 (en) * 2009-03-06 2013-08-28 オリンパス株式会社 Surface shape measuring machine, surface shape measuring method, and method of analyzing surface shape measurement value
JP5138656B2 (en) * 2009-10-15 2013-02-06 シャープ株式会社 Lens evaluation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7236693B2 (en) 2005-03-22 2007-06-26 Globaltec Fireplaces, Inc. Flame simulator for use in an electric heater
JP2010190790A (en) * 2009-02-19 2010-09-02 Olympus Corp Surface shape measuring machine, surface shape measuring method and method for analyzing measured value of surface shape

Also Published As

Publication number Publication date
JPH06129944A (en) 1994-05-13

Similar Documents

Publication Publication Date Title
US20180108143A1 (en) Height measuring system and method
JP4234059B2 (en) Camera calibration method and camera calibration apparatus
JP4055998B2 (en) Distance detection device, distance detection method, and distance detection program
JP2001324305A (en) Image correspondent position detector and range finder equipped with the same
KR100888235B1 (en) Image processing device and method
TWI510761B (en) System and method for focusing multiple measurement points on a surface of an object
JP3321210B2 (en) Analysis and evaluation system for aspherical shapes
JPH08292014A (en) Measuring method of pattern position and device thereof
CN112116665B (en) Structural light sensor calibration method
CN114877826B (en) Binocular stereo matching three-dimensional measurement method, system and storage medium
CN109373901B (en) Method for calculating center position of hole on plane
JP2004205248A (en) Tensile testing method and apparatus therefor
JPH06288763A (en) Method for evaluating shape
JP2961140B2 (en) Image processing method
JP2885422B2 (en) Shape evaluation device and shape evaluation method
JP2009018451A (en) Mold correction device and mold correction method
US7526118B2 (en) Digital video optical inspection apparatus and method for vertically sectioning an object's surface
KR200292152Y1 (en) Dimension Inspection Unit of Injected E.V.A Midsole
CN109238165A (en) A kind of 3C Product profile tolerance detection method
JP2879357B2 (en) Shape judgment method
JPH07280560A (en) Correlation computation evaluating method
JPH0875448A (en) Method for correcting inclination in surface roughness form measurement, and device therefor
JPH05261557A (en) Device for deciding whether can body is welded adequately or not
JP3287639B2 (en) Spot inspection equipment
JP2591694B2 (en) Line width continuous measurement method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080621

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090621

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090621

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100621

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110621

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110621

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120621

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130621

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130621

Year of fee payment: 11