JP3320834B2 - Bipolar electrolytic cell - Google Patents

Bipolar electrolytic cell

Info

Publication number
JP3320834B2
JP3320834B2 JP13046393A JP13046393A JP3320834B2 JP 3320834 B2 JP3320834 B2 JP 3320834B2 JP 13046393 A JP13046393 A JP 13046393A JP 13046393 A JP13046393 A JP 13046393A JP 3320834 B2 JP3320834 B2 JP 3320834B2
Authority
JP
Japan
Prior art keywords
anode
electrolytic cell
side partition
cathode
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13046393A
Other languages
Japanese (ja)
Other versions
JPH0649675A (en
Inventor
健二 坂本
啓 廣長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
ThyssenKrupp Uhde Chlorine Engineers Japan Ltd
Original Assignee
Chlorine Engineers Corp Ltd
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chlorine Engineers Corp Ltd, Tosoh Corp filed Critical Chlorine Engineers Corp Ltd
Priority to JP13046393A priority Critical patent/JP3320834B2/en
Publication of JPH0649675A publication Critical patent/JPH0649675A/en
Application granted granted Critical
Publication of JP3320834B2 publication Critical patent/JP3320834B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、新規な複極式電解槽に
関する。本発明が提供する電解槽は、導体抵抗が極めて
小さく、陽極の取り替えが簡便にでき、かつ、トラブル
時の電解槽の損傷が極めて軽微である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel bipolar electrolytic cell. The electrolytic cell provided by the present invention has an extremely small conductor resistance, allows easy replacement of the anode, and has very little damage to the electrolytic cell in the event of a trouble.

【0002】該複極式電解槽を用いる事によって、電解
時の電解電圧が低減でき、劣化した陽極の取り替えが簡
便に成され、かつ、トラブル時の電解槽の補修が極めて
簡便にできる。
By using the bipolar electrolytic cell, the electrolytic voltage at the time of electrolysis can be reduced, the deteriorated anode can be easily replaced, and the repair of the electrolytic cell at the time of trouble can be extremely simplified.

【0003】[0003]

【従来の技術】食塩水の電気分解をはじめとして、工業
的に電気分解を実施するための電解槽は種々の構造が知
られている。工業的に電解を実施する場合、電解電圧を
低減することが重要である事は言うまでもなく、そのた
めには電解槽の導体抵抗が小さい事が望まれる。また、
活性劣化、損傷等による陽極の更新が簡便に成され、さ
らに、トラブルが発生した場合にも損傷が軽微となる電
解槽の構造が望まれている。
2. Description of the Related Art Various types of electrolyzers for industrially performing electrolysis such as electrolysis of saline are known. It goes without saying that when performing electrolysis industrially, it is important to reduce the electrolysis voltage, and for that purpose, it is desired that the conductor resistance of the electrolyzer be low. Also,
There is a demand for an electrolytic cell structure in which the anode can be easily renewed due to activity deterioration, damage, and the like, and furthermore, even if a trouble occurs, the damage is minimal.

【0004】本発明では、以下、塩化アルカリ水溶液電
解に用いられている電解槽を例に取って説明する。
In the present invention, an electrolytic cell used for electrolysis of an aqueous solution of alkali chloride will be described as an example.

【0005】含フッ素陽イオン交換膜を隔膜に用い食塩
水を電気分解する事により、陽極側から塩素を製造し陰
極側から苛性ソーダ並びに水素を製造する技術は、通常
イオン交換膜法食塩電解法と呼ばれている。該イオン交
換膜法食塩電解技術は、従来の水銀法、隔膜法に比べて
エネルギー効率が高くまた高純度の苛性ソーダが製造で
きることは一般によく知られている。
A technique for producing chlorine from the anode side and producing caustic soda and hydrogen from the cathode side by electrolyzing saline using a fluorine-containing cation exchange membrane as a membrane is generally known as an ion exchange membrane method using salt electrolysis. being called. It is generally well known that the ion exchange membrane salt electrolysis technique has higher energy efficiency and can produce high-purity caustic soda as compared with the conventional mercury method and diaphragm method.

【0006】近年、エネルギー節約の要望が高まり、イ
オン交換膜法食塩電解のエネルギー効率を更に向上する
必要性が高まっている。即ち、より低い電解電圧、及び
/または、より高い電流効率で食塩電解を実施する技術
が現在開発されつつある。
[0006] In recent years, there has been an increasing demand for energy saving, and there is an increasing need to further improve the energy efficiency of ion exchange membrane method salt electrolysis. That is, techniques for performing salt electrolysis with lower electrolysis voltage and / or higher current efficiency are currently being developed.

【0007】食塩水の理論分解電圧は約2.2Vである
が、通常この理論分解電圧より1V以上も高い電圧で操
業されている。これは、陽極、及び、陰極の過電圧や、
膜抵抗、液抵抗、導体抵抗等の各種抵抗成分により電圧
が増大するためであることはよく知られている。即ち、
電解電圧を低下させるためには、陽極過電圧の低減、陰
極過電圧の低減、膜抵抗の削減、溶液抵抗の削減、及
び、電解槽の導体抵抗の削減等が重要な課題である。
[0007] The theoretical decomposition voltage of the saline solution is about 2.2 V, but it is usually operated at a voltage higher than this theoretical decomposition voltage by 1 V or more. This is the overvoltage of the anode and cathode,
It is well known that the voltage is increased by various resistance components such as film resistance, liquid resistance, and conductor resistance. That is,
In order to reduce the electrolysis voltage, reduction of anode overvoltage, reduction of cathode overvoltage, reduction of membrane resistance, reduction of solution resistance, and reduction of conductor resistance of an electrolytic cell are important issues.

【0008】現在では、陽極としてチタン基体上に酸化
ルテニウムなどの低塩素過電圧特性を有する触媒を被覆
した電極が実用化され一般に用いられている。又、陰極
は低水素過電圧特性を有する電極が種々考案され、実用
化がなされている。これらの技術により、陽極過電圧、
及び、陰極過電圧はかなりのレベルまで改良された。な
お、陽極の触媒活性は電解にともない徐々に低下するた
め、長期間の使用の後に電極触媒を更新する事が必要で
ある。通常、陽極の電極触媒の更新は、陽極を新しい陽
極と取り替える事で成される。
At present, an electrode in which a titanium substrate coated with a catalyst having a low chlorine overvoltage characteristic such as ruthenium oxide is put to practical use and is generally used as an anode. Also, various kinds of electrodes having low hydrogen overvoltage characteristics have been devised for the cathode, and the electrodes have been put to practical use. With these technologies, anode overvoltage,
And the cathode overvoltage has been improved to a considerable level. Since the catalytic activity of the anode gradually decreases with electrolysis, it is necessary to renew the electrode catalyst after long-term use. Usually, the renewal of the anode electrocatalyst is made by replacing the anode with a new anode.

【0009】一方、陽イオン交換膜については、フッ素
樹脂母体にカルボン酸基及び/またはスルホン酸基を固
定イオンとして結合させた含フッ素陽イオン交換膜が使
用されている。該陽イオン交換膜は、電解電圧の低減、
電流効率の向上、耐久性の向上を目的に改良が加えられ
ている。これらの結果、膜抵抗の低減、電流効率の向上
はかなりのレベルまで改良されている。
On the other hand, as the cation exchange membrane, a fluorinated cation exchange membrane in which a carboxylic acid group and / or a sulfonic acid group is bonded as a fixed ion to a fluororesin matrix is used. The cation exchange membrane reduces the electrolysis voltage,
Improvements have been made to improve current efficiency and durability. As a result, the reduction of the film resistance and the improvement of the current efficiency have been improved to a considerable level.

【0010】そのため、近年では、液抵抗、及び、導体
抵抗の低減を目的に、電解方法の改良、電解槽の改良等
に目標が変わって来ている。液抵抗の低減方法として
は、陰極、陽極間を可能な限り近接させて電解を実施す
ることが提案されている。即ち、膜と陽極、陰極と膜を
各々密着する電解方法である。この場合、電解中に発生
する気泡が膜の表面に付着する事による電解電圧の上昇
を緩和するため、膜の陽極側表面、および/または、陰
極側表面に気泡が付着しない為の気泡開放処理を施した
膜が一般に用いられている。
[0010] Therefore, in recent years, the objectives have been changed to improve the electrolytic method and the electrolytic cell for the purpose of reducing the liquid resistance and the conductor resistance. As a method of reducing the liquid resistance, it has been proposed to carry out electrolysis by bringing the cathode and the anode as close as possible. That is, this is an electrolysis method in which the membrane and the anode, and the cathode and the membrane are adhered to each other. In this case, in order to alleviate a rise in electrolysis voltage due to bubbles generated during electrolysis adhering to the surface of the membrane, a bubble opening treatment for preventing air bubbles from adhering to the anode side surface and / or the cathode side surface of the membrane. Is generally used.

【0011】ところで、工業的に用いられている電解槽
は単極式と複極式に大別されるが、単極式電解槽に比較
して複極式電解槽は、各電解槽毎の結線が不要であるた
め比較的簡単な構造とすることができること、また、大
電流が不要であり整流器、ブスバー等がコンパクトで安
価にできること等の多くの利点を持つ。そのため、複極
式電解槽の導体抵抗を削減する工業的価値は非常に大き
い。
By the way, electrolytic cells used industrially are roughly classified into a monopolar type and a bipolar type. In contrast to the monopolar type electrolytic cell, the bipolar type electrolytic cell is provided for each electrolytic cell. There are many advantages, such as a relatively simple structure because no wiring is required, and a rectifier, busbar, etc. that are compact and inexpensive because a large current is not required. Therefore, the industrial value of reducing the conductor resistance of the bipolar electrolytic cell is very large.

【0012】導体抵抗は、電解槽の構造や材質に大きく
影響される。即ち、電解槽を流れる電流の経路と該電流
経路に用いられる電解槽の材質の比抵抗により導体抵抗
は決定する。そのため、電流経路を可及的に短くし、か
つ/または、電流経路に採用する材質を比抵抗の小さい
部材により構成する事により導体抵抗の削減が可能であ
る。
[0012] The conductor resistance is greatly affected by the structure and material of the electrolytic cell. That is, the conductor resistance is determined by the specific resistance of the current path flowing through the electrolytic cell and the material of the electrolytic cell used for the current path. Therefore, the conductor resistance can be reduced by shortening the current path as much as possible and / or by using a material having a low specific resistance for the material adopted for the current path.

【0013】しかし、塩化アルカリ電解用の電解槽で
は、陰極側の材質は比較的比抵抗の小さいニッケルや鉄
系合金が採用できるが、陽極側の材質は一般に耐塩素ガ
ス性を有するが比抵抗は比較的大きいチタン、または、
チタン基合金等が採用されている。しかも、従来の複極
式電解槽では、実質的に平面のチタン製隔壁を陽極側隔
壁に用い、該隔壁と陽極の間はチタン製の導電リブで電
気的、機械的に接合されている。さらに、陽極室内部の
液の均一化、発生塩素ガスを電解槽外部に排出するため
の通路として、陽極と陽極側隔壁の間には通常30〜5
0mmの距離が必要とされる。
However, in the electrolytic cell for alkali chloride electrolysis, nickel or iron-based alloy having relatively small specific resistance can be adopted as the material on the cathode side, but the material on the anode side generally has chlorine gas resistance, but has specific resistance. Is relatively large titanium, or
A titanium-based alloy or the like is used. Moreover, in the conventional bipolar electrolytic cell, a substantially flat titanium partition is used as the anode-side partition, and the partition and the anode are electrically and mechanically joined by a conductive rib made of titanium. Further, as a passage for homogenizing the liquid in the anode chamber and discharging the generated chlorine gas to the outside of the electrolytic cell, a space between the anode and the anode-side partition is usually 30 to 5 mm.
A distance of 0 mm is required.

【0014】すなわち、従来の複極式電解槽では比抵抗
が大きい陽極側の導電リブ内を電流が流れる間に、いわ
ゆる導体抵抗によって電圧が増大する。従って、特に陽
極側の導体抵抗を低減することが可能な複極式電解槽が
待望されていた。
That is, in the conventional bipolar electrolytic cell, the voltage increases due to the so-called conductor resistance while the current flows through the conductive rib on the anode side having a large specific resistance. Therefore, a bipolar electrolytic cell capable of reducing the conductor resistance particularly on the anode side has been desired.

【0015】先に本出願人は前記要請に答えるべく、特
開昭58−71382号公報に於いて、電解槽の導体抵
抗を低減する目的で、陰・陽極室を耐食性金属薄板で形
成し、さらに該薄板を凹凸を有する波板とすることを主
旨とした電解槽を提案した。
In order to respond to the above request, the applicant of the present invention disclosed in Japanese Patent Application Laid-Open No. 58-71382 in which the negative / anode chamber was formed of a corrosion-resistant metal sheet for the purpose of reducing the conductor resistance of the electrolytic cell. Furthermore, an electrolytic cell was proposed in which the thin plate was made into a corrugated plate having irregularities.

【0016】該公報の5頁の第4図、及び、第5図に好
ましい実施形態の1例を示す電解槽の断面図を示した
が、陰極室と陽極室の電気的接合は圧着接合により形成
されており、コネクターによる電圧ロスをなくすと共
に、陽極側隔壁の凸部に陽極が直接接合されているた
め、導電リブによる電圧ロスもなくすことが出来る。こ
の出願人の発明により、いわゆる導体抵抗は極めて低減
された。
FIG. 4 and FIG. 5 on page 5 of the publication show cross-sectional views of an electrolytic cell showing an example of a preferred embodiment. The electric connection between the cathode chamber and the anode chamber is performed by pressure bonding. It is formed, and the voltage loss due to the connector can be eliminated, and the voltage loss due to the conductive ribs can also be eliminated because the anode is directly joined to the projection of the anode-side partition. According to the applicant's invention, the so-called conductor resistance is extremely reduced.

【0017】しかしながら、本発明者らが当該電解槽を
用いて塩化アルカリの電解を実施した場合に、以下に述
べる重大な欠点を見いだした。
However, when the present inventors carried out the electrolysis of alkali chloride using the electrolytic cell, they found the following serious disadvantages.

【0018】すなわち、長期間の使用により電極触媒活
性が低下した陽極を取り替える場合、該陽極を取り外す
時に陽極側隔壁が損傷し易く、さらに、陽極の取付も多
くの労力を必要とする。又、長時間の塩化アルカリ電解
後に、イオン交換膜にピンホ−ルが生じ、その周辺の陽
極、並びに陽極側隔壁が著しく腐食することがあり、こ
の様に著しく陽極側が破損した電解槽を補修するために
は、電解槽の陽極側隔壁をすべて取り替えるしかなく、
補修に著しい労力と材料が必要である。
That is, when replacing the anode whose electrode catalyst activity has been reduced due to long-term use, the anode-side partition is easily damaged when the anode is removed, and the installation of the anode also requires much labor. Also, after prolonged alkali chloride electrolysis, pinholes are formed in the ion exchange membrane, and the surrounding anode and anode-side partition walls may be significantly corroded. Thus, the electrolytic cell in which the anode side is severely damaged is repaired. The only way to do this is to replace all the anode partition walls of the electrolytic cell.
Repairs require significant labor and materials.

【0019】[0019]

【発明の解決しようとする課題】本発明は、上記要請に
答えるべく陽極側の導体抵抗が小さく、かつ、触媒活性
が低下した陽極の取り替えが簡便に成され、かつ、運転
時に例えトラブルが発生しても簡便で経済的に補修が可
能な複極式電解槽を提供することを目的とする。
SUMMARY OF THE INVENTION According to the present invention, in order to meet the above demand, the anode having a low conductor resistance on the anode side and having a reduced catalytic activity can be easily replaced, and troubles occur even during operation. It is another object of the present invention to provide a bipolar electrolytic cell that can be easily and economically repaired.

【0020】[0020]

【課題を解決するための手段】本発明は、複極式電解槽
において、陽極側隔壁を陽極側に突出させた凸部を有
し、かつ、該凸部と陽極とが導電性部材を介して電気的
に接合されていることを特徴とする複極式電解槽。又
は、陽極側隔壁を陰極側に突出させた凹部も有すること
を特徴とする複極式電解槽に関するものである。
According to the present invention, there is provided a bipolar electrolytic cell having a projection in which an anode-side partition is projected to the anode side, and the projection and the anode are connected via a conductive member. A bipolar electrolyzer characterized by being electrically joined together. Alternatively, the present invention relates to a bipolar electrolytic cell having a concave portion in which an anode-side partition protrudes toward a cathode.

【0021】本発明が提供する複極式電解槽を用いるこ
とによって、陽極側の導体抵抗が小さいため電解を低電
圧で実施可能となり、陽極の更新も簡便に成され、か
つ、仮に膜にピンホールが発生しても、電解槽の損傷は
極めて軽微であり、該損傷の補修も極めて簡便、安価に
実施可能となる。
By using the bipolar electrolytic cell provided by the present invention, electrolysis can be carried out at a low voltage because the conductor resistance on the anode side is small, the anode can be easily renewed, and if the pin is attached to the membrane temporarily, Even if a hole is generated, the damage to the electrolytic cell is extremely small, and the repair of the damage can be performed very simply and inexpensively.

【0022】以下、本発明の提供する電解槽の構造を図
面を基に説明する。しかしながら、これらの図面は本発
明の好ましい実施形態の一例として説明するものであ
り、これらの図面によって本発明を限定する意図は無論
ない。また、複極式電解槽は、当業界でよく知られてい
るので、ここでは本発明を特徴づける点について塩化ア
ルカリ水溶液電解用の複極式電解槽を例に詳細に説明す
る。なお、電解液の供給排出ノズル、陰極等は省略して
いるが、これらは従来の複極式電解槽と同一の材質、構
造を適時応用し取り付ければ良い。
Hereinafter, the structure of the electrolytic cell provided by the present invention will be described with reference to the drawings. However, these drawings are described as an example of a preferred embodiment of the present invention, and it is a matter of course that the present invention is not limited by these drawings. In addition, since the bipolar electrolytic cell is well known in the art, the characteristics of the present invention will be described in detail by taking a bipolar electrolytic cell for electrolysis of an aqueous solution of alkali chloride as an example. Although the supply and discharge nozzles for the electrolytic solution, the cathode, and the like are omitted, the same materials and structures as those used in the conventional bipolar electrolytic cell may be used by appropriately applying them.

【0023】図1及び図2は、本発明に好ましく用いら
れる複極式電解槽の構造の一例である。また、図3及び
図4は、陽極側隔壁、陰極側隔壁及び陽極との関係を例
示している。
FIGS. 1 and 2 show an example of the structure of a bipolar electrolytic cell preferably used in the present invention. FIGS. 3 and 4 illustrate the relationship between the anode-side partition, the cathode-side partition, and the anode.

【0024】図中、(1)は陽極側隔壁であり、通常チ
タン、またはチタン基合金からなる平板で形成される。
また、(2)は陰極側隔壁であり、通常ステンレス、又
はニッケル等の平板で形成される。陽極側隔壁(1)は
陽極(6)側に突き出した凸部(4+4´)(尚、ここ
で4は突出面を示し、4´は傾斜面を示す.)を有する
ことが必須である。又、陽極側隔壁(1)は陰極(図示
せず。)側に突き出した凹部(5)を有しても良い。
In the drawing, (1) denotes an anode-side partition, which is usually formed of a flat plate made of titanium or a titanium-based alloy.
(2) denotes a cathode-side partition, which is usually formed of a flat plate such as stainless steel or nickel. It is essential that the anode-side partition wall (1) has a projection (4 + 4 ') projecting toward the anode (6) (where 4 indicates a protruding surface and 4' indicates an inclined surface). Further, the anode-side partition (1) may have a concave portion (5) protruding toward the cathode (not shown).

【0025】又、導体抵抗の低減を更に効果的にするこ
と及び機械的強度を上げる為に、陽極側隔壁(1)と陰
極側隔壁(2)との間に導電性部材(3)を介しても良
い。又、陽極側隔壁(1)と陽極(6)との間には別の
導電性部材(3´)を介して取り付けられることを必須
とする。また、該隔壁(1)を構成する材質は、少なく
とも陽極側表面にはチタン、または、チタン基合金を用
いることが望ましい。これは例えば、チタンの薄板で作
製する事も可能であるし、チタンとチタン以外の良導電
材のクラッドにて作製する事も可能である。チタン以外
の良導電材としては、銅、銅基合金、鉄、鉄基合金等を
例示することが出来る。但し、基材をチタンとチタン以
外のクラッド材にて製作した場合には、チタンを陽極側
に向けて用いる事は言うまでもない。
In order to further reduce the conductor resistance and increase the mechanical strength, a conductive member (3) is provided between the anode-side partition (1) and the cathode-side partition (2). May be. In addition, it is essential that the anode-side partition (1) and the anode (6) be attached via another conductive member (3 '). It is preferable that titanium or a titanium-based alloy is used as a material for forming the partition wall (1) at least on the surface on the anode side. This can be made of, for example, a titanium thin plate, or can be made of titanium and a clad of a good conductive material other than titanium. Examples of the good conductive material other than titanium include copper, a copper-based alloy, iron, and an iron-based alloy. However, when the base material is made of titanium and a clad material other than titanium, it goes without saying that titanium is used facing the anode side.

【0026】さらに、凸部(4+4´)の垂直高さは又
は突出面(4)と凹部(5)との上下差は、好ましくは
10mm以上70mm以下である。陽極側隔壁(1)の
平板部又は凹部(5)は電解液、及び、ガスの通路とし
て働くために、10mm未満では電圧低減効果が減少す
る。一方、70mmを越えた場合には、電解槽の幅が増
大して導体抵抗が増大し、設置面積を増加させ、又、電
解槽当たりの材料費の増大を招くため好ましくない。
Further, the vertical height of the projection (4 + 4 ') or the vertical difference between the projection surface (4) and the depression (5) is preferably 10 mm or more and 70 mm or less. Since the flat portion or the concave portion (5) of the anode-side partition (1) functions as a passage for the electrolyte and the gas, the voltage reduction effect is reduced when the thickness is less than 10 mm. On the other hand, when it exceeds 70 mm, the width of the electrolytic cell increases, the conductor resistance increases, the installation area increases, and the material cost per electrolytic cell increases, which is not preferable.

【0027】又、凸部(4+4´)は互いに同一形状で
あっても良いし、同一形状でなくても良い。また、凸部
(4+4´)は、各々が並行で、かつ、実質的に上下方
向に設けることも可能であるが、他の好ましい形態とし
ては、上下方向に対して、好ましくは45度以内の角度
で、傾けることも出来る。しかし、45度よりも大きい
角度を持つ場合には、該凸部に気泡が滞留し電解特性に
悪影響を与える。
The projections (4 + 4 ') may or may not have the same shape. In addition, the convex portions (4 + 4 ′) can be provided in parallel with each other and substantially in the vertical direction. However, as another preferred embodiment, the angle is preferably within 45 degrees with respect to the vertical direction. You can also tilt at an angle. However, if it has an angle larger than 45 degrees, the air bubbles will stay in the projections and adversely affect the electrolytic characteristics.

【0028】さらに、凹凸は、上下方向に連続している
必要はなく、むしろ上下方向に複数に分かれていれば内
部の電解液の混合をより十分にならしめるために好まし
い。これは例えば、図2の様な形状で達成できる。
Further, it is not necessary for the unevenness to be continuous in the vertical direction. Rather, it is preferable that the unevenness is divided into a plurality in the vertical direction in order to more sufficiently mix the internal electrolyte solution. This can be achieved, for example, by a shape as shown in FIG.

【0029】一方、突出面(4)の形状は何等制限はな
く、例えば、長方形、平行四辺形、多角形、円形、楕円
形などあらゆる形状が適時用いられる。
On the other hand, the shape of the protruding surface (4) is not limited at all. For example, any shape such as a rectangle, a parallelogram, a polygon, a circle, and an ellipse is used as appropriate.

【0030】図5及び図6には従来の複極式電解槽及び
その陽極側隔壁、陰極側隔壁及び陽極との関係を示す。
FIGS. 5 and 6 show a conventional bipolar electrolytic cell and its relationship with the anode-side partition, the cathode-side partition and the anode.

【0031】陽極側隔壁(1)には導電性リブ(7)が
取付られ、該導電性リブ(7)に陽極(6)が取り付け
られる。前述のように、導電性リブ(7)は通常、チタ
ン、または、チタン基合金からなり、電気が該導電性リ
ブを流れる際に、導体抵抗により電圧が上昇する。よっ
て、電解電圧の低減のためには、導電リブは可能な限り
短くすることが望まれるが、電解液、及び、塩素ガスを
電解槽外に排出するための通路を陽極背面に設けるた
め、陽極裏面と陽極側隔壁との間に通常30〜50mm
の間隔を開けるような幅を必要とする。
A conductive rib (7) is mounted on the anode-side partition (1), and an anode (6) is mounted on the conductive rib (7). As described above, the conductive rib (7) is usually made of titanium or a titanium-based alloy, and when electricity flows through the conductive rib, the voltage increases due to the conductor resistance. Therefore, in order to reduce the electrolysis voltage, it is desired that the conductive ribs be as short as possible.However, since a passage for discharging the electrolytic solution and chlorine gas out of the electrolytic cell is provided on the back surface of the anode, Usually 30 to 50 mm between the back and anode side partition
Need a width that allows for the gap between

【0032】又、通常陽極側隔壁(1)は、ニッケル、
鉄等の陰極側隔壁(2)と少なくとも一部で電気的に接
合されている。該陰極側隔壁(2)は、導電性リブ(図
示せず)により陰極(図示せず)と接合される。
Usually, the anode-side partition (1) is made of nickel,
It is electrically connected at least partially with a cathode-side partition (2) such as iron. The cathode-side partition (2) is joined to a cathode (not shown) by a conductive rib (not shown).

【0033】また、本発明において、突出面(4)の総
面積が、有効電解面積に対して占める面積の割合は、5
%以上で60%を越えない範囲であることが好ましい。
5%より少ない場合には、導体抵抗が上昇し、本発明の
効果が減少する。好ましくは15%以上である。一方、
60%を越えると、電解液の供給状態が悪化し、かつ、
発生ガスの滞留が生じるため、電解電圧の上昇、及び/
または、電流効率の低下を招く、また、場合によっては
膜の破損を促す。
In the present invention, the ratio of the total area of the protruding surface (4) to the effective electrolysis area is 5%.
% Or more and not more than 60%.
If it is less than 5%, the conductor resistance increases and the effect of the present invention decreases. It is preferably at least 15%. on the other hand,
If it exceeds 60%, the supply state of the electrolyte deteriorates, and
Since the generated gas stays, the electrolysis voltage increases, and / or
Alternatively, the current efficiency is lowered, and in some cases, the film is damaged.

【0034】一方、陰極側隔壁(2)は、材質に従来用
いられているものを用いて作製すれば、特に形状の制限
はない。例えば、平板でもよいし、陽極側隔壁同様凹凸
を有していても良い。陰極側隔壁が凹凸を有している場
合、陽極側隔壁と同様に陰極側凸部が定義されるが、こ
れらの形状は陽極側隔壁と同一であってもよいし、異な
る形状でもよい。
On the other hand, the shape of the cathode-side partition (2) is not particularly limited as long as it is manufactured using a material conventionally used as a material. For example, it may be a flat plate or may have irregularities like the anode-side partition. When the cathode-side partition has irregularities, the cathode-side projection is defined similarly to the anode-side partition, but these shapes may be the same as or different from the anode-side partition.

【0035】また、陰極側の表面材質にはニッケル、ま
たは、ニッケル基合金を用いることにより、電解時の腐
食が特に抑えられるために好ましい。これは、例えば、
ニッケルまたはニッケル基合金のみで隔壁を構成する事
も可能であるし、鉄または鉄系合金にニッケルまたはニ
ッケル基合金層をメッキ、溶射等の手段で形成した材の
ニッケル層を陰極側に向ける事でも可能である。
It is preferable to use nickel or a nickel-based alloy as the surface material on the cathode side since corrosion during electrolysis is particularly suppressed. This is, for example,
The partition walls can be composed of nickel or a nickel-based alloy alone, or the nickel layer of a material formed by plating or spraying nickel or a nickel-based alloy layer on iron or an iron-based alloy can be turned to the cathode side. But it is possible.

【0036】これらの陽極側隔壁(1)と陰極側隔壁
(2)は、少なくとも一部で電気的に接合されているこ
とが必須である。この時、電気的接合の少なくとも一ヶ
所は、陽極側隔壁の凸内面と陰極側の隔壁で電気的に接
合されることが好ましい。
It is essential that the anode-side partition (1) and the cathode-side partition (2) are electrically connected at least partially. At this time, it is preferable that at least one portion of the electrical connection be electrically connected between the convex inner surface of the anode-side partition and the cathode-side partition.

【0037】図3は、図1のA−A’の断面の1例とし
て、実質上平板である陰極側隔壁(2)と、凸部を有す
る陽極側隔壁(1)とから電解槽の隔壁を構成した場合
の例を示している。
FIG. 3 shows, as an example of a cross section taken along line AA ′ of FIG. 1, a partition wall of an electrolytic cell comprising a cathode partition wall (2) which is substantially a flat plate and an anode partition wall (1) having a convex portion. The example in the case of comprising is shown.

【0038】図3に示したように、陰極側隔壁の内面に
実質上垂直に接合された導電部材(3)を介して陽極側
隔壁の凸上部内面とが電気的に接合されている。ここ
で、該導電部材(3)は電気抵抗が小さいことが望ま
れ、好ましくは銅、ニッケル、鉄、または、これらの少
なくとも一つを含む合金が用いられる。
As shown in FIG. 3, the inner surface of the convex portion of the anode-side partition is electrically connected to the inner surface of the anode-side partition via a conductive member (3) substantially vertically bonded to the inner surface of the cathode-side partition. Here, it is desired that the conductive member (3) has a small electric resistance. Preferably, copper, nickel, iron, or an alloy containing at least one of these is used.

【0039】なお、陽極側隔壁と陰極側隔壁がこれ以外
の部位で接合されても良い。むしろ、その他の部位でも
接合すれば、隔壁の機械的強度が向上する。例えば、陽
極側隔壁の平板部と陰極側隔壁とを直接接合することで
機械的強度は向上する。
The anode-side partition and the cathode-side partition may be joined at other portions. Rather, if the other portions are joined, the mechanical strength of the partition wall is improved. For example, the mechanical strength is improved by directly joining the flat part of the anode-side partition and the cathode-side partition.

【0040】前記陽極側隔壁の突出面(4)と陽極
(6)を導電性部材(3´)を介して電気的に接合する
ことが必須である。導電性部材(3´)を介すること無
く、陽極側隔壁の突出面(4)と陽極(6)と直接接合
すれば、本発明の効果は全く発揮されない。
It is essential that the protruding surface (4) of the anode-side partition and the anode (6) are electrically connected via a conductive member (3 '). If the protruding surface (4) of the anode-side partition and the anode (6) are directly joined without the interposition of the conductive member (3 '), the effect of the present invention will not be exhibited at all.

【0041】また、図4は図2のB−B’の断面の一例
であるが、図4では陰極側隔壁(2)が陽極側隔壁
(1)と同一形状からなる例を示す。
FIG. 4 is an example of a cross section taken along line BB ′ of FIG. 2. FIG. 4 shows an example in which the cathode-side partition (2) has the same shape as the anode-side partition (1).

【0042】この場合、少なくとも陽極側隔壁の突出面
(4)と陰極側隔壁が電気的に接合されることが好まし
い。この時の接合は、導電部材(3)を介しても良い
し、図4のように陽極側の突出面(4)と陰極側隔壁
(2)の背面を直接接合すれば特に導体抵抗が低減でき
るため好ましい。又、全面を電気的に接合することも好
ましい方法である。
In this case, it is preferable that at least the projecting surface (4) of the anode-side partition and the cathode-side partition are electrically connected. The bonding at this time may be via a conductive member (3), or if the protruding surface (4) on the anode side and the back surface of the cathode-side partition (2) are directly bonded as shown in FIG. It is preferable because it is possible. It is also a preferable method to electrically bond the entire surface.

【0043】例えば、陽極側隔壁と陰極側隔壁の電気的
接合は、スポット溶接等で実施可能であるし、爆着法を
用いて、陰極側隔壁と陽極側隔壁を接合することも可能
である。また、陽極側隔壁と陰極側隔壁を圧着接合した
複合部材を、所望の形状に変形せしめることも本発明で
好適に用いることが出来る。また、板状のチタンとニッ
ケルの板材を、プレス成形などで変形することも可能で
ある。
For example, the electrical connection between the anode-side partition and the cathode-side partition can be carried out by spot welding or the like, or the cathode-side partition and the anode-side partition can be joined by using the explosion method. . Further, it is also possible to suitably use the present invention to deform a composite member in which the anode-side partition and the cathode-side partition are joined by pressure bonding into a desired shape. It is also possible to deform a plate-like titanium and nickel plate material by press molding or the like.

【0044】さらに、前記陽極側隔壁の突出面(4)と
陽極(6)を導電性部材(3´)を介して電気的に接合
することが必須である。導電性部材(3´)を介するこ
と無く、陽極側隔壁の突出面(4)と陽極(6)と直接
接合すれば、本発明の効果は全く発揮されない。
Furthermore, it is essential that the protruding surface (4) of the anode-side partition and the anode (6) are electrically connected via a conductive member (3 '). If the protruding surface (4) of the anode-side partition and the anode (6) are directly joined without the interposition of the conductive member (3 '), the effect of the present invention will not be exhibited at all.

【0045】例えば、従来の凸部のある電解槽の断面図
を示す例である図7及び図8を、陽極側隔壁が凹凸を有
する従来の電解槽の1例として例示した。これらの場
合、陽極側隔壁の突出面(4)と陽極(6)が直接接合
されており、陽極側隔壁が損傷し易い事等、本発明の効
果は何等発揮されない。
For example, FIGS. 7 and 8, which are cross-sectional views of a conventional electrolytic cell having a convex portion, are illustrated as an example of a conventional electrolytic cell in which the anode-side partition has irregularities. In these cases, the projecting surface (4) of the anode-side partition and the anode (6) are directly joined, and the effect of the present invention is not exhibited at all, such as that the anode-side partition is easily damaged.

【0046】なお、上記図7及び図8に例示した断面構
造を有する電解槽に於いて、陽極側隔壁と陽極とを導電
性部材(3´)を介して電気的に接合すれば、本発明の
電解槽の好ましい実施形態の1つとなることは言うまで
もない。
In the electrolytic cell having the cross-sectional structure illustrated in FIGS. 7 and 8, if the anode-side partition and the anode are electrically connected via the conductive member (3 '), the present invention It is needless to say that this is one of the preferred embodiments of the electrolytic cell.

【0047】導電性部材(3´)の材質は導電性で、か
つ、陽極室内の電解下で十分な耐久性を有するものが適
時使用可能である。好ましくは、少なくとも表面の材質
はチタン、または、チタン基合金である。導電性部材
(3´)はすべてチタン、または、チタン基合金で作製
することも可能であるし、内部に銅などの良導電性の材
を内包することも可能である。例えば、チタン製の角
棒、丸棒、または、表面はチタンであり内部に銅を有す
る角棒、または、丸棒のクラッド材などを、好適に用い
ることが出来る。
As the material of the conductive member (3 '), a material having conductivity and sufficient durability under electrolysis in the anode chamber can be used as appropriate. Preferably, the material of at least the surface is titanium or a titanium-based alloy. The conductive member (3 ') can be made entirely of titanium or a titanium-based alloy, and can also contain a highly conductive material such as copper. For example, a square bar or round bar made of titanium, a square bar having a surface of titanium and having copper therein, a clad material of a round bar, or the like can be suitably used.

【0048】なお、一つの突出面(4)に対して一つの
導電性部材(3´)を用いても良いし、複数用いても良
い。また、導電性部材(3´)が突出面(4)に占める
投影面積の割合は、70%以下であることが好ましい。
70%より大きい場合この部分での電解液の供給が悪化
し、電圧の上昇、及び/または、電流効率の低下を招く
ばかりではなく、膜に悪影響を及ぼす。但し、該割合
は、5%以上であることが好ましい。5%未満では、導
電性部材(3´)が細くなり、導体抵抗が上昇する。
Note that one conductive member (3 ') may be used for one projecting surface (4), or a plurality of conductive members (3') may be used. Further, the ratio of the projected area occupied by the conductive member (3 ′) to the protruding surface (4) is preferably 70% or less.
If it is more than 70%, the supply of the electrolytic solution in this portion is deteriorated, which not only causes an increase in voltage and / or a decrease in current efficiency, but also adversely affects the film. However, the ratio is preferably 5% or more. If it is less than 5%, the conductive member (3 ') becomes thin, and the conductor resistance increases.

【0049】さらに、導電性部材(3´)を介して陽極
側隔壁と陽極を接合する場合、陽極側隔壁の突出面
(4)と陽極の裏面の距離は好ましくは2mm以上、さ
らに好ましくは3mm以上である。陽極側隔壁(1)の
突出面(4)と陽極裏面との距離が、2mm未満の場合
には、陽極側隔壁(1)が損傷し易く、本発明の効果が
十分に得られない。一方、2mm以上の距離を有してお
れば、いかなる値に於いても本発明の効果が発揮される
が、余り離しすぎた場合には、電解槽自体の設置面積が
増大し、さらに導体抵抗が高くなるので、通常、10m
m以下、好ましくは5mm以下とする。
When the anode-side partition and the anode are joined via the conductive member (3 '), the distance between the protruding surface (4) of the anode-side partition and the back surface of the anode is preferably 2 mm or more, more preferably 3 mm. That is all. When the distance between the protruding surface (4) of the anode-side partition (1) and the anode back surface is less than 2 mm, the anode-side partition (1) is easily damaged, and the effect of the present invention cannot be sufficiently obtained. On the other hand, if the distance is 2 mm or more, the effect of the present invention can be exerted at any value. However, if the distance is too large, the installation area of the electrolytic cell itself increases, and the conductor resistance further increases. Is usually 10m
m or less, preferably 5 mm or less.

【0050】陽極は、既存の塩化アルカリ電解用陽極が
すべて適用可能であり、例えば、チタン基体の上に、酸
化ルテニウム等の低塩素過電圧特性を有する電極触媒層
を形成したものが用いられる。又、形状は特に限定され
ないが、有孔板状の電極を用いることにより、発生する
塩素ガスが電極裏面に抜けその後セル外部に排出される
ため好ましい。このような形状の電極は、パンチドメタ
ル、エキスパンドメタル、または、網状電極として広く
知られている。
As the anode, any existing anodes for alkali chloride electrolysis can be used. For example, an anode obtained by forming an electrode catalyst layer having a low chlorine overvoltage characteristic such as ruthenium oxide on a titanium substrate is used. Although the shape is not particularly limited, it is preferable to use a perforated plate-shaped electrode because generated chlorine gas escapes to the back surface of the electrode and is then discharged outside the cell. Electrodes having such a shape are widely known as punched metal, expanded metal, or mesh electrodes.

【0051】一方、陰極側隔壁と陰極との接合は、従来
知られているあらゆる方法が適用可能である。例えば、
図3のように陰極側隔壁を実質上平面で構成する場合に
は、陰極側隔壁と陰極を10〜50mm離すように導電
性リブを用いて支持することによって成される。この導
電性リブは従来用いられている物が全て適用可能であ
る。
On the other hand, for joining the cathode-side partition and the cathode, any conventionally known method can be applied. For example,
When the cathode-side partition is formed substantially as a plane as shown in FIG. 3, the cathode-side partition is supported by using a conductive rib so as to be separated from the cathode by 10 to 50 mm. As the conductive rib, all the conventionally used ones can be applied.

【0052】又、図4のように陰極側隔壁を凹凸を有す
る部材で構成した場合には、陽極側隔壁の凹部(5)と
陰極を直接電気的に接合することができる。また、必要
であれば、陽極と同様に導電性部材を介して電気的に接
合することも可能である。
When the cathode-side partition is made of a member having irregularities as shown in FIG. 4, the recess (5) of the anode-side partition and the cathode can be directly electrically connected. If necessary, it is also possible to electrically connect via a conductive member similarly to the anode.

【0053】また、本発明の電解槽では、低水素過電圧
特性を有する活性陰極を設置する事で電解電圧を極めて
低減できる。例えば、鉄、鉄系合金、ニッケル、また
は、ニッケル基合金の電極に活性ニッケル層を電気メッ
キしたものが適用可能である。この様な活性陰極の製法
は、例えば特開昭58−6983公報に開示されてい
る。また、この様な活性陰極を設置する場合には、陰極
を隔壁に接合した後、陰極、及び、陰極室内部のすべて
に活性陰極メッキする方法で実施する事が好ましい。
Further, in the electrolytic cell of the present invention, the electrolysis voltage can be extremely reduced by installing an active cathode having a low hydrogen overvoltage characteristic. For example, an electrode obtained by electroplating an active nickel layer on an electrode of iron, an iron-based alloy, nickel, or a nickel-based alloy is applicable. A method for producing such an active cathode is disclosed in, for example, Japanese Patent Application Laid-Open No. 58-6983. In the case where such an active cathode is provided, it is preferable that the cathode is joined to the partition wall, and then the active cathode is plated on the cathode and the entire cathode chamber.

【0054】以上説明した複極式電解槽を用いて、塩化
アルカリ水溶液の電解を実施する方法について説明す
る。塩化アルカリ水溶液の電解方法については、すでに
種々の方法が知られており、本発明ではこれらを適時応
用すればよい。
A method for carrying out electrolysis of an aqueous alkali chloride solution using the bipolar electrolytic cell described above will be described. Various methods are already known for the electrolysis method of the aqueous alkali chloride solution, and these methods may be applied as appropriate in the present invention.

【0055】すなわち、前記複極式電解槽を複数直列に
置き、陽極と陰極の間に隔膜を設置し陽極室と陰極室を
形成する。この時の槽数は特に限定されないが、通常5
〜30槽程度である。隔膜には、含フッ素陽イオン交換
膜を使用する事が好ましいが、アスベスト等のいわいる
隔膜法で実施する事もできる。
That is, a plurality of the bipolar electrolytic cells are placed in series, a diaphragm is provided between the anode and the cathode, and an anode chamber and a cathode chamber are formed. The number of tanks at this time is not particularly limited, but is usually 5
It is about 30 tanks. It is preferable to use a fluorine-containing cation exchange membrane for the membrane, but it is also possible to use a membrane method such as asbestos.

【0056】また、陽極と膜、及び、陰極と膜はある間
隔を設けて配置する事も可能であるが、各々接触して配
置すれば溶液抵抗が軽減されるため好ましい。なお、こ
の場合、使用する陽イオン交換膜は、陽極側表面、及び
/または、陰極側表面に気泡開放処理がなされているこ
とが望ましい。このような陽イオン交換膜は広く一般に
知られている。
The anode and the membrane and the cathode and the membrane can be arranged at a certain interval. However, it is preferable to arrange them in contact with each other because the solution resistance is reduced. In this case, it is desirable that the cation exchange membrane to be used has been subjected to a bubble release treatment on the anode side surface and / or the cathode side surface. Such cation exchange membranes are widely and generally known.

【0057】陽極室には精製された塩化アルカリ溶液が
供給され、陰極室には純水、および/または、苛性アル
カリ溶液が供給される。なお、各室に独立に液を供給し
てもよいが、通常並列に供給される。
The anode compartment is supplied with a purified alkali chloride solution, and the cathode compartment is supplied with pure water and / or a caustic solution. The liquid may be supplied to each of the chambers independently, but is usually supplied in parallel.

【0058】この時の供給濃度は特に限定はなく、通
常、塩化アルカリ溶液の濃度は230g/リットル〜飽
和濃度の範囲、苛性アルカリの濃度は32重量%以下に
設定される。
At this time, the supply concentration is not particularly limited. Usually, the concentration of the alkali chloride solution is set in the range of 230 g / liter to the saturation concentration, and the concentration of the caustic is set to 32% by weight or less.

【0059】また、電流は最端部の陽極から最端部の陰
極に向けて直列に流され、電解により陽極室からは塩素
及び希釈塩化アルカリ溶液が、陰極室からは水素及び苛
性アルカリが排出される。排出はすべて独立して実施し
てもよいが、通常、陽極系、陰極系はそれぞれ並列に実
施される。塩素及び水素は各々精製工程等を経た後製品
となる。また、希釈塩化アルカリ溶液は、通常一部が再
循環され、残りは処理され、場合によっては再利用され
る。苛性アルカリは、通常一部が再循環され、残りは濃
縮工程等を経た後製品となる。
An electric current is passed in series from the endmost anode to the endmost cathode, and chlorine and a diluted alkali chloride solution are discharged from the anode chamber by electrolysis, and hydrogen and caustic are discharged from the cathode chamber. Is done. All discharges may be performed independently, but usually, the anode system and the cathode system are each performed in parallel. Chlorine and hydrogen each become products after a purification step and the like. In addition, the diluted alkali chloride solution is usually partially recycled, and the remainder is processed and, if necessary, reused. Caustic alkali is usually partially recycled and the remainder is a product after a concentration step and the like.

【0060】排出される希釈塩化アルカリの濃度、苛性
アルカリの濃度は特に限定はなく、通常、希釈塩化アル
カリの濃度は230〜170g/リットルの範囲、苛性
アルカリは20重量%〜50重量%の範囲に設定され
る。
The concentration of the diluted alkali chloride and the concentration of the caustic discharged are not particularly limited, and the concentration of the diluted alkali chloride is usually in the range of 230 to 170 g / liter, and the concentration of the caustic is in the range of 20 to 50% by weight. Is set to

【0061】電解電流密度は特に制限はなく、通常、1
〜7KA/m2程度である。
The electrolytic current density is not particularly limited.
77 KA / m 2 .

【0062】電解温度は特に制限はなく、通常、75〜
100℃程度である。
The electrolysis temperature is not particularly limited.
It is about 100 ° C.

【0063】以上のように、従来公知の塩化アルカリ溶
液の電解に、本発明の複極式電解槽を用いる事によっ
て、陽極側の導体抵抗が小さく電解電圧が低減され、触
媒活性が低下した陽極の取り替えが簡便に成され、か
つ、運転時に、例えトラブルが発生しても、補修が簡
便、かつ、経済的に成される。
As described above, by using the bipolar electrolytic cell of the present invention for electrolysis of a conventionally known alkali chloride solution, the anode having a low conductor resistance on the anode side, a reduced electrolysis voltage, and a reduced catalytic activity. Can be easily replaced, and even if a trouble occurs during operation, repair can be performed simply and economically.

【0064】なお、本発明の複極式電解槽は塩化アルカ
リ溶液の電解にとどまらず、他の工業電解分野にも適用
できる事は言うまでもない。
It is needless to say that the bipolar electrolytic cell of the present invention is applicable not only to electrolysis of an alkali chloride solution but also to other industrial electrolysis fields.

【0065】[0065]

【発明の効果】従来公知の電解槽に比較して、本発明が
提供する新規な複極式電解槽を用いた場合の効果は、以
下の3つに集約される。
The effects obtained by using the novel bipolar electrolytic cell provided by the present invention as compared with conventionally known electrolytic cells can be summarized into the following three.

【0066】即ち、まず第1に本発明の提供する電解槽
は、導体抵抗が小さいために電解電圧を低減可能であ
る。これは、本発明が提供する電解槽図1及び図2と、
従来一般用いられていた電解槽の代表例である図5とを
比較すれば明らかである。図5の電解槽では、陽極側隔
壁と陽極との電気的接続は、チタン製の導電性リブによ
り成されていた。この場合、抵抗の大きなチタンから成
る導電性リブを介して陽極に電気を供給するため、この
部分で大きな電圧の降下が生じる。この為、電解電圧に
占める導体抵抗損の割合が大きい。
That is, first, the electrolytic cell provided by the present invention can reduce the electrolytic voltage because the conductor resistance is small. This corresponds to the electrolytic cells shown in FIGS. 1 and 2 provided by the present invention,
It is clear from a comparison with FIG. 5 which is a typical example of an electrolytic cell generally used in the related art. In the electrolytic cell of FIG. 5, the electrical connection between the anode-side partition and the anode was made by conductive ribs made of titanium. In this case, since electricity is supplied to the anode through the conductive rib made of titanium having a large resistance, a large voltage drop occurs in this portion. For this reason, the ratio of conductor resistance loss to the electrolytic voltage is large.

【0067】しかしながら本発明の電解槽では、陽極側
隔壁と陽極との電気的接続は、ごく短距離の導電性部材
(3´)があるだけである。このため、陽極側隔壁と陽
極間での導体抵抗による電圧損失が極めて低減される。
そのため、電解電圧が低下する。なお、陽極側隔壁と陰
極側隔壁間は、銅、または、ニッケル等で電気的に接合
されるため、この間での導体抵抗も無視し得る。
However, in the electrolytic cell of the present invention, the electrical connection between the anode side partition and the anode is only a very short distance conductive member (3 '). Therefore, voltage loss due to conductor resistance between the anode-side partition and the anode is extremely reduced.
Therefore, the electrolysis voltage decreases. In addition, since the anode-side partition and the cathode-side partition are electrically connected with copper, nickel, or the like, the conductor resistance between them can be neglected.

【0068】第2に、長期間使用し触媒活性が低下した
陽極の更新が簡便にできる。即ち、本発明の電解槽で
は、陽極側隔壁(1)と陽極(6)とは導電性部材を介
して接合されているので、陽極を取り外す工程で該隔壁
を損傷する危険性はなく、かつ、取り外し、取り付け共
に簡便に実施できる。
Second, it is possible to easily renew the anode which has been used for a long period of time and has a reduced catalytic activity. That is, in the electrolytic cell of the present invention, since the anode-side partition (1) and the anode (6) are joined via the conductive member, there is no danger of damaging the partition in the step of removing the anode, and , Can be easily removed and attached.

【0069】第3に、本発明が提供する電解槽と特開昭
58−71382号の具体的例示として示した図7及び
図8の様な従来の電解槽と比較すると、本発明の電解槽
は、陽極側隔壁の突出面(4)と陽極(6)とは導電性
部材(3´)を介して接合されているため、陽極側隔壁
の突出面(4)が陽極の穴を塞ぐ面積が小さい。そのた
め、他の部位同様陽極と膜間には十分に電解液が供給さ
れ、かつ、塩素ガスの滞留もなく、該部位で特に膜が悪
影響を受ける懸念はない。しかも、例え膜にピンホール
が生じたとしても、本発明の電解槽は、陽極側隔壁
(1)と隔膜とが直接接触しておらず、陽極側隔壁
(1)が隔膜から2mm以上離れている為に、陽極側隔
壁は何等腐食を受ける事なく、陽極、もしくは、陽極と
導電性部材(3´)が腐食されるのみである。この為、
補修時には、腐食した陽極、または、陽極と導電性部材
(3´)を取り替えるだけでよく、その補修費は著しく
軽減され、かつ、極めて簡便に補修が実施できる。
Third, comparing the electrolytic cell provided by the present invention with the conventional electrolytic cell shown in FIGS. 7 and 8 as a specific example of JP-A-58-71382, the electrolytic cell of the present invention Since the projecting surface (4) of the anode-side partition and the anode (6) are joined via the conductive member (3 '), the area where the projecting surface (4) of the anode-side partition closes the hole of the anode. Is small. Therefore, the electrolyte is sufficiently supplied between the anode and the film as in the other portions, there is no retention of chlorine gas, and there is no concern that the film is particularly adversely affected at the portion. Moreover, even if a pinhole occurs in the membrane, the electrolytic cell of the present invention does not directly contact the anode-side partition (1) and the diaphragm, and the anode-side partition (1) is separated from the diaphragm by 2 mm or more. Therefore, the anode-side partition does not undergo any corrosion, and only the anode or the anode and the conductive member (3 ') are corroded. Because of this,
At the time of repair, it is only necessary to replace the corroded anode or the anode and the conductive member (3 '), and the repair cost is significantly reduced, and the repair can be performed extremely easily.

【0070】この様に、陽極側隔壁の突出面(4)に導
電性部材(3´)を設置する事により、トラブル時の腐
食が著しく軽減される事は驚くべき事であり、本発明が
提供する電解槽は従来の電解槽に比べ極めて性能が優れ
たものといえる。
It is surprising that the provision of the conductive member (3 ') on the protruding surface (4) of the anode-side partition significantly reduces corrosion in the event of a trouble. It can be said that the provided electrolytic cell is extremely superior in performance to the conventional electrolytic cell.

【0071】なお、本発明の電解槽構造の設計思想、並
びに、効果等は、膜のピンホールなどにより陽極室に漏
洩する苛性の腐食影響は陽極裏面よりも陽極側隔壁に向
かって1mm程度の範囲にしか達しないことを、本発明
者らが初めて見いだしたことにより達成されたものであ
る。
The design concept and the effect of the electrolytic cell structure of the present invention are as follows. The effect of caustic corrosion leaking into the anode chamber due to pinholes in the membrane is about 1 mm toward the anode-side partition from the back of the anode. The achievement of only the range was achieved by the present inventors having found for the first time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電解槽の1例を示す平面図である。FIG. 1 is a plan view showing one example of an electrolytic cell of the present invention.

【図2】本発明の電解槽の1例を示す平面図である。FIG. 2 is a plan view showing one example of the electrolytic cell of the present invention.

【図3】図1のA−A´の断面図であって、本発明の電
解槽の1例を示すものである。
FIG. 3 is a cross-sectional view taken along the line AA ′ of FIG. 1, showing an example of the electrolytic cell of the present invention.

【図4】図2のB−B´の断面図であって、本発明の電
解槽の1例を示すものである。
FIG. 4 is a cross-sectional view taken along the line BB ′ of FIG. 2, showing an example of the electrolytic cell of the present invention.

【図5】従来一般に用いられていた複極式電解槽の1例
を示す平面図である。
FIG. 5 is a plan view showing an example of a bipolar electrolyzer conventionally used generally.

【図6】図5のC−C´の断面図であって、従来の電解
槽の1例を示すものである。
FIG. 6 is a cross-sectional view taken along the line CC ′ of FIG. 5, showing an example of a conventional electrolytic cell.

【図7】従来の凸部のある電解槽の断面図の1例を示す
ものである。
FIG. 7 shows an example of a cross-sectional view of a conventional electrolytic cell having a convex portion.

【図8】従来の電解槽の1例を示すものである。 なお、図面中の、1は陽極側隔壁、2は陰極側隔壁、3
は陰極側隔壁と陽極側隔壁を接合する導電性部材、3´
は陽極側隔壁と陽極とを接合する導電性部材、(4+4
´)は陽極部凸部、4は陽極側凸部の突出面、4´は陽
極側凸部の傾斜面、5は陰極側凹部、6は陽極、7は導
電性リブを示す。但し、各図面は本発明の特徴を示すた
めのものであって、給液・排液ノズル、陰極等は省略し
ている。
FIG. 8 shows an example of a conventional electrolytic cell. In the drawings, 1 is an anode-side partition, 2 is a cathode-side partition, 3
Is a conductive member for joining the cathode side partition and the anode side partition, 3 ′
Is a conductive member for joining the anode side partition and the anode, (4 + 4
') Denotes an anode convex portion, 4 denotes a projecting surface of an anode side convex portion, 4' denotes an inclined surface of an anode side convex portion, 5 denotes a cathode side concave portion, 6 denotes an anode, and 7 denotes a conductive rib. However, the drawings are only for showing the features of the present invention, and liquid supply / drainage nozzles, cathodes and the like are omitted.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C25B 1/00 - 15/08 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 7 , DB name) C25B 1/00-15/08

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】複極式電解槽において、陽極側隔壁を陽極
側に突出させた凸部を有し、かつ、該凸部と陽極とが導
電性部材を介して電気的に接合されていることを特徴と
する複極式電解槽。
In a bipolar electrolytic cell, the anode-side partition has a projection protruding toward the anode, and the projection and the anode are electrically connected via a conductive member. A bipolar electrolyzer comprising:
【請求項2】請求項1に記載されている複極式電解槽に
おいて、陽極側隔壁を陰極側に突出させた凹部を有する
ことを特徴とする複極式電解槽。
2. The bipolar electrolytic cell according to claim 1, further comprising a concave portion in which an anode-side partition protrudes toward a cathode.
JP13046393A 1992-06-03 1993-06-01 Bipolar electrolytic cell Expired - Lifetime JP3320834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13046393A JP3320834B2 (en) 1992-06-03 1993-06-01 Bipolar electrolytic cell

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP16669992 1992-06-03
JP4-166699 1992-06-03
JP13046393A JP3320834B2 (en) 1992-06-03 1993-06-01 Bipolar electrolytic cell

Publications (2)

Publication Number Publication Date
JPH0649675A JPH0649675A (en) 1994-02-22
JP3320834B2 true JP3320834B2 (en) 2002-09-03

Family

ID=26465587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13046393A Expired - Lifetime JP3320834B2 (en) 1992-06-03 1993-06-01 Bipolar electrolytic cell

Country Status (1)

Country Link
JP (1) JP3320834B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007005036A1 (en) * 2007-02-01 2008-08-07 Uhdenora S.P.A. Process for the production of electrolytic cell contact strips
EP2677586A1 (en) 2012-06-20 2013-12-25 Solvay Sa Bipolar electrode and method for producing same
JP6026221B2 (en) * 2012-10-23 2016-11-16 デノラ・ペルメレック株式会社 Projection welding method and manufacturing method of ion exchange membrane electrolytic cell
WO2021200376A1 (en) * 2020-03-31 2021-10-07 株式会社トクヤマ Alkaline water electrolytic cell
EP4166693A1 (en) * 2020-06-15 2023-04-19 Asahi Kasei Kabushiki Kaisha Bipolar zero gap electrolytic cell for water electrolysis

Also Published As

Publication number Publication date
JPH0649675A (en) 1994-02-22

Similar Documents

Publication Publication Date Title
KR890003860B1 (en) Multi-cell electrolyzer
US5082543A (en) Filter press electrolysis cell
JPS62502125A (en) Monopolar and bipolar electrolyzers and their electrode structures
KR20030079788A (en) Ion exchange membrane electrolytic cell
KR100645463B1 (en) Electrode structure
US5221452A (en) Monopolar ion exchange membrane electrolytic cell assembly
JP3320834B2 (en) Bipolar electrolytic cell
JPS59133384A (en) Electrolytic cell
US7363110B2 (en) Gasket with curved configuration at peripheral edge
JPH1081986A (en) Horizontal double-polarity electrolytic cell
WO2000039365A1 (en) Multi-pole ion exchange membrane electrolytic bath
US6761808B1 (en) Electrode structure
JPS63140093A (en) Electrode structure for gas forming electrolytic cell
US6063257A (en) Bipolar type ion exchange membrane electrolytic cell
KR860001501B1 (en) Double l-shaped electrode for brine electrolysis cell
EP0776996B1 (en) Electrode for use in membrane electrolyzers
US5372692A (en) Bipolar electrolytic cell
JP3229266B2 (en) Bipolar filter press type electrolytic cell
US5254233A (en) Monopolar ion exchange membrane electrolytic cell assembly
JP2003313690A (en) Ion exchange membrane electrolytic cell
JPH05320970A (en) Ion exchange membrane electrolyzer
JPS6147230B2 (en)
JP3212318B2 (en) Monopolar ion exchange membrane electrolytic cell
JP3069370B2 (en) Electrolytic cell
KR940010103B1 (en) Plural form of electrolytic cell

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080621

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080621

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080621

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090621

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090621

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100621

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100621

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110621

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110621

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120621

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120621

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130621

Year of fee payment: 11

EXPY Cancellation because of completion of term