JP3320934B2 - Gas liquefaction method - Google Patents

Gas liquefaction method

Info

Publication number
JP3320934B2
JP3320934B2 JP33194394A JP33194394A JP3320934B2 JP 3320934 B2 JP3320934 B2 JP 3320934B2 JP 33194394 A JP33194394 A JP 33194394A JP 33194394 A JP33194394 A JP 33194394A JP 3320934 B2 JP3320934 B2 JP 3320934B2
Authority
JP
Japan
Prior art keywords
component refrigerant
pressure
low
temperature zone
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33194394A
Other languages
Japanese (ja)
Other versions
JPH08159652A (en
Inventor
孝一 上野
顕一郎 三橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP33194394A priority Critical patent/JP3320934B2/en
Priority to EP95308886A priority patent/EP0723125B1/en
Priority to DE69523437T priority patent/DE69523437T2/en
Priority to US08/569,901 priority patent/US5644931A/en
Publication of JPH08159652A publication Critical patent/JPH08159652A/en
Priority to US08/823,165 priority patent/US5813250A/en
Application granted granted Critical
Publication of JP3320934B2 publication Critical patent/JP3320934B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation By Low-Temperature Treatments (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ガスの液化方法、例え
ば天然ガスのような少なくとも一つの低沸点成分を含む
ガスを液化する方法に関する。
The present invention relates to a method for liquefying a gas, for example, a method for liquefying a gas containing at least one low-boiling component such as natural gas.

【0002】[0002]

【従来の技術】天然ガスの液化方法として、例えば特公
昭47−29712号公報には、メタン富化ガスフィー
ド流を単一成分冷却剤と順次低温になる条件で順次熱交
換させて予冷し、一方前記単一成分冷却剤との熱交換に
よって一部が凝縮するまで予冷した多成分冷却剤の凝縮
部分と蒸気部分とを分離し、前記凝縮部分を深冷して膨
張させた後に前記の予冷したフィード流と熱交換して通
過させる第1の段階と、前記蒸気部分を液化させ、膨張
させた後に前記フィード流と熱交換して通過させる第2
の段階により液化する方法が示されている。その主要部
分である主冷却器周りを図2により説明すると、熱交換
器50は下部が第1の段階(高温帯域)51、上部が第
2の段階(低温帯域)52となっている。原料ガスフィ
ード流を単一成分冷却剤で予冷した後、さらに該単一成
分冷却剤で冷却することにより凝縮した高沸点成分を除
去した後の予冷されたガス流28は高温帯域51に設け
られた流路Aの下部から導入され、一方単一成分冷却剤
との熱交換によって一部が凝縮した多成分冷却剤を気液
分離した高圧蒸気流(蒸気部分)8及び高圧凝縮液流
(凝縮部分)9も高温帯域51に設けられた流路B及び
流路Cのそれぞれの下部から導入される。多成分冷却剤
の高圧凝縮液流9は高温帯域51中の流路Cを上昇中に
更に冷却された後、膨張弁53を経てスプレーノズル5
5から高温帯域51中にスプレーされ流路A,B,C中
の流体を冷却する。流路Bを流れる多成分冷却剤の高圧
蒸気流8はここで冷却液化された後低温帯域52中の流
路Fに導入され、さらに冷却された後膨張弁54を経て
スプレーノズル56から低温帯域52中にスプレーさ
れ、流路E,F中の流体を冷却する。高温帯域中の流路
Aを流れ冷却されたガス流28は低温帯域52中の流路
Eに導入され、さらに冷却されて液化ガス10として抜
き出し製品として回収する。スプレーノズル55、56
からそれぞれスプレーされた多成分冷却剤の高圧凝縮液
流9及び液化した多成分冷却剤の高圧蒸気流8は流路
A、B、C及び流路E、Fを流れる流体との熱交換によ
って完全に気化し、気化した多成分冷却剤蒸気流18
は、コンプレッサーで圧縮後、熱交換器で単一成分冷媒
と熱交換して一部が凝縮した多成分冷却剤として循環使
用する(図示せず)。この方法においては、予冷したガ
スフィード流と多成分冷却剤との熱交換器としてハンプ
ソン式熱交換器が採用されている。このハンプソン式熱
交換器はアルミニウム材のワウンドチューブを芯金に幾
重にも巻き付けていく工法のため熱交換器の流路が長く
なり圧力損失が大とならざるを得ず、そのためのコンプ
レッサー馬力を必要とし、また前記構造から熱交換器自
体も大型にならざるを得ない。また低温流体の低温端が
熱交換器の頂部にあるため熱交換器内の流体の流れが止
まった場合、低温端の冷媒液が重力によって高温端へ逆
流し、熱交換器底部に溜まった高温の冷媒蒸気との間で
熱交換が生じて急激な低温液の沸騰が起こるため、安全
性の面で問題を有する。
2. Description of the Related Art As a method for liquefying natural gas, for example, Japanese Patent Publication No. 47-29712 discloses that a methane-enriched gas feed stream is precooled by successively exchanging heat with a single-component coolant under a condition of successively lower temperatures. On the other hand, the pre-cooling is performed after separating the condensed portion and the vapor portion of the multi-component coolant pre-cooled until a portion is condensed by heat exchange with the single-component coolant, and deeply cooling and expanding the condensed portion. A first step of exchanging heat with the feed stream and passing the same through a heat exchange with the feed stream after liquefying and expanding the vapor portion.
The method of liquefaction according to the step is shown. 2, the lower part of the heat exchanger 50 is a first stage (high-temperature zone) 51, and the upper part is a second stage (low-temperature zone) 52. The pre-cooled gas stream 28 after pre-cooling the feed gas feed stream with a single-component coolant and further removing condensed high-boiling components by cooling with the single-component coolant is provided in a high-temperature zone 51. A high-pressure vapor stream (vapor section) 8 and a high-pressure condensate stream (condensation) in which a multi-component coolant that has been introduced from the lower part of the flow passage A and partially condensed by heat exchange with a single-component coolant are separated into gas and liquid. Portion 9 is also introduced from the lower part of each of the flow paths B and C provided in the high temperature zone 51. After the high-pressure condensate stream 9 of the multi-component coolant is further cooled while ascending in the flow path C in the high-temperature zone 51, the spray nozzle 5 passes through the expansion valve 53.
5 is sprayed into the high-temperature zone 51 to cool the fluid in the flow paths A, B and C. The high-pressure vapor stream 8 of the multi-component coolant flowing through the flow path B is cooled and liquefied here, and then introduced into the flow path F in the low-temperature zone 52. After being further cooled, the low-pressure zone flows from the spray nozzle 56 through the expansion valve 54. Spray 52 cools the fluid in channels E and F. The cooled gas flow 28 flowing through the flow path A in the high-temperature zone is introduced into the flow path E in the low-temperature zone 52, and is further cooled to be withdrawn as the liquefied gas 10 and recovered as a product. Spray nozzles 55, 56
The high-pressure condensate stream 9 of the multi-component coolant and the high-pressure vapor stream 8 of the liquefied multi-component coolant respectively sprayed from the channels A, B, C and the fluids flowing through the channels E, F are completely exchanged by heat. Vaporized multi-component coolant vapor stream 18
After being compressed by a compressor, the refrigerant is heat-exchanged with a single-component refrigerant in a heat exchanger and is circulated and used as a partially condensed multi-component coolant (not shown). In this method, a Hampson heat exchanger is employed as the heat exchanger between the pre-cooled gas feed stream and the multi-component coolant. This Hampson-type heat exchanger uses a method in which a wound tube made of aluminum is wound around the core metal several times, so the flow path of the heat exchanger becomes long and the pressure loss has to be large. The heat exchanger itself must be large because of the above structure. Also, if the flow of the fluid in the heat exchanger stops because the low temperature end of the low temperature fluid is at the top of the heat exchanger, the refrigerant liquid at the low temperature end flows back to the high temperature end due to gravity, and the high temperature stored at the bottom of the heat exchanger. This causes a problem in terms of safety because heat exchange occurs with the refrigerant vapor of the liquid and a sudden boiling of the low-temperature liquid occurs.

【0003】特公昭54−40764号公報には、多成
分を含む冷凍剤を単一成分冷媒によって予冷することな
く、冷却水との熱交換によって一部が凝縮するまで予冷
し、予冷した多成分を含む冷凍剤の凝縮部分と蒸気部分
とを分離し、次いで分離した凝縮部分と蒸気部分とを混
合してプレートフィン型熱交換器の入口に導入し、被冷
却物質、例えば天然ガスの流れと並流に、しかもこの凝
縮部分と蒸気部分との混合からなる高熱冷凍剤を冷却し
膨張させた後の低熱冷凍剤との流れとは向流になるよう
に流して天然ガスを液化する方法が開示されている。こ
の方法は、多成分を含む冷凍剤の凝縮部分と蒸気部分と
を熱交換器入口で混合し、熱交換器内を混相として通過
させて、蒸気部分だけでなく凝縮部分までも低温帯域の
温度まで過冷却する方式をとるため、特公昭47−29
712号公報に開示された凝縮部分を低温帯域の温度ま
で過冷却する必要のない方法に比べて、熱交換量が増大
し大きな熱交換器を必要とする。また凝縮部分は高沸点
成分を多く含むため、高沸点成分の蒸発潜熱が利用され
る高温帯域では、被冷却流体の凝縮カーブと冷媒の蒸発
カーブの温度差は開きが生じ熱交換器の設計に有効に働
くが、凝縮部分を過冷却した低温帯域では、冷媒中の高
沸点成分は主として顕熱しか利用されないため、被冷却
流体の凝縮カーブと冷媒の蒸発カーブの温度差は開きが
生じにくく、有効な冷媒熱の利用とは言いがたい。この
ため、前記従来法にくらべてより大きなコンプレッサー
馬力を必要とし、エネルギー消費が増大する欠点を有す
る。
Japanese Patent Publication No. 54-40764 discloses a multi-component pre-cooling method in which a refrigerant containing multiple components is not pre-cooled by a single component refrigerant, but is pre-cooled until a part thereof is condensed by heat exchange with cooling water. The condensed part and the vapor part of the refrigeration agent are separated, and then the separated condensed part and the vapor part are mixed and introduced into the inlet of the plate-fin type heat exchanger, and the flow of the substance to be cooled, for example, natural gas, There is a method in which natural gas is liquefied by flowing the co-current high-temperature refrigerant, which consists of a mixture of the condensed part and the vapor part, countercurrently with the flow of the low-temperature refrigerant after cooling and expanding. It has been disclosed. In this method, a condensed part and a vapor part of a cryogen containing multi-components are mixed at a heat exchanger inlet and passed through the heat exchanger as a mixed phase. To take the method of super cooling to
The heat exchange amount is increased and a large heat exchanger is required as compared with the method disclosed in Japanese Patent Publication No. 712, which does not require supercondensing the condensed portion to a temperature in a low-temperature zone. Also, since the condensed part contains a lot of high-boiling components, in the high-temperature zone where the latent heat of vaporization of the high-boiling components is used, the temperature difference between the condensation curve of the fluid to be cooled and the evaporation curve of the refrigerant opens up, and the heat exchanger design Although it works effectively, in the low temperature zone where the condensed part is supercooled, the high boiling point component in the refrigerant mainly uses only sensible heat, so the temperature difference between the condensation curve of the fluid to be cooled and the evaporation curve of the refrigerant hardly opens, It is hard to say that the refrigerant heat is effectively used. For this reason, there is a disadvantage that a larger compressor horsepower is required as compared with the conventional method, and energy consumption is increased.

【0004】[0004]

【発明が解決しようとする課題】本発明は、単一成分冷
媒と順次低温になる条件で熱交換させて予冷されたガス
を、前記単一成分冷媒との熱交換によって一部が凝縮す
るまで予冷された高圧多成分冷媒と熱交換させてガスを
液化する際に、プレートフィン型熱交換器を用いること
により、前記従来法の欠点を回避し、コンプレッサーの
馬力の削減による省エネルギー化が図れるガスの液化方
法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention is directed to a method of producing a pre-cooled gas which is heat-exchanged with a single-component refrigerant under conditions of successively lower temperatures until a portion of the gas is condensed by heat exchange with the single-component refrigerant. By using a plate-fin type heat exchanger when exchanging heat with a pre-cooled high-pressure multi-component refrigerant to liquefy a gas, it is possible to avoid the drawbacks of the conventional method and to save energy by reducing the horsepower of the compressor. It is an object of the present invention to provide a liquefaction method.

【0005】[0005]

【課題を解決するための手段】本発明に関わるガスの液
化方法は、単一成分冷媒と順次低温になる条件で熱交換
させて予冷したガスを、前記単一成分冷媒との熱交換に
よって一部が凝縮するまで予冷した高圧多成分冷媒と熱
交換させてガスを液化するに際して、(1)単一成分冷
媒との熱交換によって一部が凝縮した高圧多成分冷媒を
高圧蒸気流と高圧凝縮液流とに分離し、(2)プレート
面が直立するように設置され上部側に少なくとも4種の
流路を有する高温帯域、下部側に少なくとも3種の流路
を有する低温帯域を設けたプレートフィン型熱交換器の
高温帯域の流路の内の3種の流路の上部よりガス流、多
成分冷媒の高圧蒸気流及び多成分冷媒の高圧凝縮液流を
それぞれ導入し、後述の第1の低圧多成分冷媒流を高温
帯域の内の1種の流路の下部より導入して、ガス流、多
成分冷媒の高圧蒸気流及び多成分冷媒の高圧凝縮液流を
第1の低圧多成分冷媒流と熱交換させて冷却し、(3)
高温帯域で冷却されたガス流及び多成分冷媒の高圧蒸気
流をプレートフィン型熱交換器の低温帯域の流路の内の
2種の流路の上部よりそれぞれ導入し、後述の第2の低
圧多成分冷媒流を低温帯域の内の1種の流路の下部より
導入して、ガス流及び多成分冷媒の高圧蒸気流を第2の
低圧多成分冷媒流と熱交換させてさらに冷却し、(4)
低温帯域の下部から液化したガス流を抜き出して回収
し、(5)低温帯域の下部から抜き出された液化した多
成分冷媒の高圧蒸気流を膨張させて得られる蒸気部分と
凝縮部分とを気液分離し、分離された蒸気部分と凝縮部
分とを混合して第2の低圧多成分冷媒流として低温帯域
の内の1種の流路の下部より導入し、低温帯域内を上部
より下部へ通過するガス流及び多成分冷媒の高圧蒸気流
と熱交換させた後、低温帯域の上部から抜き出し、
(6)低温帯域の上部から抜き出された第2の低圧多成
分冷媒流と高温帯域を通過した後の多成分冷媒の高圧凝
縮液流を膨張させて得られる流れとを混合して気液分離
し、分離された蒸気部分と凝縮部分とを混合して第1の
低圧多成分冷媒流として高温帯域の内の1種の流路の下
部より導入し、高温帯域内を上部より下部へ通過するガ
ス流、多成分冷媒の高圧蒸気流及び多成分冷媒の高圧凝
縮液流と熱交換させた後、高温帯域の上部から蒸気とし
て抜き出し、(7)高温帯域の上部から蒸気として抜き
出された第1の低圧多成分冷媒流を圧縮後、単一成分冷
媒と熱交換して得られる一部が凝縮した高圧多成分冷媒
を前記(1)の工程に循環して再度ガスの液化に使用す
ることからなる。
A gas liquefaction method according to the present invention is characterized in that a gas pre-cooled by exchanging heat with a single-component refrigerant under a condition of sequentially lowering the temperature is converted into one by heat exchange with the single-component refrigerant. When the gas is liquefied by exchanging heat with the high-pressure multi-component refrigerant pre-cooled until the part condenses, (1) the high-pressure multi-component refrigerant partially condensed by heat exchange with the single-component refrigerant is condensed with the high-pressure vapor stream and the high-pressure vapor (2) A plate provided with a plate surface standing upright and provided with a high-temperature zone having at least four types of flow paths on the upper side and a low-temperature zone having at least three types of flow paths on the lower side A gas flow, a high-pressure vapor flow of a multi-component refrigerant, and a high-pressure condensate flow of a multi-component refrigerant are respectively introduced from the upper portions of three types of flow passages in the high-temperature zone of the fin heat exchanger. Low-pressure multi-component refrigerant stream of one of the high-temperature zones Was introduced from the lower part of the road, the gas stream, the high-pressure condensate flow of the high pressure vapor stream and a multi-component refrigerant of the multicomponent refrigerant first by low pressure multi-component refrigerant flow and is heat exchanged and cooled, (3)
The gas flow cooled in the high-temperature zone and the high-pressure vapor flow of the multi-component refrigerant are introduced from the upper portions of two of the flow channels in the low-temperature zone of the plate fin heat exchanger, and a second low pressure The multi-component refrigerant stream is introduced from the lower part of one of the channels in the low-temperature zone, and the gas stream and the high-pressure vapor stream of the multi-component refrigerant are heat-exchanged with the second low-pressure multi-component refrigerant stream to be further cooled; (4)
A liquefied gas stream is extracted and collected from the lower part of the low-temperature zone, and (5) a vapor part and a condensed part obtained by expanding the high-pressure vapor stream of the liquefied multi-component refrigerant extracted from the lower part of the low-temperature zone are vaporized. Liquid separation, the separated vapor portion and the condensed portion are mixed and introduced as a second low-pressure multi-component refrigerant stream from the lower part of one of the flow paths in the low-temperature zone, and the low-temperature zone is shifted from the upper part to the lower part. After heat exchange with the passing gas stream and the high-pressure vapor stream of the multi-component refrigerant, withdraw from the upper part of the low temperature zone,
(6) Mixing the second low-pressure multi-component refrigerant stream extracted from the upper part of the low-temperature zone with the flow obtained by expanding the high-pressure condensate stream of the multi-component refrigerant after passing through the high-temperature zone, and Separated, the separated vapor portion and condensed portion are mixed and introduced as a first low-pressure multi-component refrigerant stream from the lower part of one of the flow paths in the high-temperature zone, and pass through the high-temperature zone from the upper part to the lower part. After heat exchange with the flowing gas stream, the high-pressure vapor stream of the multi-component refrigerant, and the high-pressure condensate flow of the multi-component refrigerant, it was extracted as steam from the upper part of the high-temperature zone, and (7) extracted as steam from the upper part of the high-temperature zone. After compressing the first low-pressure multi-component refrigerant stream, the partially condensed high-pressure multi-component refrigerant obtained by heat exchange with the single-component refrigerant is circulated to the step (1) and used again for gas liquefaction. Consisting of

【0006】これを図1により具体的に説明する。本発
明においては、単一成分冷媒と順次低温になる条件で熱
交換させて予冷したガスを、前記単一成分冷媒との熱交
換によって一部が凝縮するまで予冷した高圧多成分冷媒
と熱交換させるに際し、熱交換器としてプレートフィン
型熱交換器を使用する。プレートフィン型熱交換器は熱
交換器内の流路が直線的で短いため、ワウンドチューブ
を幾重にも巻き付けた流路の長い従来のハンプソン式熱
交換器に比べて圧力損失を著しく小さくすることができ
る。熱交換器を流れる被冷却流体側の圧力損失を小さく
することは被冷却流体の凝縮カーブが高温側に移動する
傾向にある(後述の図8の説明参照)。このため熱交換
器の伝熱面積を縮小したり、或は、ハンプソン式熱交換
器と同等の温度差で熱交換器を設計するならば、コンプ
レッサーの負荷を低減することができる。本発明で使用
するプレートフィン型熱交換器20は、プレート面が直
立するように設置され上部側に少なくとも4種の流路
A,B,C及びDを有する高温帯域21、下部側に少な
くとも3種の流路E,F及びGを有する低温帯域22を
設けたものである(構成要件2の一部の説明)。なお本
発明において多成分冷媒とは、順次に低い沸点を有する
多数の冷媒成分を含み少なくとも一成分は被冷却流体が
冷却されるべき温度、即ちガスの液化温度よりも低い沸
点を有する組成物を言う。多成分冷媒は原料ガスの組
成、温度、圧力に応じて適宜選定すれば良い。例えば、
窒素、炭素数1〜5を有する炭化水素のうちから選ばれ
る成分の混合物が使用でき、窒素、メタン、エタン及び
プロパンからなる混合物が好ましい。更に窒素2〜14
モル%、メタン30〜45モル%、エタン32〜45モ
ル%、プロパン9〜21%の組成範囲のものが好まし
い。また混合物の中のエタンに代えてエチレンやプロパ
ンに代えてプロピレンを用いてもよい。単一成分冷媒と
しては低沸点の炭化水素が使用でき、プロパンが好まし
い。なおプレートフィン型熱交換器の上部側における4
種の流路及び下部側における3種の流路は本発明の実施
のために欠くことができない構成要件であるが、それ以
外に高温帯域及び/又は低温帯域に流路を設けて、他の
流体(気体、液体又は気液混相流体)の冷却目的に使用
することを妨げるものではない。
This will be described more specifically with reference to FIG. In the present invention, the gas pre-cooled by exchanging heat with the single-component refrigerant under the condition of sequentially lowering the temperature is exchanged with the high-pressure multi-component refrigerant pre-cooled until partly condensed by heat exchange with the single-component refrigerant. At this time, a plate-fin heat exchanger is used as the heat exchanger. The plate fin type heat exchanger has a linear and short flow path inside the heat exchanger, so the pressure loss is significantly smaller than that of a conventional Hampson heat exchanger with a long flow path in which a wound tube is wound many times. Can be. Reducing the pressure loss on the side of the cooled fluid flowing through the heat exchanger tends to cause the condensation curve of the cooled fluid to move to the higher temperature side (see the description of FIG. 8 described later). Therefore, if the heat transfer area of the heat exchanger is reduced, or if the heat exchanger is designed with a temperature difference equivalent to that of the Hampson-type heat exchanger, the load on the compressor can be reduced. The plate-fin type heat exchanger 20 used in the present invention has a high-temperature zone 21 having at least four types of flow paths A, B, C, and D provided on an upper side and having at least three channels at a lower side. A low-temperature zone 22 having seed flow paths E, F, and G is provided (partial description of constituent feature 2). In the present invention, the multi-component refrigerant includes a composition having a boiling point lower than the temperature at which the fluid to be cooled is to be cooled, that is, the liquefaction temperature of the gas, including a plurality of refrigerant components having sequentially lower boiling points. To tell. The multi-component refrigerant may be appropriately selected according to the composition, temperature, and pressure of the source gas. For example,
A mixture of components selected from nitrogen and hydrocarbons having 1 to 5 carbon atoms can be used, and a mixture of nitrogen, methane, ethane and propane is preferred. Further nitrogen 2-14
Mol%, 30 to 45 mol% of methane, 32 to 45 mol% of ethane, and 9 to 21% of propane are preferred. Propylene may be used instead of ethylene or propane in place of ethane in the mixture. As the single component refrigerant, a hydrocarbon having a low boiling point can be used, and propane is preferable. In addition, 4 in the upper side of the plate fin type heat exchanger
The kind flow path and the three kinds of flow paths on the lower side are indispensable constituent elements for carrying out the present invention, but in addition to the above, a flow path is provided in a high temperature zone and / or a low temperature zone, and other It does not preclude its use for cooling fluids (gas, liquid or gas-liquid mixed phase fluids).

【0007】本発明における原料ガスとしては、メタ
ン、エタン等のような低沸点成分を少なくとも一つ含む
ガスが使用できる。例えば天然ガスが挙げられる。少な
くとも一つの低沸点成分を含む原料ガス流1、例えば4
9.9barA(絶対圧)、21℃の天然ガスは、例え
ばプロパンのような単一成分冷媒により順次低温になる
条件で設定されている熱交換器群2,3で予冷される。
予冷温度は原料ガスの種類により異なるが、全システム
のエネルギー消費を考慮して決定される。予冷したガス
流4は、必要に応じてリボイラー5を備えた高沸点物分
離器7で高沸点物を分離し低沸点成分の純度を高めた上
で、プレートフィン型熱交換器20の高温帯域21の流
路Aの上部より導入する(構成要件2の一部の説明)。
図1では、高温帯域21の上部に48.4barA、−
33℃で導入し、−45℃に冷却したガス流27を一旦
抜き出して還流ドラム6に導入し、還流ドラム6で分離
された高沸点物凝縮物を高沸点物分離器7の上部に還流
させ、還流ドラム6で凝縮物を除去され低沸点成分の純
度が高まったガス流28を高温帯域21の流路Aに導入
している。高温帯域21の流路Aに導入されたガス流は
高温帯域21内を下方に向かって流れる。高沸点物分離
器7の頂部より抜き出したガス流27を冷却してその凝
縮物を分離するために、プレートフィン型熱交換器20
の高温帯域21に代えて単一成分冷媒による冷却器を設
けることもできる。その場合は、凝縮物を分離除去した
ガス流を熱交換器20の高温帯域21の上部に導入し、
途中から一旦抜き出すことなく、そのまま高温帯域内を
通過させることができる。
As the raw material gas in the present invention, a gas containing at least one low-boiling component such as methane and ethane can be used. An example is natural gas. Feed gas stream 1 containing at least one low-boiling component, for example 4
Natural gas at 9.9 barA (absolute pressure) and 21 ° C. is pre-cooled in a group of heat exchangers 2 and 3, which are set under conditions of successively lower temperatures with a single-component refrigerant such as propane.
The pre-cooling temperature depends on the type of the source gas, but is determined in consideration of the energy consumption of the entire system. The pre-cooled gas stream 4 is separated from high-boiling substances by a high-boiling substance separator 7 provided with a reboiler 5 as necessary to increase the purity of low-boiling components. It is introduced from the upper part of the flow channel A of 21 (partial description of the constituent requirement 2).
In FIG. 1, 48.4 barA, −
The gas stream 27 introduced at 33 ° C. and cooled to −45 ° C. is once extracted, introduced into the reflux drum 6, and the high-boiling-point condensate separated by the reflux drum 6 is refluxed to the upper part of the high-boiling-point separator 7. The gas stream 28 from which the condensate has been removed by the reflux drum 6 and the purity of the low-boiling components has been increased is introduced into the flow path A of the high-temperature zone 21. The gas flow introduced into the flow path A of the high-temperature zone 21 flows downward in the high-temperature zone 21. In order to cool the gas stream 27 withdrawn from the top of the high boiler separator 7 and separate the condensate, a plate-fin type heat exchanger 20
Instead of the high temperature zone 21, a cooler using a single component refrigerant can be provided. In that case, the gas stream from which the condensate has been separated and removed is introduced into the upper part of the high-temperature zone 21 of the heat exchanger 20,
It is possible to pass through the high-temperature zone as it is without extracting it from the middle.

【0008】例えば窒素、メタン、エタン及びプロパン
からなる高圧多成分冷媒を、原料ガスの予冷に使用した
のと同じ単一成分冷媒により順次低温になる条件で設定
されている熱交換器群31,32,33で順次熱交換さ
せて一部が凝縮するまで予冷し、予冷された高圧多成分
冷媒は気液分離器23で高圧蒸気流8と高圧凝縮液流9
とに分離し、高圧蒸気流8はプレートフィン型熱交換器
20の高温帯域21の流路Bの上部より、高圧凝縮液流
9は流路Dの上部より、それぞれ導入する。後述の第1
の低圧多成分冷媒流(気液混相流)を高温帯域の流路C
の下部より導入して流路Aのガス流、流路Bの高圧蒸気
流及び流路Dの高圧凝縮液流と向流させ熱交換を行う。
流路Cの第1の低圧多成分冷媒流(気液混相流)は低
温、例えば4.0barA、−128℃(高温帯域の入
口)になっているので、流路Aのガス流、流路Bの高圧
蒸気流及び流路Dの高圧凝縮液流はこれと熱交換して冷
却される(要件1及び要件2の一部の説明)。
For example, a group of heat exchangers 31, which are set in such a manner that a high-pressure multi-component refrigerant consisting of nitrogen, methane, ethane and propane is successively cooled down by the same single-component refrigerant used for pre-cooling of the raw material gas, The pre-cooled high-pressure multi-component refrigerant is heat-exchanged sequentially at 32 and 33 until a part thereof is condensed.
The high-pressure vapor stream 8 is introduced from the upper part of the flow path B in the high-temperature zone 21 of the plate-fin heat exchanger 20, and the high-pressure condensate stream 9 is introduced from the upper part of the flow path D. The first described later
The low-pressure multi-component refrigerant flow (gas-liquid multiphase flow) of
And flows countercurrently to the gas flow in the flow path A, the high-pressure vapor flow in the flow path B, and the high-pressure condensate flow in the flow path D to perform heat exchange.
Since the first low-pressure multi-component refrigerant flow (gas-liquid mixed-phase flow) in the flow path C has a low temperature, for example, 4.0 barA and -128 ° C (the inlet of the high-temperature zone), the gas flow in the flow path A, the flow path The high-pressure vapor stream in B and the high-pressure condensate stream in flow path D are cooled by heat exchange with the high-pressure condensate stream (partial description of Requirement 1 and Requirement 2).

【0009】高温帯域21の流路Aで冷却されたガス流
28および流路Bで冷却された多成分冷媒の高圧蒸気流
8は、低温帯域22の流路E,Fのそれぞれの上部より
導入し、後述の第2の低圧多成分冷媒流(気液混相流)
を低温帯域の流路Gの下部より導入して、流路Eのガス
流28及び流路Fの高圧蒸気流8と向流させ熱交換を行
う。流路Gの第2の低圧多成分冷媒流(気液混相流)は
さらに低温、例えば4.1barA、−168℃(低温
帯域の入口)になっているので、流路Eのガス流28及
び流路Fの高圧蒸気流8はさらに冷却される。(構成要
件3の説明)。高温帯域21の流路Aを通過したガス流
28を低温帯域22の流路Eに導入するに際して図1に
示すように膨張させて、低温帯域の下部から液化したガ
ス流10を抜き出し、さらに膨張させ(図示せず)低圧
にして、1atm、−162℃程度の製品として回収す
る(構成要件4の説明)。
The gas flow 28 cooled in the flow path A of the high-temperature zone 21 and the high-pressure vapor flow 8 of the multi-component refrigerant cooled in the flow path B are introduced from the upper portions of the flow paths E and F of the low-temperature zone 22. And a second low-pressure multi-component refrigerant flow (gas-liquid multiphase flow) to be described later.
Is introduced from the lower part of the flow path G in the low temperature zone, and flows countercurrently to the gas flow 28 of the flow path E and the high-pressure steam flow 8 of the flow path F to perform heat exchange. Since the second low-pressure multi-component refrigerant flow (gas-liquid multiphase flow) in the flow path G has a lower temperature, for example, 4.1 barA, -168 ° C (the inlet of the low-temperature zone), the gas flows 28 and The high-pressure steam flow 8 in the flow path F is further cooled. (Description of Configuration Requirement 3). When the gas flow 28 passing through the flow path A of the high temperature zone 21 is introduced into the flow path E of the low temperature zone 22, it is expanded as shown in FIG. 1, and the liquefied gas flow 10 is extracted from the lower part of the low temperature zone and further expanded. Then, the pressure is reduced to a low pressure (not shown), and the product is recovered as a product of about 1 atm and about −162 ° C. (description of constituent requirement 4).

【0010】低温帯域の下部から抜き出された液化し
た、例えば47.0barA、−162℃の多成分冷媒
の高圧蒸気流11を膨張弁42で膨張させて得られる蒸
気部分と凝縮部分とを気液分離器25で気液分離し、分
離された蒸気部分12と凝縮部分13とを混合して4.
1barA、−168℃程度の第2の低圧多成分冷媒流
として低温帯域の下部より流路Gに導入し、低温帯域内
を上部より下部へ通過する流路Eのガス流及び流路Fの
多成分冷媒の高圧蒸気流と向流させて熱交換した後、低
温帯域の上部から抜き出す(構成要件5の説明)。
The vaporized portion and the condensed portion obtained by expanding the liquefied, high-pressure steam flow 11 of a multicomponent refrigerant of, for example, 47.0 barA, -162 ° C., extracted from the lower part of the low-temperature zone by the expansion valve 42 are vaporized. 3. A gas-liquid separation is performed by the liquid separator 25, and the separated vapor portion 12 and condensed portion 13 are mixed.
1 barA, a second low-pressure multi-component refrigerant flow of about -168 ° C. is introduced into the flow path G from the lower part of the low-temperature zone to the gas flow in the flow path E and the flow path F which pass from the upper part to the lower part in the low-temperature zone. After heat exchange by flowing countercurrent to the high-pressure vapor flow of the component refrigerant, it is extracted from the upper part of the low-temperature zone (description of constituent element 5).

【0011】流路Gを通過して低温帯域の上部から抜き
出された第2の低圧多成分冷媒流14と、高温帯域の流
路Dを通過した後の例えば47.0barA、−124
℃の多成分冷媒の高圧凝縮液流15を膨張弁41で膨張
させて得られる4.0barA、−128℃の流れとを
混合して気液分離器24で気液分離する。分離された蒸
気部分16と凝縮部分17とを混合して第1の低圧多成
分冷媒流として高温帯域の流路Cの下部より導入し、高
温帯域内を通過する流路Aのガス流、流路Bの多成分冷
媒の高圧蒸気流及び流路Dの多成分冷媒の高圧凝縮液流
と向流させて熱交換した後、高温帯域の上部から3.6
barA、−36℃程度の蒸気として抜き出す(構成要
件6の説明)。なお低圧多成分冷媒流の流路(流路G+
流路C)における圧力損失を0.5bar以下にするこ
とが好ましい。
The second low-pressure multi-component refrigerant stream 14 extracted from the upper part of the low-temperature zone through the flow path G and, for example, 47.0 barA, -124 after passing through the high-temperature zone flow path D.
The high-pressure condensed liquid stream 15 of the multi-component refrigerant at 40 ° C. is mixed with the 4.0 bar A, −128 ° C. stream obtained by expanding the expansion valve 41 at the expansion valve 41, and gas-liquid separation is performed by the gas-liquid separator 24. The separated vapor portion 16 and condensed portion 17 are mixed and introduced as a first low-pressure multi-component refrigerant flow from the lower portion of the flow path C in the high-temperature zone. After heat exchange by flowing countercurrently to the high-pressure vapor flow of the multi-component refrigerant in the passage B and the high-pressure condensate flow of the multi-component refrigerant in the passage D, 3.6 from the top of the high-temperature zone.
BarA is extracted as steam at about −36 ° C. (description of constituent requirement 6). The flow path of the low-pressure multi-component refrigerant flow (flow path G +
It is preferred that the pressure loss in channel C) is not more than 0.5 bar.

【0012】高温帯域の流路Cの上部から抜き出された
第1の低圧多成分冷媒流18をコンプレッサー26で圧
縮し、多成分冷媒冷却器34で非炭化水素冷媒、例えば
空気或は水と熱交換して冷却した後、熱交換器群31,
32,33で単一成分冷媒との熱交換によって一部が凝
縮した48.0barA、−33℃程度の混相の高圧多
成分冷媒19を前記(1)の工程に循環して再度ガスの
液化に使用する(構成要件7の説明)。なお単一成分冷
媒による原料ガスの予冷及び高圧多成分冷媒の予冷には
同じ単一成分冷媒を用いる。この単一成分冷媒の冷却シ
ステムは、通常単一成分冷媒を圧縮し、冷却して完全に
凝縮させた後、被冷却流体と順次低圧、低温にて熱交換
させ、熱交換により気化した単一成分冷媒の蒸気を圧縮
することからなるサイクル中を循環させる方法が採用さ
れる。また前記原料ガスの予冷及び高圧多成分冷媒の予
冷を一つの単一成分冷媒の閉サイクル内に構成すること
ができる。例えば図1においては、単一成分冷媒を圧縮
し冷却して得られる単一成分中圧冷媒(液)を予冷器2
に導入して原料ガス流を冷却し、予冷器2から抜き出さ
れた単一成分中圧冷媒(液)を膨張させて得られる単一
成分低圧冷媒(気液混相)を予冷器3に導入し、予冷器
2で冷却された後の原料ガス流を低圧、低温にてさらに
冷却する。原料ガス流との熱交換により気化した単一成
分冷媒の蒸気は各予冷器から圧縮機に送られて昇圧し、
次いで空気や水によって凝縮され、再び原料ガス流の冷
却に用いる。また、単一成分冷媒にて高圧多成分冷媒を
その一部が凝縮するまで予冷する場合も、前記と同様に
順次低圧、低温にて熱交換させることにより行うことが
できる。例えば、単一成分高圧冷媒(液)を多成分冷媒
予冷器31に導入して高圧多成分冷媒を冷却し、多成分
冷媒予冷器31から抜き出された単一成分高圧冷媒
(液)を膨張させて得られる単一成分中圧冷媒(気液混
相)を多成分冷媒予冷器32に導入し、予冷器31で冷
却された後の高圧多成分冷媒を低い圧力、低い温度にて
冷却し、多成分冷媒予冷器32から抜き出された単一成
分中圧冷媒(液)を膨張させて得られる単一成分低圧冷
媒(気液混相)を多成分冷媒予冷器33に導入し、予冷
器32で冷却された後の高圧多成分冷媒をさらに低い圧
力、低い温度にて冷却するようにして高圧多成分冷媒の
一部を凝縮させる。多成分冷媒との熱交換により気化し
た単一成分冷媒の蒸気は各予冷器から圧縮機に送られて
昇圧し、次いで空気や水によって凝縮され、単一成分高
圧冷媒(液)として再び多成分冷媒の冷却に用いること
ができる。前記原料ガスの予冷用の単一成分冷媒の冷却
サイクルと、この多成分冷媒の予冷のための単一成分冷
媒の冷却サイクルは、単一成分冷媒用の圧縮機を共有す
ることにより一つの閉サイクルを構成している。
The first low-pressure multi-component refrigerant stream 18 withdrawn from the upper part of the flow path C in the high-temperature zone is compressed by the compressor 26, and is cooled by the multi-component refrigerant cooler 34 with a non-hydrocarbon refrigerant, for example, air or water. After cooling by heat exchange, the heat exchanger group 31,
The high-pressure multi-component refrigerant 19 having a mixed phase of about 48.0 barA and about -33 ° C., partly condensed by heat exchange with the single-component refrigerant at 32 and 33, is circulated to the step (1) to liquefy the gas again. Used (description of configuration requirement 7). The same single-component refrigerant is used for the pre-cooling of the raw material gas and the high-pressure multi-component refrigerant by the single-component refrigerant. This single-component refrigerant cooling system usually compresses the single-component refrigerant, cools it and completely condenses it, and then sequentially heat-exchanges with the fluid to be cooled at a low pressure and low temperature. A method of circulating through the cycle consisting of compressing the vapor of the component refrigerant is employed. Further, the pre-cooling of the raw material gas and the pre-cooling of the high-pressure multi-component refrigerant can be configured in one closed cycle of the single-component refrigerant. For example, in FIG. 1, a single-component medium-pressure refrigerant (liquid) obtained by compressing and cooling a single-component
And a single-component low-pressure refrigerant (gas-liquid mixed phase) obtained by expanding the single-component medium-pressure refrigerant (liquid) extracted from the precooler 2 into the precooler 3. Then, the raw material gas stream cooled by the precooler 2 is further cooled at low pressure and low temperature. The vapor of the single-component refrigerant vaporized by heat exchange with the raw material gas stream is sent from each precooler to the compressor, where the pressure is increased.
Subsequently, it is condensed by air or water and used again for cooling the raw material gas stream. Also, in the case of pre-cooling the high-pressure multi-component refrigerant with a single-component refrigerant until a part thereof is condensed, it can be performed by sequentially performing heat exchange at a low pressure and a low temperature in the same manner as described above. For example, the single-component high-pressure refrigerant (liquid) is introduced into the multi-component refrigerant precooler 31 to cool the high-pressure multi-component refrigerant, and the single-component high-pressure refrigerant (liquid) extracted from the multi-component refrigerant precooler 31 is expanded. The single-component medium-pressure refrigerant (gas-liquid mixed phase) obtained by the above is introduced into the multi-component refrigerant precooler 32, and the high-pressure multi-component refrigerant cooled by the precooler 31 is cooled at a low pressure and a low temperature, The single-component low-pressure refrigerant (gas-liquid mixed phase) obtained by expanding the single-component medium-pressure refrigerant (liquid) extracted from the multi-component refrigerant precooler 32 is introduced into the multi-component refrigerant precooler 33, The high-pressure multi-component refrigerant that has been cooled in the step (c) is further cooled at a lower pressure and a lower temperature to condense a part of the high-pressure multi-component refrigerant. The vapor of the single-component refrigerant vaporized by heat exchange with the multi-component refrigerant is sent from each precooler to the compressor to increase the pressure, then condensed by air or water, and again as a single-component high-pressure refrigerant (liquid). It can be used for cooling a refrigerant. The cooling cycle of the single-component refrigerant for pre-cooling the raw material gas and the cooling cycle of the single-component refrigerant for pre-cooling the multi-component refrigerant are one closed by sharing the compressor for the single-component refrigerant. Make up the cycle.

【0013】本発明においては被冷却流体である予冷さ
れたガス流28、多成分冷媒の高圧蒸気流8及び多成分
冷媒の高圧凝縮液流9は熱交換器の上部より下部に流れ
るように導入される。一方冷却用流体である第1の低圧
多成分冷媒流(16+17)及び第2の低圧多成分冷媒
流(12+13)は、各流体が通過する熱交換器内の帯
域において、下部より上部に向かって流れるように導入
される。このようにすることにより、熱交換器の上部に
導入された被冷却流体は、冷却されながらその流体が通
過する帯域の下部まで到達する間に凝縮するので、流路
内では大きな液の静圧がかかり、圧力損失を打ち消すこ
とになる。このため、実際の圧力損失は著しく小さくな
り、被冷却流体の凝縮カーブと冷却用流体の蒸発カーブ
との温度差が開く方向に向かうので、熱交換器の伝熱面
積を縮小できるため、熱交換器の設計に有利となる。あ
るいは被冷却流体の凝縮カーブと冷却用流体の蒸発カー
ブとの温度差を前と同程度に保つならば、多成分冷媒の
流量を減らしたり冷媒組成の調整を行うことによってコ
ンプレッサーの負荷を小さくすることもできる。
In the present invention, the precooled gas stream 28 as the fluid to be cooled, the high-pressure vapor stream 8 of the multi-component refrigerant and the high-pressure condensate stream 9 of the multi-component refrigerant are introduced so as to flow below the upper part of the heat exchanger. Is done. On the other hand, the first low-pressure multi-component refrigerant flow (16 + 17) and the second low-pressure multi-component refrigerant flow (12 + 13), which are cooling fluids, are directed from the lower part to the upper part in the zone in the heat exchanger through which each fluid passes. It is introduced to flow. By doing so, the fluid to be cooled introduced into the upper part of the heat exchanger is condensed while reaching the lower part of the zone through which the fluid passes while being cooled. And the pressure loss is canceled. As a result, the actual pressure loss becomes extremely small, and the temperature difference between the condensation curve of the fluid to be cooled and the evaporation curve of the cooling fluid tends to increase, so that the heat transfer area of the heat exchanger can be reduced. This is advantageous for vessel design. Alternatively, if the temperature difference between the condensation curve of the fluid to be cooled and the evaporation curve of the cooling fluid is maintained at the same level as before, the load on the compressor is reduced by reducing the flow rate of the multi-component refrigerant or adjusting the refrigerant composition. You can also.

【0014】また熱交換器内の流体の流れが止まった場
合、前記特公昭47−29712号公報記載の熱交換器
のように低温流体の低温端が熱交換器の頂部にある場合
は、低温端の冷媒液体が熱交換されないまま、重力によ
って高温端の底部に溜まるため、熱交換器底部に溜った
高温の冷媒蒸気との間で熱交換が生じて急激な低温液の
沸騰が起こり、熱交換器内の圧力上昇をもたらす。更に
アルミチューブに設計値以上の温度差がついて、アルミ
材料の熱応力疲労をもたらす恐れがあるが、本発明にお
いては、熱交換器内の流体の流れが止まっても、重力に
よる低温液の逆流が起こらないので、安全性を保つこと
ができる。
When the flow of the fluid in the heat exchanger stops, when the low temperature end of the low temperature fluid is at the top of the heat exchanger as in the heat exchanger described in Japanese Patent Publication No. 47-29712, the low temperature Because the refrigerant liquid at the end remains at the bottom of the high-temperature end due to gravity without heat exchange, heat exchange occurs with the high-temperature refrigerant vapor collected at the bottom of the heat exchanger, causing a sudden rise in the temperature of the low-temperature liquid, This causes a pressure increase in the exchanger. Further, the temperature difference of the aluminum tube may exceed the design value, which may cause thermal stress fatigue of the aluminum material.However, in the present invention, even if the flow of the fluid in the heat exchanger stops, the backflow of the low-temperature liquid due to gravity is prevented. Since no accident occurs, safety can be maintained.

【0015】熱交換器の性能を十分に発揮するには、各
流体がそれぞれの流路に均等に分布されなければならな
い。このため本発明においては、前記のように膨張後に
得られる気液混相の流体は、分離器を設置して蒸気部分
と凝縮部分とに分離した後、分離された蒸気部分と凝縮
部分とを十分に混合した状態で熱交換器の入口に導入す
る。即ち、液化した多成分冷媒の蒸気流11について
は、膨張後に得られる蒸気部分と凝縮部分とを気液分離
器25により分離した後、分離された蒸気部分12と凝
縮部分13とを十分に混合した状態で、第2の低圧多成
分冷媒流として低温帯域の下部より流路Gに導入し、低
温帯域内を通過する流路Eのガス流及び流路Fの多成分
冷媒の高圧蒸気流と熱交換させる。分離された蒸気部分
12と凝縮部分13との混合は、低温帯域に導入される
直前で行うことが好ましい。混合方法としては熱交換器
の入口部までは蒸気部分と凝縮部分とをそれぞれ単相で
供給し、入口部で一挙に混相流とする方法が挙げられ
る。例えば蒸気部分(気体)と凝縮部分(液体)をそれ
ぞれ単相で熱交換器へ供給するための分散用のコア(多
積層流体路集合装置)を熱交換器の流体取入口に取り付
け、該分散用コア内に気体用分散フィン(多積層流体
路)と液体用分散フィンとを隣接して設け、相隣接する
各分散フィンを流れた気体と液体とを共に二相(混相)
流用分配フィンに流入し合流させて気液混相流とするよ
うにした気液分散装置(特公昭63−52313号公
報)、熱交換器ヘッダ内に気液合流層と流通路層からな
る気液分散コアを設けて、気液を別々に流入し合流層で
合流させるようにした気液分散装置(特公昭63−52
312号公報)、熱交換器の有効フィンの入口又は中間
に設けたセンターバー(側面に貫通溝をうがった中央分
配管)まで気液を別々に供給し、センターバーで合流さ
せるようにした気液分散装置(特開昭58−86396
号公報)等の方式が挙げられる。また、隣接する流体通
路を仕切るプレートに穴を開けて、コア内部で気液を混
合するようにした熱交換器(米国特許3559722明
細書)の方式も使用できるが、前記気液分散装置の方式
が好ましい。
In order for the heat exchanger to perform to its full potential, the fluids must be evenly distributed in their respective flow paths. Therefore, in the present invention, the gas-liquid mixed phase fluid obtained after expansion as described above is separated into a vapor portion and a condensed portion by installing a separator, and then the separated vapor portion and condensed portion are sufficiently separated. And introduced into the inlet of the heat exchanger. That is, with respect to the vaporized stream 11 of the liquefied multi-component refrigerant, after the vapor portion and the condensed portion obtained after expansion are separated by the gas-liquid separator 25, the separated vapor portion 12 and the condensed portion 13 are sufficiently mixed. In this state, a second low-pressure multi-component refrigerant flow is introduced into the flow path G from the lower part of the low-temperature zone as a gas flow in the flow path E passing through the low-temperature zone and a high-pressure vapor flow of the multi-component refrigerant in the flow path F. Allow heat exchange. The mixing of the separated vapor portion 12 and the condensing portion 13 is preferably performed immediately before being introduced into the low temperature zone. As a mixing method, there is a method in which a vapor portion and a condensed portion are respectively supplied in a single phase up to the inlet of the heat exchanger, and a multiphase flow is formed at once at the inlet. For example, a dispersing core (multi-layered fluid path assembly device) for supplying a vapor phase (gas) and a condensing part (liquid) in a single phase to the heat exchanger is attached to the fluid inlet of the heat exchanger. Dispersion fins for gas (multi-layered fluid passages) and dispersion fins for liquid are provided adjacent to each other in the core, and the gas and liquid flowing through each adjacent dispersion fin are two-phase (mixed phase).
A gas-liquid dispersing device (Japanese Patent Publication No. 63-52313) in which a gas flows into a diversion distribution fin and merges into a gas-liquid mixed-phase flow, and a gas-liquid comprising a gas-liquid merged layer and a flow path layer in a heat exchanger header A gas-liquid dispersing device having a dispersing core and allowing gas and liquid to flow in separately and to join in a confluent layer (Japanese Patent Publication No. 63-52)
No. 312), gas and liquid are separately supplied to an inlet of an effective fin of a heat exchanger or a center bar (a central distribution pipe having a through groove on a side surface) provided at an intermediate portion thereof, and are joined by the center bar. Liquid dispersion device (Japanese Patent Laid-Open No. 58-86396)
Publication). Alternatively, a heat exchanger (US Pat. No. 3,559,722) in which a hole is formed in a plate that separates adjacent fluid passages to mix gas and liquid inside the core can be used. Is preferred.

【0016】低温帯域22の流路Gを通過し上部から抜
き出された第2の低圧多成分冷媒流14は、高温帯域の
流路Dを通過した後の多成分冷媒の高圧凝縮液流15を
膨張して得られる流れと混合して気液分離する。この多
成分冷媒の高圧凝縮液流15を膨張して得られる流れと
低温帯域を通過して抜き出された第2の低圧多成分冷媒
流14とは、温度、組成、気液比が異なるため混合させ
ると温度が上昇することがある。この混合による温度上
昇を最小限に押えるように、多成分冷媒の高圧凝縮液流
の高温帯域での出口温度と第2の低圧多成分冷媒流の低
温帯域での出口温度とを最適に調整することが望まし
い。そのためには、高温帯域出口での多成分冷媒の高圧
凝縮液流の温度を−110〜−130℃の範囲とするこ
とが好ましい。また低温帯域出口での第2の低圧多成分
冷媒流の温度は、高温帯域出口での多成分冷媒の高圧凝
縮液流の温度より5〜10℃低めが好ましい。多成分冷
媒の高圧凝縮液流15を膨張して得られる流れと低温帯
域を通過して抜き出された第2の低圧多成分冷媒流14
との混合の仕方は、図1のように両方の流れを気液分離
器24に導入することにより混合と気液分離を同時に行
っても良いし、気液分離器に導入する前に両者を混合
し、その後、気液分離器24に導入するようにしても良
い。流路内での気液の混合比を均一にするために、分離
された蒸気部分16と凝縮部分17とを十分に混合した
状態で、第1の低圧多成分冷媒流として高温帯域の下部
より流路Cに導入し、高温帯域内の流路Aを通過するガ
ス流、流路Bを通過する多成分冷媒の高圧蒸気流及び流
路Dを通過する多成分冷媒の高圧凝縮液流と熱交換させ
る。分離された蒸気部分16と凝縮部分17との混合
は、高温帯域に導入される直前で行うことが好ましい。
この混合方法としては、低温帯域に導入される蒸気部分
12と凝縮部分13との混合の場合と同様な方法で行え
る。具体的には、前記特公昭63−52313号公報、
特公昭63−52312号公報、特開昭58−8639
6号公報等の方式を用いることができる。
The second low-pressure multi-component refrigerant stream 14 that has passed through the flow path G of the low-temperature zone 22 and has been extracted from the upper part is the high-pressure condensate liquid stream 15 of the multi-component refrigerant that has passed through the high-temperature zone flow path D. Is mixed with a stream obtained by expansion to perform gas-liquid separation. Since the flow obtained by expanding the high-pressure condensate liquid stream 15 of the multi-component refrigerant and the second low-pressure multi-component refrigerant stream 14 extracted through the low-temperature zone are different in temperature, composition, and gas-liquid ratio, Mixing may increase the temperature. The outlet temperature in the high-temperature zone of the high-pressure condensate stream of the multi-component refrigerant and the outlet temperature in the low-temperature zone of the second low-pressure multi-component refrigerant stream are optimally adjusted so as to minimize the temperature rise due to this mixing. It is desirable. For this purpose, it is preferable that the temperature of the high-pressure condensate stream of the multi-component refrigerant at the outlet of the high-temperature zone be in the range of −110 to −130 ° C. The temperature of the second low-pressure multi-component refrigerant stream at the outlet of the low-temperature zone is preferably 5 to 10 ° C. lower than the temperature of the high-pressure condensate stream of the multi-component refrigerant at the outlet of the high-temperature zone. A stream obtained by expanding the high-pressure condensate stream 15 of the multi-component refrigerant and a second low-pressure multi-component refrigerant stream 14 extracted through the low-temperature zone.
Mixing and gas-liquid separation may be performed simultaneously by introducing both streams into the gas-liquid separator 24 as shown in FIG. 1, or both may be mixed before being introduced into the gas-liquid separator. After mixing, the mixture may be introduced into the gas-liquid separator 24. In a state where the separated vapor portion 16 and the condensing portion 17 are sufficiently mixed in order to make the gas-liquid mixing ratio in the flow path uniform, a first low-pressure multi-component refrigerant flow is formed from the lower portion of the high-temperature zone. The gas flow introduced into the flow path C and passing through the flow path A in the high-temperature zone, the high-pressure vapor flow of the multi-component refrigerant passing through the flow path B, and the high-pressure condensate flow of the multi-component refrigerant passing through the flow path D and heat Let me exchange. The mixing of the separated vapor portion 16 and the condensing portion 17 is preferably carried out immediately before being introduced into the high-temperature zone.
This mixing method can be performed in the same manner as in the case of mixing the vapor portion 12 and the condensing portion 13 introduced into the low temperature zone. Specifically, the above-mentioned JP-B-63-52313,
JP-B-63-52312, JP-A-58-8639
No. 6 publication can be used.

【0017】このように低圧多成分冷媒を高温帯域、低
温帯域のいずれの帯域に導入する場合も、気液混相の低
圧多成分冷媒を気液分離した後、熱交換器の各帯域の入
口で完全に混合された混相流体として導入することによ
り、気液分離した後に気相と液相を別々に熱交換器の高
温帯域あるいは低温帯域に導入する方法に比べて、低圧
多成分冷媒の蒸発カーブにおいて長い温度領域に渡って
低い蒸発温度を持つので、被冷却流体との対数平均温度
差を大きく取れ、熱交換器の伝熱面積を少なくすること
ができる。例えば、(1)低温帯域では低圧多成分冷媒
を混相流体として導入し、高温帯域では気相と液相を別
々に導入する方法(図4)に比べて、低温帯域、高温帯
域のいずれにも混相流体として導入する本発明では、高
温帯域での低圧多成分冷媒の蒸気カーブ(図6)におい
て、長い温度領域に渡って約7℃低めの蒸発温度を持
つ。(2)低温帯域では低圧多成分冷媒の気相と液相と
を別々に導入し、高温帯域では混相流体として導入する
方法(図5)に比べて、低温帯域、高温帯域のいずれに
も混相流体として導入する本発明は、低温帯域での低圧
多成分冷媒の蒸発カーブ(図7)において、長い温度領
域に渡って約2℃低めの蒸発温度を持つ。また、
(1)、(2)のことから、低温帯域、高温帯域のいず
れにも低圧多成分冷媒を混相流体として導入する本発明
は、いずれの帯域においても低圧多成分冷媒の気相と液
相とを別々に導入する場合(図3)に比べて、低温帯域
及び高温帯域での低圧多成分冷媒の蒸発カーブにおい
て、長い温度領域に渡って低い蒸発温度を持つことにな
るので、さらに熱交換器の設計等の面で有利である。
In the case where the low-pressure multi-component refrigerant is introduced into either the high-temperature zone or the low-temperature zone, the low-pressure multi-component refrigerant in the gas-liquid mixed phase is separated into gas and liquid at the inlet of each zone of the heat exchanger. By introducing as a completely mixed multiphase fluid, the vaporization curve of the low-pressure multi-component refrigerant is lower than the method in which the gas phase and the liquid phase are separately introduced into the high or low temperature zone of the heat exchanger after gas-liquid separation. Has a low evaporation temperature over a long temperature range, a large logarithmic average temperature difference with the fluid to be cooled can be obtained, and the heat transfer area of the heat exchanger can be reduced. For example, (1) a low-pressure multi-component refrigerant is introduced as a multiphase fluid in a low-temperature zone, and a gas-phase and a liquid-phase are separately introduced in a high-temperature zone (FIG. 4). In the present invention, which is introduced as a multi-phase fluid, the vapor curve of the low-pressure multi-component refrigerant in the high-temperature zone (FIG. 6) has an evaporation temperature lower by about 7 ° C. over a long temperature range. (2) In the low-temperature zone, the gas phase and the liquid phase of the low-pressure multi-component refrigerant are separately introduced, and in the high-temperature zone, the mixed-phase fluid is introduced into both the low-temperature zone and the high-temperature zone, as compared with the method (FIG. 5). The present invention, which is introduced as a fluid, has a lower evaporation temperature of about 2 ° C. over a long temperature range in the evaporation curve of the low-pressure multi-component refrigerant in the low temperature zone (FIG. 7). Also,
According to (1) and (2), the present invention in which a low-pressure multi-component refrigerant is introduced as a multi-phase fluid in both the low-temperature zone and the high-temperature zone, the gas phase and the liquid phase of the low-pressure multi-component refrigerant are changed in any zone. 3 has a lower evaporation temperature over a longer temperature range in the evaporation curve of the low-pressure multi-component refrigerant in the low-temperature zone and the high-temperature zone, as compared with the case of separately introducing the heat exchanger (FIG. 3). This is advantageous in terms of design and the like.

【0018】図3に示す方法(比較例1)の場合、プレ
ート面が直立するように設置され上部に7種の流路A,
B,D,K,L,M,Nより構成される高温帯域21、
下部に4種の流路E,F,H,Jより構成される低温帯
域22を有するプレートフィン型熱交換器20の高温帯
域21の流路の内の流路Aの上部より予冷した原料ガス
流28、流路Bの上部より多成分冷媒の高圧蒸気流8、
流路Dの上部より多成分冷媒の高圧凝縮液流9を導入す
ることは図1に示した本発明の場合と同様である。しか
し高温帯域の流路Dを通過した後の多成分冷媒の高圧凝
縮液流15を膨張弁41で膨張させて得られる流れを気
液分離器24で気液分離し、分離された蒸気部分16は
流路Mの下部、凝縮部分17は流路Nの下部より導入し
て、高温帯域内を通過する流路Aのガス流、流路Bの多
成分冷媒の高圧蒸気流及び流路Dの多成分冷媒の高圧凝
縮液流と向流させて熱交換した後、高温帯域の上部から
蒸気18として抜き出す点、即ち蒸気部分16と凝縮部
分17とを混合することなく別々にプレートフィン型熱
交換器の異なる流路にそれぞれ導入する点において本発
明と異なる。また低温帯域22の流路Eには高温帯域中
の流路Aを流れ冷却された原料ガス流28、流路Fには
高温帯域中の流路Bを流れ冷却された多成分冷媒の高圧
蒸気流8をそれぞれ導入することは図1に示した本発明
の場合と同様であるが、しかし、低温帯域の流路Fを通
過して液化した後の多成分冷媒の高圧蒸気流11を膨張
弁42で膨張させて得られる流れを気液分離器25で気
液分離し、分離された蒸気部分12は流路Hの下部より
導入し、引き続き高温帯域の流路Kの下部に導入し、凝
縮部分13は流路Jの下部より導入し、引き続き高温帯
域の流路Lの下部に導入し、それぞれ被冷却流体と向流
させて熱交換した後、高温帯域の上部から蒸気18とし
て抜き出す点、即ち蒸気部分12と凝縮部分13とを混
合することなく別々にプレートフィン型熱交換器の異な
る流路にそれぞれ導入する点、及び多成分冷媒の高圧凝
縮液流15を膨張弁41で膨張させて得られる流れを気
液分離した蒸気部分16及び凝縮部分17とは無関係に
低温帯域の流路を通過させる点において本発明と異な
る。
In the case of the method shown in FIG. 3 (Comparative Example 1), seven types of flow paths A,
A high-temperature zone 21 composed of B, D, K, L, M, and N;
Source gas precooled from the upper part of the flow path A in the flow path of the high temperature zone 21 of the plate fin heat exchanger 20 having the low temperature zone 22 composed of four types of flow paths E, F, H, and J at the lower part Stream 28, high pressure vapor stream 8 of the multi-component refrigerant from the top of flow path B,
The introduction of the high-pressure condensate stream 9 of the multi-component refrigerant from the upper part of the flow path D is the same as in the case of the present invention shown in FIG. However, the flow obtained by expanding the high-pressure condensed liquid stream 15 of the multicomponent refrigerant after passing through the flow path D in the high-temperature zone by the expansion valve 41 is subjected to gas-liquid separation by the gas-liquid separator 24, and the separated vapor portion 16 Is introduced from the lower part of the flow path M, the condensing part 17 is introduced from the lower part of the flow path N, and the gas flow of the flow path A passing through the high-temperature zone, the high-pressure vapor flow of the multi-component refrigerant in the flow path B, and the flow path D After the heat exchange by flowing countercurrent to the high-pressure condensate flow of the multi-component refrigerant, it is extracted as steam 18 from the upper part of the high-temperature zone, that is, the plate-fin type heat exchange is performed separately without mixing the steam portion 16 and the condensing portion 17. The present invention differs from the present invention in that they are respectively introduced into different flow paths of the vessel. The flow path E of the low-temperature zone 22 is a raw material gas flow 28 that flows through the flow path A of the high-temperature zone and is cooled. The flow path F is a high-pressure vapor of the multi-component refrigerant that flows through the flow path B of the high-temperature zone and is cooled. The introduction of the respective streams 8 is the same as in the case of the invention shown in FIG. 1, however, the high-pressure vapor stream 11 of the multicomponent refrigerant after liquefaction through the low-temperature zone flow path F is expanded. The stream obtained by expansion at 42 is subjected to gas-liquid separation by the gas-liquid separator 25, and the separated vapor portion 12 is introduced from the lower part of the flow path H, and is subsequently introduced to the lower part of the flow path K in the high-temperature zone, and is condensed. The part 13 is introduced from the lower part of the flow path J, and subsequently introduced into the lower part of the flow path L in the high-temperature zone, and after being countercurrently exchanged with the fluid to be cooled for heat exchange, is extracted as steam 18 from the upper part of the high-temperature zone; That is, the vapor portion 12 and the condensing portion 13 are separately mixed without being mixed. And a vapor portion 16 and a condensing portion 17 in which the flow obtained by expanding the high-pressure condensate stream 15 of the multi-component refrigerant with the expansion valve 41 is separated into gas and liquid. Is different from the present invention in that it passes through the flow path in the low temperature zone independently.

【0019】図4に示す方法(比較例2)の場合、プレ
ート面が直立するように設置された上部に5種の流路
A,B,D,O,Pより構成される高温帯域21、下部
に3種の流路E,F,Gより構成される低温帯域22を
有するプレートフィン型熱交換器20において、高温帯
域21の流路の内の流路Aの上部より予冷した原料ガス
流28、流路Bの上部より多成分冷媒の高圧蒸気流8、
流路Dの上部より多成分冷媒の高圧凝縮液流9を導入
し、高温帯域の流路Bを通過し、さらに低温帯域の流路
Fを通過した後の多成分冷媒の高圧蒸気流8を膨張弁4
2で膨張させて得られる流れを気液分離器25で気液分
離し、分離された蒸気部分12と凝縮部分13を混合し
て混相として低温帯域の下部より流路Gに導入して、低
温帯域内を通過する流路Eのガス流、流路Fの高圧蒸気
流と向流させて熱交換した後、低温帯域の上部から第2
の低圧多成分冷媒14として抜き出し、高温帯域の流路
Dを通過した後の多成分冷媒の高圧凝縮液流9を膨張弁
41で膨張させて得られる流れと混合することは図1に
示した本発明と同様である。しかし、高温帯域の流路D
を通過した後の多成分冷媒の高圧凝縮液流9を膨張弁4
1で膨張させて得られる流れと第2の低圧多成分冷媒1
4と混合して気液分離器24で気液分離し、分離された
蒸気部分16は流路Pの下部、凝縮部分17は流路Oの
下部に導入して高温帯域内を通過させること、すなわち
分離された蒸気部分16と凝縮部分17を混合し気液混
相として高温帯域の流路を通過させるものではない点で
本発明とは異なる。
In the case of the method shown in FIG. 4 (Comparative Example 2), a high-temperature zone 21 composed of five types of flow paths A, B, D, O, and P is provided on the upper portion where the plate surface is set upright. In a plate fin type heat exchanger 20 having a low-temperature zone 22 composed of three types of flow paths E, F, and G at the lower part, a source gas flow precooled from the upper part of the flow path A in the high-temperature zone 21 28, a high-pressure vapor flow 8 of the multi-component refrigerant from the upper part of the flow path B,
The high-pressure condensate flow 9 of the multi-component refrigerant is introduced from the upper part of the flow channel D, passes through the high-temperature zone flow channel B, and further passes through the low-temperature zone flow channel F. Expansion valve 4
The gas obtained by expansion in step 2 is subjected to gas-liquid separation by a gas-liquid separator 25, and the separated vapor portion 12 and condensed portion 13 are mixed and introduced into the flow channel G from the lower part of the low temperature zone as a mixed phase. After the heat exchange with the gas flow in the flow path E passing through the zone and the high-pressure steam flow in the flow path F, the second flow starts from the upper part of the low temperature zone.
1 is extracted as the low-pressure multi-component refrigerant 14 and mixed with the flow obtained by expanding the high-pressure condensate flow 9 of the multi-component refrigerant after passing through the flow path D in the high-temperature zone with the expansion valve 41. Same as the present invention. However, the flow path D in the high temperature zone
The high-pressure condensate flow 9 of the multi-component refrigerant after passing through the
1 and the flow obtained by expansion in the second low-pressure multi-component refrigerant 1
4 and gas-liquid separation by a gas-liquid separator 24. The separated vapor part 16 is introduced into the lower part of the flow path P, and the condensed part 17 is introduced into the lower part of the flow path O to pass through the high-temperature zone. That is, the present invention is different from the present invention in that the separated vapor portion 16 and condensed portion 17 are not mixed and passed through a flow path in a high-temperature zone as a gas-liquid mixed phase.

【0020】図6は図1の本発明の方法と図4の方法と
の、高温帯域における冷却用流体の蒸発カーブ特性の相
違を説明するための図である。図6において横軸は熱交
換量Q、縦軸は温度T(℃)を表し、線Aは図1に示し
た構成の本発明における第1の低圧多成分冷媒流の蒸発
カーブ、線Bは図4に示した構成の比較例2における高
温帯域での低圧多成分冷媒の蒸発カーブを合成したもの
(流路Oの蒸発カーブ+流路Pの蒸発カーブ)であり、
長い温度領域に渡って線Aは線Bに比べて約7℃低い蒸
発温度を示すので、被冷却流体との対数平均温度差を大
きく取れ、熱交換器の伝熱面積を少なくすることができ
る。
FIG. 6 is a diagram for explaining the difference in the evaporation curve characteristics of the cooling fluid in the high temperature zone between the method of the present invention shown in FIG. 1 and the method of FIG. 6, the horizontal axis represents the heat exchange amount Q, the vertical axis represents the temperature T (° C.), the line A is the evaporation curve of the first low-pressure multi-component refrigerant flow in the present invention having the configuration shown in FIG. FIG. 9 is a diagram obtained by synthesizing an evaporation curve of a low-pressure multi-component refrigerant in a high-temperature band in Comparative Example 2 having the configuration shown in FIG. 4 (evaporation curve of flow path O + evaporation curve of flow path P);
Since the line A shows an evaporation temperature about 7 ° C. lower than the line B over a long temperature range, a logarithmic average temperature difference with the fluid to be cooled can be increased, and the heat transfer area of the heat exchanger can be reduced. .

【0021】図5に示す方法(比較例3)の場合、プレ
ート面が直立するように設置された上部に4種の流路
A,B,D,Rより構成される高温帯域21、下部に4
種の流路E,F,H,Jより構成される低温帯域22を
有するプレートフィン型熱交換器20において、高温帯
域21の流路の内の流路Aの上部より予冷した原料ガス
流28、流路Bの上部より多成分冷媒の高圧蒸気流8、
流路Dの上部より多成分冷媒の高圧凝縮液流9を導入
し、高温帯域の流路Bを通過し、更に低温帯域の流路F
を通過した後の多成分冷媒の高圧蒸気流8を膨張弁42
で膨張させて得られる流れを気液分離器25で気液分離
する点は図1に示した本発明と同様である。しかし、気
液分離器25で気液分離された蒸気部分12と凝縮部分
13は混合せずに、別々に低温帯域の下部より流路H及
び流路Jにそれぞれ導入して、低温帯域内を通過する流
路Eのガス流、流路Fの高圧蒸気流と向流させて熱交換
する点において図1に示した本発明と異なる。流路H及
びJを通過して低温帯域の上部から抜き出された低圧多
成分冷媒流14を高温帯域の流路Dを通過した後の高圧
凝縮液流15を膨張弁41で膨張させて得られる流れと
を混合して気液分離器24で気液分離し、分離された蒸
気部分16と凝縮部分17とを混合して第1の低圧多成
分冷媒流として高温帯域の流路Rの下部より導入し、高
温帯域内を通過する流路Aのガス流、流路Bの多成分冷
媒の高圧蒸気流及び流路Dの多成分冷媒の高圧凝縮液流
と向流させて熱交換する点は本発明と同様である。
In the case of the method shown in FIG. 5 (Comparative Example 3), a high-temperature zone 21 composed of four types of flow paths A, B, D, and R is provided at an upper portion where the plate surface is set upright, and a lower portion is provided at a lower portion. 4
In the plate fin type heat exchanger 20 having the low temperature zone 22 composed of the flow paths E, F, H, and J of the species, the raw material gas stream 28 pre-cooled from the upper part of the flow path A in the flow path of the high temperature zone 21 , A high-pressure vapor flow 8 of the multi-component refrigerant from the upper part of the flow path B,
The high-pressure condensate flow 9 of the multi-component refrigerant is introduced from the upper part of the flow path D, passes through the high-temperature zone flow path B, and further passes through the low-temperature zone flow path F
The high-pressure vapor flow 8 of the multi-component refrigerant after passing through the
The point that the flow obtained by the expansion in the step is gas-liquid separated by the gas-liquid separator 25 is the same as that of the present invention shown in FIG. However, the vapor portion 12 and the condensed portion 13 separated by the gas-liquid separator 25 are separately introduced into the flow path H and the flow path J from the lower part of the low-temperature zone without being mixed. The present embodiment differs from the present invention shown in FIG. 1 in that heat is exchanged by flowing countercurrently to the gas flow in the passage E and the high-pressure steam flow in the passage F. The low-pressure multi-component refrigerant stream 14 extracted from the upper part of the low-temperature zone through the channels H and J is obtained by expanding the high-pressure condensate stream 15 after passing through the high-temperature zone channel D by the expansion valve 41. And a gas-liquid separator 24 to separate the vapor and liquid, and the separated vapor portion 16 and the condensed portion 17 are mixed to form a first low-pressure multi-component refrigerant flow at a lower portion of the flow path R in the high-temperature zone. And heat exchange with the gas flow in the flow channel A, the high-pressure vapor flow of the multi-component refrigerant in the flow channel B, and the high-pressure condensate flow of the multi-component refrigerant in the flow channel D that pass through the high-temperature zone. Is the same as in the present invention.

【0022】図7は図1の本発明の方法と図5の方法と
の、低温帯域における冷却用流体の蒸発カーブ特性の相
違を説明するための図である。図7において横軸は熱交
換量Q、縦軸は温度T(℃)を表し、線Cは図1に示し
た構成の本発明における第2の低圧多成分冷媒流の蒸発
カーブ、線Dは図5に示した構成の比較例3における低
温帯域での低圧多成分冷媒の蒸発カーブを合成したもの
(流路Hの蒸発カーブ+流路Jの蒸発カーブ)であり、
長い温度領域に渡って線Cは線Dに比べて約2℃低い低
圧多成分冷媒の蒸発温度を示すので、被冷却流体との対
数平均温度差を大きく取れ、熱交換器の伝熱面積を少な
くすることができる。
FIG. 7 is a diagram for explaining the difference in the evaporation curve characteristics of the cooling fluid in the low temperature zone between the method of the present invention of FIG. 1 and the method of FIG. In FIG. 7, the horizontal axis represents the heat exchange amount Q, the vertical axis represents the temperature T (° C.), the line C is the evaporation curve of the second low-pressure multi-component refrigerant flow of the present invention having the configuration shown in FIG. 9 is a diagram obtained by synthesizing an evaporation curve of a low-pressure multi-component refrigerant in a low-temperature zone in Comparative Example 3 having the configuration shown in FIG. 5 (evaporation curve of flow path H + evaporation curve of flow path J);
Since the line C shows the evaporation temperature of the low-pressure multi-component refrigerant which is lower by about 2 ° C. than the line D over the long temperature range, the logarithmic average temperature difference with the fluid to be cooled can be increased, and the heat transfer area of the heat exchanger can be reduced. Can be reduced.

【0023】図1に示したプレートフィン型熱交換器を
使用するプロセス(本発明)と、図1に示したプロセス
において熱交換器20のみを図2に示したハンプソン式
熱交換器に代えたプロセス(比較例4)について、表1
に示した原料ガスから表1に示したLNGを製造する場
合の熱交換量Qと温度Tとの関係を図8に示す。また本
発明のコンプレッサーの消費動力を計算した結果を表2
に示す。なお比較例4においても、本発明と同様に、高
温帯域を通過したガス流を膨張させた後、低温帯域に導
入するようにした。LNG製品は、熱交換器の低温帯域
から液化したガス10を抜き出し、さらに膨張させて
(図示せず)得られるものである。
A process using the plate fin type heat exchanger shown in FIG. 1 (the present invention), and only the heat exchanger 20 in the process shown in FIG. 1 is replaced with the Hampson type heat exchanger shown in FIG. Table 1 shows the process (Comparative Example 4).
FIG. 8 shows the relationship between the heat exchange amount Q and the temperature T when producing LNG shown in Table 1 from the raw material gas shown in FIG. Table 2 shows the result of calculating the power consumption of the compressor of the present invention.
Shown in In Comparative Example 4, as in the present invention, the gas flow passing through the high-temperature zone was expanded and then introduced into the low-temperature zone. The LNG product is obtained by extracting the liquefied gas 10 from the low temperature zone of the heat exchanger and expanding it further (not shown).

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】図8において横軸は熱交換量Q、縦軸は温
度T(℃)を表し、線E(実線)は比較例4における被
冷却流体の凝縮カーブ、線F(点線)は本発明における
被冷却流体の凝縮カーブである。線F(点線)は部分的
に線E(実線)を上回り、即ち、被冷却流体の凝縮カー
ブが高温側に移動するので、熱交換器の伝熱面積を縮小
したり、或は、ハンプソン式熱交換器と同等の温度差で
熱交換器を設計するならば、コンプレッサーの負荷を低
減することができる。この負荷の低減の程度は表2のコ
ンプレッサー動力の場合で数MW程度である。
In FIG. 8, the horizontal axis represents the heat exchange amount Q, the vertical axis represents the temperature T (° C.), the line E (solid line) represents the condensation curve of the fluid to be cooled in Comparative Example 4, and the line F (dotted line) represents the present invention. 7 is a condensation curve of the fluid to be cooled in FIG. The line F (dotted line) partially exceeds the line E (solid line), that is, since the condensation curve of the fluid to be cooled moves to the high temperature side, the heat transfer area of the heat exchanger is reduced, or the Hampson type If the heat exchanger is designed with the same temperature difference as the heat exchanger, the load on the compressor can be reduced. The degree of reduction of the load is about several MW in the case of the compressor power shown in Table 2.

【0027】[0027]

【発明の効果】【The invention's effect】

(1)本発明においては、予冷されたガスと高圧多成分
冷媒とを熱交換させるに際して、プレートフィン型熱交
換器を用いることにより、従来のハンプソン式熱交換器
を用いる方法に比べて圧力損失を著しく小さくすること
ができるので、被冷却流体の凝縮カーブと冷却用流体の
蒸発カーブとの温度差が開く方向に向かう。そのため熱
交換器の伝熱面積を縮小することができ、或はハンプソ
ン式熱交換器と同等の温度差で熱交換器を設計するなら
ば、コンプレッサーの負荷を小さくすることができる。 (2)また、本発明においては、被冷却流体である予冷
されたガス流、多成分冷媒の高圧蒸気流及び高圧凝縮液
流を熱交換器の上部より下部に向かって流し、一方冷却
用流体である第1の低圧多成分冷媒及び第2の低圧多成
分冷媒は各流体の通過する熱交換器内の帯域において、
下部より上部に向かって流すようにするため、流路内の
被冷却流体が下部まで到達する間に凝縮して液の大きな
静圧を生じるので、圧力損失を打ち消すことになる。こ
のため被冷却流体の凝縮カーブと冷却用流体の蒸発カー
ブとの温度差が開く方向に向かうので、熱交換器の伝熱
面積の縮小化、或はコンプッレサーの負荷の低減化を更
に図ることができる。 (3)さらに、本発明では、低温流体の低温端が熱交換
器の底部にあるため、熱交換器内の流体の流れが止まっ
ても、重力による低温液の逆流が起こらないので安全に
操業をすることができる。 (4)本発明では、気液混相の低圧多成分冷媒を、気液
分離した後、熱交換器の入口で混合して導入することに
より、気液分離後の気相と液相を別々に熱交換器に導入
する場合に比べて、低圧多成分冷媒の蒸発カーブにおい
て長い温度領域に渡って低い蒸発温度を持つので、被冷
却流体との対数平均温度差を大きくでき、熱交換器の伝
熱面積を小さくすることができる。 (5)また、本発明においては、ハンプソン式熱交換器
を用いる従来法の場合に比べて、多成分冷媒の循環量を
減少させたり、予冷用の単一成分冷媒、例えばプロパン
の使用量を減らしたり、多成分冷媒の組成を重くするこ
と等により、さらにコンプッレサーの馬力を削減でき省
エネルギー化が図れるガスの液化方法が期待できる。
(1) In the present invention, when exchanging heat between a pre-cooled gas and a high-pressure multi-component refrigerant, the use of a plate-fin type heat exchanger makes it possible to reduce the pressure loss as compared with the conventional method using a Hampson-type heat exchanger. Can be significantly reduced, so that the temperature difference between the condensation curve of the fluid to be cooled and the evaporation curve of the cooling fluid tends to increase. Therefore, the heat transfer area of the heat exchanger can be reduced, or if the heat exchanger is designed with the same temperature difference as the Hampson heat exchanger, the load on the compressor can be reduced. (2) In the present invention, the precooled gas stream, the high-pressure vapor stream and the high-pressure condensate stream of the multi-component refrigerant, which are the fluids to be cooled, flow from the upper part to the lower part of the heat exchanger. The first low-pressure multi-component refrigerant and the second low-pressure multi-component refrigerant are in a zone in a heat exchanger through which each fluid passes,
Since the fluid to be cooled flows from the lower part to the upper part, the fluid to be cooled in the flow path condenses while reaching the lower part and generates a large static pressure of the liquid, so that the pressure loss is canceled. Therefore, the temperature difference between the condensation curve of the fluid to be cooled and the evaporation curve of the cooling fluid tends to increase, so that the heat transfer area of the heat exchanger can be reduced or the load on the compressor can be further reduced. it can. (3) Further, in the present invention, since the low-temperature end of the low-temperature fluid is at the bottom of the heat exchanger, even if the flow of the fluid in the heat exchanger stops, backflow of the low-temperature liquid does not occur due to gravity. Can be. (4) In the present invention, a gas-liquid mixed-phase low-pressure multi-component refrigerant is gas-liquid separated, and then mixed and introduced at the inlet of a heat exchanger, so that the gas phase and the liquid phase after the gas-liquid separation are separated. Compared to the case where the refrigerant is introduced into the heat exchanger, the low-pressure multi-component refrigerant has a low evaporation temperature over a long temperature range in the evaporation curve, so that the logarithmic average temperature difference with the fluid to be cooled can be increased, and the transfer of the heat exchanger can be increased. The heat area can be reduced. (5) In the present invention, compared with the conventional method using a Hampson heat exchanger, the amount of circulating multi-component refrigerant can be reduced or the amount of single-component refrigerant for pre-cooling, for example, propane, can be reduced. By reducing or increasing the composition of the multi-component refrigerant, a gas liquefaction method that can further reduce the horsepower of the compressor and save energy can be expected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるガスの液化方法の構成を説明する
ための図である。
FIG. 1 is a diagram for explaining a configuration of a gas liquefaction method according to the present invention.

【図2】従来のハンプソン式熱交換器を使用するガスの
液化方法の構成を説明するための図である。
FIG. 2 is a diagram for explaining a configuration of a conventional gas liquefaction method using a Hampson-type heat exchanger.

【図3】高温帯域及び低温帯域の両方における多成分冷
媒膨張後の蒸気流と凝縮液流をそれぞれ別々に熱交換器
に導入する方法(比較例1)の説明図である。
FIG. 3 is an explanatory diagram of a method (Comparative Example 1) of separately introducing a steam flow and a condensate flow after expansion of a multi-component refrigerant in both a high-temperature zone and a low-temperature zone to a heat exchanger.

【図4】高温帯域における多成分冷媒膨張後の蒸気流と
凝縮液流を別々に熱交換器に導入する方法(比較例2)
の説明図である。
FIG. 4 shows a method of separately introducing a steam flow and a condensate flow after expansion of a multi-component refrigerant in a high-temperature zone into a heat exchanger (Comparative Example 2).
FIG.

【図5】低温帯域における多成分冷媒膨張後の蒸気流と
凝縮液流を別々に熱交換器に導入する方法(比較例3)
の説明図である。
FIG. 5 shows a method of separately introducing a vapor flow and a condensate flow after expansion of a multi-component refrigerant in a low-temperature zone into a heat exchanger (Comparative Example 3).
FIG.

【図6】図1の本発明の方法と図4の方法の、高温帯域
における熱交換量Qと温度Tとの関係を示す図である。
6 is a diagram showing a relationship between a heat exchange amount Q and a temperature T in a high temperature zone in the method of the present invention in FIG. 1 and the method in FIG. 4;

【図7】図1の本発明の方法と図5の方法の、低温帯域
における熱交換量Qと温度Tとの関係を示す図である。
7 is a diagram showing a relationship between a heat exchange amount Q and a temperature T in a low temperature zone in the method of the present invention in FIG. 1 and the method in FIG. 5;

【図8】図1に示したプロセスにおいて、熱交換器とし
てプレートフィン型熱交換器を使用した場合とハンプソ
ン式熱交換器を使用した場合の熱交換量Qと温度Tとの
関係を示す図である。
FIG. 8 is a diagram showing a relationship between a heat exchange amount Q and a temperature T in a case where a plate fin type heat exchanger is used as a heat exchanger and in a case where a Hampson type heat exchanger is used in the process shown in FIG. 1; It is.

【符号の説明】[Explanation of symbols]

1 原料ガス流 2 予冷器(単一成分中圧冷媒使用) 3 予冷器(単一成分低圧冷媒使用) 4 予冷された原料ガス流 5 高沸点物分離器のリボイラー 6 高沸点物分離器の還流ドラム 7 原料ガス中の高沸点物分離器 8 多成分冷媒高圧蒸気流 9 多成分冷媒高圧凝縮液流 10 液化したガス流 11 液化した多成分冷媒の高圧蒸気流 12 液化した多成分冷媒の高圧蒸気流を膨張させ気液
分離した低圧蒸気部分 13 液化した多成分冷媒の高圧蒸気流を膨張させ気液
分離した低圧凝縮流部分 14 第2の低圧多成分冷媒流 15 冷却された多成分冷媒の高圧凝縮液流 16 気液分離器24で気液分離された蒸気部分 17 気液分離器24で気液分離された凝縮部分 18 第1の低圧多成分冷媒流 19 一部分が凝縮した高圧多成分冷媒 20 プレートフィン型熱交換器 21 プレートフィン型熱交換器の高温帯域 22 プレートフィン型熱交換器の低温帯域 23 気液分離器(高圧多成分冷媒用) 24 気液分離器(低圧多成分冷媒用) 25 気液分離器(低圧多成分冷媒用) 26 コンプレッサー 27 高沸点物分離器の搭頂ガス流 28 低沸点成分の純度を高めたガス流 31 多成分冷媒予冷器(単一成分高圧冷媒使用) 32 多成分冷媒予冷器(単一成分中圧冷媒使用) 33 多成分冷媒予冷器(単一成分低圧冷媒使用) 34 多成分冷媒冷却器(水冷) 41 膨張弁 42 膨張弁
REFERENCE SIGNS LIST 1 raw material gas stream 2 precooler (using single-component medium-pressure refrigerant) 3 precooler (using single-component low-pressure refrigerant) 4 precooled raw material gas stream 5 reboiler of high-boiling material separator 6 reflux of high-boiling material separator Drum 7 High-boiling material separator in raw material gas 8 Multi-component refrigerant high-pressure vapor flow 9 Multi-component refrigerant high-pressure condensate flow 10 Liquefied gas flow 11 High-pressure vapor flow of liquefied multi-component refrigerant 12 High-pressure vapor of liquefied multi-component refrigerant A low-pressure vapor portion where the flow is expanded and gas-liquid separated 13 A low-pressure condensed flow portion where the high-pressure vapor flow of the liquefied multi-component refrigerant is expanded and gas-liquid separated 14 A second low-pressure multi-component refrigerant flow 15 The high pressure of the cooled multi-component refrigerant Condensed liquid flow 16 Vapor portion separated by gas and liquid in gas-liquid separator 24 17 Condensed portion separated in gas and liquid by gas-liquid separator 24 18 First low-pressure multi-component refrigerant flow 19 High-pressure multi-component refrigerant partially condensed 20 Plate Heat exchanger 21 High temperature zone of plate fin heat exchanger 22 Low temperature zone of plate fin heat exchanger 23 Gas-liquid separator (for high-pressure multi-component refrigerant) 24 Gas-liquid separator (for low-pressure multi-component refrigerant) 25 Gas-liquid separator (for low-pressure multi-component refrigerant) 26 Compressor 27 Gas stream at the top of high-boiling-point separator 28 Gas stream with high purity of low-boiling components 31 Multi-component refrigerant precooler (using single-component high-pressure refrigerant) 32 Multi-component refrigerant pre-cooler (using single-component medium-pressure refrigerant) 33 Multi-component refrigerant pre-cooler (using single-component low-pressure refrigerant) 34 Multi-component refrigerant cooler (water-cooled) 41 Expansion valve 42 Expansion valve

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−159928(JP,A) 特開 昭60−50370(JP,A) 特開 平6−299174(JP,A) 特公 昭47−29712(JP,B1) (58)調査した分野(Int.Cl.7,DB名) F25J 1/00 - 5/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-6-159928 (JP, A) JP-A-60-50370 (JP, A) JP-A-6-299174 (JP, A) 29712 (JP, B1) (58) Fields investigated (Int. Cl. 7 , DB name) F25J 1/00-5/00

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 単一成分冷媒と順次低温になる条件で熱
交換させて予冷したガスを、前記単一成分冷媒との熱交
換によって一部が凝縮するまで予冷した高圧多成分冷媒
と熱交換させてガスを液化するに際して、(1)単一成
分冷媒との熱交換によって一部が凝縮した高圧多成分冷
媒を高圧蒸気流と高圧凝縮液流とに分離し、(2)プレ
ート面が直立するように設置された上部側に少なくとも
4種の流路を有する高温帯域、下部側に少なくとも3種
の流路を有する低温帯域を設けたプレートフィン型熱交
換器の高温帯域の流路の内の3種の流路の上部よりガス
流、多成分冷媒の高圧蒸気流及び多成分冷媒の高圧凝縮
液流をそれぞれ導入し、後述の第1の低圧多成分冷媒流
を高温帯域の内の1種の流路の下部より導入して、ガス
流、多成分冷媒の高圧蒸気流及び多成分冷媒の高圧凝縮
液流を第1の低圧多成分冷媒流と熱交換させて冷却し、
(3)高温帯域で冷却されたガス流及び多成分冷媒の高
圧蒸気流をプレートフィン型熱交換器の低温帯域の流路
の内の2種の流路の上部よりそれぞれ導入し、後述の第
2の低圧多成分冷媒流を低温帯域の内の1種の流路の下
部より導入して、ガス流及び多成分冷媒の高圧蒸気流を
第2の低圧多成分冷媒流と熱交換させてさらに冷却し、
(4)低温帯域の下部から液化したガス流を抜き出して
回収し、(5)低温帯域の下部から抜き出された液化し
た多成分冷媒の高圧蒸気流を膨張させて得られる蒸気部
分と凝縮部分とを気液分離し、分離された蒸気部分と凝
縮部分とを混合して第2の低圧多成分冷媒流として低温
帯域の内の1種の流路の下部より導入し、低温帯域内を
上部より下部へ通過するガス流及び多成分冷媒の高圧蒸
気流と熱交換させた後、低温帯域の上部から抜き出し、
(6)低温帯域の上部から抜き出された第2の低圧多成
分冷媒流と高温帯域を通過した後の多成分冷媒の高圧凝
縮液流を膨張させて得られる流れとを混合して気液分離
し、分離された蒸気部分と凝縮部分とを混合して第1の
低圧多成分冷媒流として高温帯域の内の1種の流路の下
部より導入し、高温帯域内を上部より下部へ通過するガ
ス流、多成分冷媒の高圧蒸気流及び多成分冷媒の高圧凝
縮液流と熱交換させた後、高温帯域の上部から蒸気とし
て抜き出し、(7)高温帯域の上部から蒸気として抜き
出された第1の低圧多成分冷媒流を圧縮後、単一成分冷
媒と熱交換して得られる一部が凝縮した高圧多成分冷媒
を前記(1)の工程に循環して再度ガスの液化に使用す
ることからなるガスの液化方法。
1. A gas pre-cooled by heat exchange with a single-component refrigerant under a condition of sequentially lowering the temperature is exchanged with a high-pressure multi-component refrigerant pre-cooled until partly condensed by heat exchange with the single-component refrigerant. When the gas is liquefied, (1) the high-pressure multi-component refrigerant partially condensed by heat exchange with the single-component refrigerant is separated into a high-pressure vapor stream and a high-pressure condensate stream, and (2) the plate surface is upright. Of a high-temperature zone having at least four types of flow paths on the upper side, and a low-temperature zone having at least three types of flow paths on the lower side. The gas flow, the high-pressure vapor flow of the multi-component refrigerant, and the high-pressure condensate flow of the multi-component refrigerant are respectively introduced from the upper portions of the three types of flow paths, and the first low-pressure multi-component refrigerant flow described later is divided into one of the high-temperature zones. Introduced from the lower part of the seed flow path, the gas flow, multi-component refrigerant high Cooling the high-pressure condensate stream of the high-pressure vapor stream and the multi-component refrigerant by heat exchange with the first low-pressure multi-component refrigerant stream;
(3) The gas flow cooled in the high-temperature zone and the high-pressure vapor flow of the multi-component refrigerant are introduced from the upper portions of two of the flow channels in the low-temperature zone of the plate fin heat exchanger, respectively. And introducing a gas stream and a high-pressure vapor stream of the multi-component refrigerant into a second low-pressure multi-component refrigerant stream by introducing the low-pressure multi-component refrigerant stream from the lower portion of one of the flow paths in the low-temperature zone. Cool down,
(4) A liquefied gas stream is extracted and recovered from the lower part of the low-temperature zone, and (5) A vapor part and a condensing part obtained by expanding the high-pressure vapor stream of the liquefied multi-component refrigerant extracted from the lower part of the low-temperature zone. And a separated vapor portion and a condensed portion are mixed and introduced as a second low-pressure multi-component refrigerant stream from the lower part of one of the flow paths in the low-temperature zone. After exchanging heat with the gas flow passing through the lower part and the high-pressure vapor flow of the multi-component refrigerant, withdraw from the upper part of the low-temperature zone,
(6) Mixing the second low-pressure multi-component refrigerant stream extracted from the upper part of the low-temperature zone with the flow obtained by expanding the high-pressure condensate stream of the multi-component refrigerant after passing through the high-temperature zone, and Separated, the separated vapor portion and condensed portion are mixed and introduced as a first low-pressure multi-component refrigerant stream from the lower part of one of the flow paths in the high-temperature zone, and pass through the high-temperature zone from the upper part to the lower part. After heat exchange with the flowing gas stream, the high-pressure vapor stream of the multi-component refrigerant, and the high-pressure condensate flow of the multi-component refrigerant, it was extracted as steam from the upper part of the high-temperature zone, and (7) extracted as steam from the upper part of the high-temperature zone. After compressing the first low-pressure multi-component refrigerant stream, the partially condensed high-pressure multi-component refrigerant obtained by heat exchange with the single-component refrigerant is circulated to the step (1) and used again for gas liquefaction. Gas liquefaction method comprising:
【請求項2】 プレートフィン型熱交換器の高温帯域の
流路の一つの上部よりガス流を導入して冷却し、その一
部分が凝縮されたガス流を抜き出して凝縮された高沸点
成分を分離除去した後、高沸点成分を除去されたガス流
を抜き出した場所より高温帯域の他の流路の上部より導
入する請求項1に記載のガスの液化方法。
2. A gas flow is introduced from one upper part of a flow path in a high-temperature zone of a plate fin type heat exchanger and cooled, and a part of the gas flow is extracted to separate a condensed high-boiling component. The gas liquefaction method according to claim 1, wherein after the removal, the gas stream from which the high-boiling components have been removed is introduced from an upper portion of another flow path in a high-temperature zone from a location where the gas stream was extracted.
【請求項3】 低温帯域の下部から抜き出された液化し
た多成分冷媒の高圧蒸気流を膨張させて得られる蒸気部
分と凝縮部分とを気液分離し、分離された蒸気部分と凝
縮部分とを混合して低温帯域の内の1種の流路の下部よ
り導入するに当り、蒸気部分と凝縮部分との混合を低温
帯域に導入する直前に行う請求項1又は請求項2に記載
のガスの液化方法。
3. A vapor part and a condensed part obtained by expanding a high-pressure vapor flow of a liquefied multi-component refrigerant extracted from a lower part of a low temperature zone are subjected to gas-liquid separation, and the separated vapor part and condensed part are separated. 3. The gas according to claim 1, wherein the mixture of the gas and the condensed portion is performed immediately before the mixture is introduced into the low-temperature zone. Liquefaction method.
【請求項4】 低温帯域の上部から抜き出された第2の
低圧多成分冷媒流と高温帯域を通過した後の多成分冷媒
の高圧凝縮液流を膨張させて得られる流れとを混合して
気液分離し、分離された蒸気部分と凝縮部分とを混合し
て高温帯域の内の1種の流路の下部より導入するに当
り、蒸気部分と凝縮部分との混合を高温帯域に導入する
直前に行う請求項1、請求項2又は請求項3に記載のガ
スの液化方法。
4. A method of mixing a second low-pressure multi-component refrigerant stream extracted from the upper part of the low-temperature zone with a flow obtained by expanding a high-pressure condensate stream of the multi-component refrigerant after passing through the high-temperature zone. The mixture of the vapor and the condensed part is introduced into the high-temperature zone when the vapor-liquid separation and the separated vapor and the condensed part are mixed and introduced from the lower part of one of the channels in the high-temperature zone. The gas liquefaction method according to claim 1, 2 or 3, which is performed immediately before.
【請求項5】 プレートフィン型熱交換器の高温帯域の
流路を通過したガス流を膨張させた後低温帯域の流路の
上部から導入する請求項1、請求項2、請求項3又は請
求項4に記載のガスの液化方法。
5. The gas flow that has passed through the high-temperature zone flow path of the plate-fin heat exchanger is expanded and then introduced from above the low-temperature zone flow path. Item 5. The gas liquefaction method according to Item 4.
【請求項6】 高温帯域の上部から蒸気として抜き出さ
れた第1の低圧多成分冷媒流を圧縮後非炭化水素冷媒で
冷却し、次いで単一成分冷媒と熱交換して一部が凝縮し
た高圧多成分冷媒とする請求項1、請求項2、請求項
3、請求項4又は請求項5に記載のガスの液化方法。
6. The first low-pressure multi-component refrigerant stream extracted as vapor from the upper part of the high-temperature zone is compressed, cooled with a non-hydrocarbon refrigerant, and then heat-exchanged with a single-component refrigerant to partially condense. The gas liquefaction method according to claim 1, wherein the high-pressure multi-component refrigerant is used.
【請求項7】 多成分冷媒が窒素及び炭素数1〜5を有
する炭化水素のうちから選ばれる成分の混合物である請
求項1、請求項2、請求項3、請求項4、請求項5、請
求項6に記載のガスの液化方法。
7. The multi-component refrigerant is a mixture of components selected from nitrogen and hydrocarbons having 1 to 5 carbon atoms. The gas liquefaction method according to claim 6.
【請求項8】 多成分冷媒が窒素、メタン、エタン及び
プロパンからなる混合物である請求項7に記載のガスの
液化方法。
8. The gas liquefaction method according to claim 7, wherein the multi-component refrigerant is a mixture of nitrogen, methane, ethane and propane.
【請求項9】 単一成分冷媒がプロパンである請求項
1、請求項2、請求項3、請求項4、請求項7又は請求
項8に記載のガスの液化方法。
9. The gas liquefaction method according to claim 1, wherein the single-component refrigerant is propane.
JP33194394A 1994-12-09 1994-12-09 Gas liquefaction method Expired - Lifetime JP3320934B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP33194394A JP3320934B2 (en) 1994-12-09 1994-12-09 Gas liquefaction method
EP95308886A EP0723125B1 (en) 1994-12-09 1995-12-07 Gas liquefying method and plant
DE69523437T DE69523437T2 (en) 1994-12-09 1995-12-07 Gas liquefaction plant and method
US08/569,901 US5644931A (en) 1994-12-09 1995-12-08 Gas liquefying method and heat exchanger used in gas liquefying method
US08/823,165 US5813250A (en) 1994-12-09 1997-03-25 Gas liquefying method and heat exchanger used in gas liquefying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33194394A JP3320934B2 (en) 1994-12-09 1994-12-09 Gas liquefaction method

Publications (2)

Publication Number Publication Date
JPH08159652A JPH08159652A (en) 1996-06-21
JP3320934B2 true JP3320934B2 (en) 2002-09-03

Family

ID=18249386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33194394A Expired - Lifetime JP3320934B2 (en) 1994-12-09 1994-12-09 Gas liquefaction method

Country Status (1)

Country Link
JP (1) JP3320934B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110122101A (en) * 2008-12-19 2011-11-09 칸파 아라곤 에이에스 Method and system for producing liquified natural gas

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5592832A (en) * 1995-10-03 1997-01-14 Air Products And Chemicals, Inc. Process and apparatus for the production of moderate purity oxygen
DZ2533A1 (en) * 1997-06-20 2003-03-08 Exxon Production Research Co Advanced component refrigeration process for liquefying natural gas.
TW477890B (en) * 1998-05-21 2002-03-01 Shell Int Research Method of liquefying a stream enriched in methane
RU2395765C2 (en) * 2005-02-17 2010-07-27 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Plant and device for liquefaction of natural gas
US8464551B2 (en) * 2008-11-18 2013-06-18 Air Products And Chemicals, Inc. Liquefaction method and system
US9441877B2 (en) * 2010-03-17 2016-09-13 Chart Inc. Integrated pre-cooled mixed refrigerant system and method
KR20160049040A (en) 2010-03-25 2016-05-04 더 유니버시티 오브 맨체스터 Refrigeration process
US20130160487A1 (en) * 2011-12-20 2013-06-27 Conocophillips Company Liquefying natural gas in a motion environment
US11428463B2 (en) 2013-03-15 2022-08-30 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method
CA3140415A1 (en) 2013-03-15 2014-09-18 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method
US11408673B2 (en) 2013-03-15 2022-08-09 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method
TWI707115B (en) * 2015-04-10 2020-10-11 美商圖表能源與化學有限公司 Mixed refrigerant liquefaction system and method
AR105277A1 (en) * 2015-07-08 2017-09-20 Chart Energy & Chemicals Inc MIXED REFRIGERATION SYSTEM AND METHOD
US11561042B2 (en) 2016-02-26 2023-01-24 LGE IP Management Company Limited Method of cooling boil-off gas and apparatus therefor
GB201706265D0 (en) * 2017-04-20 2017-06-07 Babcock Ip Man (Number One) Ltd Method of cooling a boil-off gas and apparatus therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110122101A (en) * 2008-12-19 2011-11-09 칸파 아라곤 에이에스 Method and system for producing liquified natural gas
KR101712496B1 (en) * 2008-12-19 2017-03-07 아라곤 에이에스 Method and system for producing liquified natural gas

Also Published As

Publication number Publication date
JPH08159652A (en) 1996-06-21

Similar Documents

Publication Publication Date Title
JP3320934B2 (en) Gas liquefaction method
EP0723125B1 (en) Gas liquefying method and plant
US6370910B1 (en) Liquefying a stream enriched in methane
US4229195A (en) Method for liquifying natural gas
CA1226206A (en) Method and apparatus for cooling and liquefying at least one gas with a low boiling point, such as for example natural gas
AU2006215629B2 (en) Plant and method for liquefying natural gas
AU691433B2 (en) Method of liquefying and treating a natural gas
US6347532B1 (en) Gas liquefaction process with partial condensation of mixed refrigerant at intermediate temperatures
AU2005287826B2 (en) Systems and methods for low-temperature gas separation
US20170051968A1 (en) Integrated Pre-Cooled Mixed Refrigerant System and Method
KR101894076B1 (en) Natural gas liquefying system and liquefying method
US9400134B2 (en) Method and apparatus for liquefying a hydrocarbon stream
JP3922751B2 (en) Method and apparatus for liquefying a gas mixture such as natural gas in two stages
JP2001165563A (en) Gas liquefaction process
RU2716099C1 (en) Modular device for separation of spg and heat exchanger of flash gas
JP3965444B2 (en) Methods and equipment for natural gas liquefaction
JPH0552875B2 (en)
AU2021204327B2 (en) Liquefaction system
CA1250224A (en) Process for the separation of c in2 xx, c in3 xx or c in4 xx hydrocarbons
DE19728153A1 (en) Process liquefying stream of natural gas
US20210131728A1 (en) Process and apparatus for separating hydrocarbon
US20230366620A1 (en) System and Method for Cooling Fluids Containing Hydrogen or Helium
US20230009727A1 (en) Method for large hydrogen liquefaction system
GB1572899A (en) Process for the liquefaction of natural gas
WO2023121985A2 (en) Method for large hydrogen liquefaction system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080621

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090621

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100621

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100621

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110621

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120621

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130621

Year of fee payment: 11

EXPY Cancellation because of completion of term