JP3319874B2 - Detection method of absorption limit of absorbent - Google Patents

Detection method of absorption limit of absorbent

Info

Publication number
JP3319874B2
JP3319874B2 JP12130194A JP12130194A JP3319874B2 JP 3319874 B2 JP3319874 B2 JP 3319874B2 JP 12130194 A JP12130194 A JP 12130194A JP 12130194 A JP12130194 A JP 12130194A JP 3319874 B2 JP3319874 B2 JP 3319874B2
Authority
JP
Japan
Prior art keywords
porous carbon
absorbent
volume
expansion
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12130194A
Other languages
Japanese (ja)
Other versions
JPH07325024A (en
Inventor
比路史 山田
理一 蔵野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shigematsu Works Co Ltd
Original Assignee
Shigematsu Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shigematsu Works Co Ltd filed Critical Shigematsu Works Co Ltd
Priority to JP12130194A priority Critical patent/JP3319874B2/en
Publication of JPH07325024A publication Critical patent/JPH07325024A/en
Application granted granted Critical
Publication of JP3319874B2 publication Critical patent/JP3319874B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、防毒マスク用吸収缶等
に用いられている吸収剤の寿命を判定する上で有用な、
ガス状物質の吸収剤への吸収限界を検知する方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for judging the life of an absorbent used in an absorbent can for a gas mask.
The present invention relates to a method for detecting an absorption limit of a gaseous substance to an absorbent.

【0002】[0002]

【従来の技術】防毒マスクは、ろ過式呼吸用保護具の一
種で、着用者の肺力によって吸引する空気中の有毒ガス
などを除去する方式のものである。防毒マスクには、い
ろいろな種類があり、その構成によって、隔離式、直結
式および直結式小型の3種類に分けられる。隔離式は、
面体、連結管および大型吸収感で構成されている。面体
と吸収缶とが離れていて、連結管で接続されているた
め、隔離式と呼ばれている。直結式は、面体および吸収
缶から成っている。中型の吸収缶が使用され、吸収缶が
面体に直接つながっているため、直結式と呼ばれてい
る。直結式小型は、面体および吸収缶から成っている。
構成は、直結式と同じであるが、小型の吸収缶を用いる
ため、直結式小型と呼ばれている。
2. Description of the Related Art A gas mask is a type of filtration respirator that removes toxic gas and the like in the air sucked by the lung force of a wearer. There are various types of gas masks, and they are classified into three types depending on the configuration: an isolation type, a direct connection type, and a direct connection type small size. The isolation ceremony is
It consists of a face, a connecting pipe, and a large absorption. It is called an isolation type because the facepiece and the absorption can are separated and connected by a connecting pipe. The direct connection consists of a facepiece and a canister. It is called a direct connection type because a medium-sized absorbent can is used and the absorbent can is directly connected to the facepiece. The direct-connect miniature consists of a facepiece and a canister.
The configuration is the same as that of the direct connection type, but is called a direct connection type small size because a small absorbent can is used.

【0003】いずれの場合にも、吸収剤を充填した吸収
缶を用いている。吸収缶の除毒能力は有限であり、吸収
缶の薬剤の能力が失われるにつれて、透過する有毒ガス
の濃度は増加する。吸収缶を透過する有毒ガス濃度が最
大透過許容限度を超えた状態を破過と呼ぶ。破過時間と
環境濃度との間には一定の関係があり、吸収缶を使用で
きる時間(寿命)は、有毒ガスが高濃度では短くなり、
低濃度では長くなる。破過時間(使用限度時間)に達し
た吸収缶は、速やかに新しいものと交換する必要があ
る。
[0003] In each case, an absorbent can filled with an absorbent is used. The detoxification capacity of the canister is finite, and the concentration of toxic gas permeating increases as the capacity of the drug in the canister is lost. A state in which the concentration of toxic gas passing through the absorbent can exceeds the maximum permissible limit is called breakthrough. There is a certain relationship between the breakthrough time and the environmental concentration, and the time (lifetime) during which the absorber can be used is shorter at higher concentrations of toxic gas,
Longer at lower concentrations. When the breakthrough time (use time limit) is reached, it is necessary to immediately replace the can with a new one.

【0004】[0004]

【発明が解決しようとする課題】防毒マスクの使用上最
も大切なことは、この破過までの時間(残存有効時間)
を確認して、必要があれば、吸収缶を新品に交換して使
用することである。残存有効時間(寿命)を判定する方
法としては、従来以下のような方法が知られている。 (1)吸収缶に添付されている破過カードと環境ガス濃
度とから算出した使用限度時間に達したときを寿命と判
定する方法。しかし、この方法で用いられる破過カード
は、有毒ガス濃度及び温湿度が一定条件下で作成された
ものであり、実際の使用条件は、これらが一定であると
は限らない。従って、実際には、この方法では、正確な
寿命の判定は行えない。 (2)使用中に臭気または刺激を感じたときを寿命と判
定する方法。この方法は、無臭または低い濃度で猛毒な
ガス(青酸ガスなど)に用いることはできない。
The most important thing in using a gas mask is the time until the breakthrough (remaining effective time).
Check if necessary and replace the can with a new one if necessary. As a method for determining the remaining effective time (life), the following method is conventionally known. (1) A method of judging the life as having reached the use limit time calculated from the breakthrough card attached to the absorbent can and the environmental gas concentration. However, the breakthrough card used in this method is created under the condition that the toxic gas concentration and the temperature and humidity are constant, and the actual use conditions are not always constant. Therefore, in practice, this method cannot accurately determine the life. (2) A method of determining the life when a odor or irritation is felt during use. This method cannot be used for odorless or low-concentration highly toxic gases (such as hydrocyanic acid gas).

【0005】(3)吸収缶の重量を測定し、その増加量
が一定値に達したときを寿命と判定する方法。この方法
は、吸収缶の寿命のときの重量が、有毒ガスの種類、温
湿度によって異なるので、正確な寿命の判定を行えな
い。また、吸収缶を取り出して重量を測定しなければな
らないという煩雑さもある。 (4)吸収缶の出口側に検知剤を詰めた拡散式検知管を
取り付け、有毒ガスと検知剤との反応による色の変化を
利用する方法。この方法は、有毒ガスの種類により検知
剤の種類が異なり、対象とする有毒ガスの種類により、
異なる検知剤を用いる必要がある。さらに、吸収缶の構
造が複雑になる等の問題がある。
(3) A method in which the weight of an absorbent can is measured, and the life is determined when the increase amount reaches a certain value. In this method, since the weight of the absorber at the end of its life varies depending on the type of toxic gas and the temperature and humidity, it is not possible to determine the life accurately. In addition, there is also a complication that it is necessary to take out the absorbent can and measure the weight. (4) A method in which a diffusion type detection tube filled with a detection agent is attached to the outlet side of the absorption can to utilize a color change due to a reaction between the toxic gas and the detection agent. In this method, the type of the detecting agent differs depending on the type of toxic gas, and the type of toxic gas
Different detection agents need to be used. Further, there is a problem that the structure of the absorbing can becomes complicated.

【0006】現状では、(1)の吸収缶に添付の破過曲
線図より確定する方法が、簡便であり、かつ確実性が比
較的高いことから、実用されている。即ち、現状では、
吸収缶に添付されている破過カードと環境ガス濃度とか
ら算出した使用限度時間に達したときに、吸収缶の交換
が行われる。しかし、上述のように、この方法によって
も、吸収缶の寿命の判定が確実に行えているとは言えな
い。また、ガスの種類によっては、ヒトの生命に係わる
ことであるので、より正確かつ確実な吸収缶の寿命の判
定方法の提供が望まれている。
At present, the method (1) for determining from the breakthrough curve diagram attached to the absorbent can is practical because it is simple and has relatively high reliability. That is, at present,
When the usage time calculated from the breakthrough card attached to the absorbent can and the environmental gas concentration has been reached, the absorbent can is replaced. However, as described above, even with this method, it cannot be said that the life of the absorber can be reliably determined. In addition, since the type of gas is related to human life depending on the type of gas, it is desired to provide a more accurate and reliable method for determining the life of an absorber.

【0007】そこで本発明の目的は、吸収缶等の吸収剤
の寿命を確実かつ正確に検知する新たな方法を提供する
ことである。
It is an object of the present invention to provide a new method for reliably and accurately detecting the life of an absorbent such as an absorbent can.

【0008】[0008]

【課題を解決するための手段】本発明は、ガス状物質の
吸収剤への吸収限界を検知する方法であって、前記ガス
状物質を吸収すると体積が膨張する多孔質炭素を、前記
吸収剤とともに前記ガス状物質に曝し、前記多孔質炭素
の体積の膨張の程度から前記吸収剤の吸収限界を検知す
る方法に関する。以下本発明について説明する。
SUMMARY OF THE INVENTION The present invention is a method for detecting the absorption limit of a gaseous substance to an absorbent, comprising the steps of: The present invention also relates to a method of detecting the absorption limit of the absorbent from the degree of expansion of the volume of the porous carbon by exposing to the gaseous substance. Hereinafter, the present invention will be described.

【0009】本発明の「ガス状物質の吸収剤への吸収限
界を検知する方法」においては、「ガス状物質を吸収す
ると体積が膨張する多孔質炭素」を用いることが特徴で
ある。「ガス状物質を吸収すると体積が膨張する多孔質
炭素」としては、活性炭技術研究会資料No.102
(1990年),p2〜9に記載された、エステル炭化
法多孔質炭素を用いることができる。エステル炭化法に
より得られる多孔質炭素は、例えば4−フェニル−1,
2−ジオキシベンゼン等の有機化合物をシリカゲルに含
浸させ、エステル化し、熱処理して炭化して炭素被覆シ
リカゲルとし、このシリカゲルからフッ化水素酸等でシ
リカを溶解除去することで得ることができる。
The "method of detecting the absorption limit of a gaseous substance to an absorbent" of the present invention is characterized by using "porous carbon which expands in volume when gaseous substance is absorbed". “Porous carbon that expands in volume when absorbing gaseous substances” is described in Activated Carbon Technology Research Group Material No. 102
(1990), pp. 2-9, the ester carbonized porous carbon can be used. Porous carbon obtained by the ester carbonization method is, for example, 4-phenyl-1,
It can be obtained by impregnating silica gel with an organic compound such as 2-dioxybenzene, esterifying, heat-treating and carbonizing to a carbon-coated silica gel, and dissolving and removing the silica from the silica gel with hydrofluoric acid or the like.

【0010】エステル炭化法多孔質炭素は、製法や種
類、さらには吸着する化合物の種類及び吸着量等によっ
ても異なるが、通常、化合物を吸着することにより約5
〜30%の範囲で膨張する。また、エステル炭化法多孔
質炭素は、吸着化合物を脱着することにより、速やかに
収縮して、元の大きさに戻る性質もある。
The ester carbonized porous carbon varies depending on the production method and type, and also the type and amount of the compound to be adsorbed, but usually about 5% by adsorbing the compound.
It expands in the range of 3030%. The ester carbonized porous carbon also has a property of rapidly shrinking and returning to its original size by desorbing the adsorbed compound.

【0011】本発明において対象となるガス状物質とし
ては、ガス状の有機化合物及び無機化合物を挙げること
ができる。有機化合物としては、有機溶剤として用いら
れている種々の化合物を挙げることができ、例えば、ベ
ンゼン、トルエン、キシレン、クロロホルム、四塩化炭
素、ブタノール、プロパノール、オクタン、ヘプタン、
シクロヘキサン、エタノール、ヘキサン、ペンタン、メ
タノール等を挙げることができる。また、無機化合物と
しては、ハロゲン(例えば、塩素)、酸性ガス(例え
ば、塩化水素ガス)、一酸化炭素、アンモニア、亜硫
酸、青酸、硫化水素、臭化メチル等を挙げることができ
る。
The gaseous substances to be used in the present invention include gaseous organic compounds and inorganic compounds. Examples of the organic compound include various compounds used as an organic solvent, for example, benzene, toluene, xylene, chloroform, carbon tetrachloride, butanol, propanol, octane, heptane,
Examples thereof include cyclohexane, ethanol, hexane, pentane, and methanol. Examples of the inorganic compound include halogen (eg, chlorine), acid gas (eg, hydrogen chloride gas), carbon monoxide, ammonia, sulfurous acid, hydrocyanic acid, hydrogen sulfide, methyl bromide, and the like.

【0012】本発明の方法は、上記ガス状物質を吸収し
た吸収剤の吸収限界を検知する方法である。ここで、吸
収限界とは、例えば吸収缶の場合には、最大透過許容限
度を超える破過の状態である。本発明の方法では、上記
「ガス状物質を吸収すると体積が膨張する多孔質炭素」
(以下、多孔質炭素と呼ぶことがある)の体積の膨張の
程度から吸収剤の吸収限界を検知する。前述のように多
孔質炭素の膨張率は、吸収する化合物の種類により異な
るが、併設する吸収剤が吸収限界に達したときの多孔質
炭素の膨張の程度を予め求めておく。そして、所定の程
度まで多孔質炭素が膨張したことを測定することで、吸
収剤の吸収限界を検知する。
The method of the present invention is a method for detecting the absorption limit of the absorbent that has absorbed the gaseous substance. Here, the absorption limit is, for example, a breakthrough state exceeding the maximum permissible limit in the case of an absorbent can. In the method of the present invention, the above "porous carbon which expands in volume when absorbing gaseous substances"
The absorption limit of the absorbent is detected from the degree of expansion of the volume (hereinafter sometimes referred to as porous carbon). As described above, the expansion coefficient of the porous carbon varies depending on the type of the compound to be absorbed. However, the degree of expansion of the porous carbon when the adsorbent provided reaches the absorption limit is determined in advance. Then, by measuring that the porous carbon has expanded to a predetermined extent, the absorption limit of the absorbent is detected.

【0013】[0013]

【実施例】以下本発明の方法を実施例によりさらに説明
する。
EXAMPLES The method of the present invention will be further described below with reference to examples.

【0014】例えば、最も簡単な方法としては、多孔質
炭素の体積の膨張の程度を視覚的に測定することで、吸
収剤の吸収限界を検知することができる。例えば、図1
及び2の概略説明図に示すように、多孔質炭素2の端部
20が外部から見えるように、吸収剤1と多孔質炭素2
を吸収缶(図示せず)内に収納する。そして、吸収剤1
が吸収限界に達したときに多孔質炭素がどこまで膨張す
るかを予め測定しておき、そのときに多孔質炭素2の端
部20が達する位置に印(吸収限界目印3)を付してお
く。図1又は2の(1)の状態からガスの吸収が始ま
る。そしてガスの吸収が進み、(2)の状態で多孔質炭
素2の端部20が、吸収限界目印3に達する。この時点
で、吸収剤が吸収限界に達したことを検知することがで
きる。
For example, as the simplest method, the absorption limit of the absorbent can be detected by visually measuring the degree of expansion of the volume of the porous carbon. For example, FIG.
And 2, the absorbent 1 and the porous carbon 2 are arranged so that the end 20 of the porous carbon 2 can be seen from the outside.
Is stored in an absorption can (not shown). And absorbent 1
The extent to which the porous carbon expands when reaches the absorption limit is measured in advance, and a mark (absorption limit mark 3) is attached to the position where the end 20 of the porous carbon 2 reaches at that time. . Gas absorption starts from the state of (1) in FIG. 1 or 2. Then, the absorption of the gas proceeds, and the end portion 20 of the porous carbon 2 reaches the absorption limit mark 3 in the state (2). At this point, it can be detected that the absorbent has reached the absorption limit.

【0015】但し、図1の態様と図2の態様とでは、吸
収剤が吸収限界に達したときの多孔質炭素の膨張の程度
は異なる。これは、図1の態様では、ガス状物質は吸収
剤を通過した後に多孔質炭素に達するので、多孔質炭素
に達するガス状物質は比較的低い濃度である。一方、図
2の態様では、ガス状物質は吸収剤と同時に多孔質炭素
も通過するので、多孔質炭素を通過するガス状物質の濃
度は高い。そのため、図1の態様と図2の態様とでは、
吸収剤が吸収限界に達したときの多孔質炭素の膨張の程
度は異なり、従って、各態様に応じて、前記吸収剤が吸
収限界に達したときの印の位置はそれぞれ決める必要が
ある。
However, the degree of expansion of the porous carbon when the absorbent reaches the absorption limit differs between the embodiment of FIG. 1 and the embodiment of FIG. This is because, in the embodiment of FIG. 1, the gaseous substance reaching the porous carbon is relatively low in concentration since the gaseous substance reaches the porous carbon after passing through the absorbent. On the other hand, in the embodiment of FIG. 2, the gaseous substance passes through the porous carbon simultaneously with the absorbent, so that the concentration of the gaseous substance passing through the porous carbon is high. Therefore, in the embodiment of FIG. 1 and the embodiment of FIG.
The degree of expansion of the porous carbon when the absorbent reaches the absorption limit is different, and accordingly, according to each embodiment, the position of the mark when the absorbent reaches the absorption limit needs to be determined.

【0016】また、多孔質炭素の体積の膨張の程度は、
視覚以外に、物理的又は化学的方法を用いて測定するこ
ともできる。例えば、物理的方法としては、電気的な方
法が挙げられる。例えば、図3に示すように、多孔質炭
素2と隣接するように対向する電極4、4’を設ける。
電極4は多孔質炭素2に固定され、多孔質炭素2の膨張
に伴って移動する。電極4’は電極4と対向した位置に
固定されている。図3の(1)の状態からガスの吸収が
始まり、そしてガスの吸収が進み、(2)の状態で電極
4と4’が接触して通電することで、吸収剤の吸収限界
を検知することができる。通電により、例えば警報機を
用いて警告音を発したり、あるいは警報灯を発光させる
ことができる。
The degree of expansion of the volume of the porous carbon is as follows:
In addition to vision, it can also be measured using physical or chemical methods. For example, the physical method includes an electrical method. For example, as shown in FIG. 3, electrodes 4 and 4 ′ are provided so as to be adjacent to the porous carbon 2.
The electrode 4 is fixed to the porous carbon 2 and moves as the porous carbon 2 expands. The electrode 4 ′ is fixed at a position facing the electrode 4. The gas absorption starts from the state (1) in FIG. 3 and the gas absorption proceeds, and the electrodes 4 and 4 ′ are brought into contact and energized in the state (2) to detect the absorption limit of the absorbent. be able to. By energization, for example, an alarm can be used to emit a warning sound or an alarm lamp can emit light.

【0017】また、他の物理的な方法としては、多孔質
炭素の体積の膨張により生じる圧力の変化を測定する方
法がある。図4に示すように、吸収剤が吸収限界に達し
たときに多孔質炭素2の端部20が位置する箇所に圧力
センサー6を設け、吸収剤1が吸収限界に達したときに
圧力センサー6が電気的な信号を発することで、吸収剤
が吸収限界を検知することができる。電気的な信号は、
上記と同様に、警報機や警報灯に送ることができる。
Further, as another physical method, there is a method of measuring a change in pressure caused by expansion of the volume of porous carbon. As shown in FIG. 4, when the absorbent reaches the absorption limit, a pressure sensor 6 is provided at a position where the end portion 20 of the porous carbon 2 is located, and when the absorbent 1 reaches the absorption limit, the pressure sensor 6 Emits an electrical signal so that the absorbent can detect the absorption limit. The electrical signal is
Similar to the above, it can be sent to an alarm or a warning light.

【0018】多孔質炭素の体積の膨張の程度を化学的に
測定する方法としては、例えば図5に示すように、上記
電気的な圧力センサーの代わりに、圧力により化学変化
を起こす例えば感圧紙7を用いる方法を挙げることがで
きる。感圧紙7は多孔質炭素2の端部20により押され
ることで発色して、吸収剤が吸収限界を検知することが
できる。
As a method for chemically measuring the degree of expansion of the volume of the porous carbon, for example, as shown in FIG. 5, instead of the above-mentioned electric pressure sensor, for example, a pressure-sensitive paper 7 which causes a chemical change by pressure is used. Can be used. The pressure-sensitive paper 7 is colored by being pressed by the end portion 20 of the porous carbon 2, and the absorbent can detect the absorption limit.

【0019】即ち、本発明では、ガスを吸着すると、体
積が膨張する特性がある多孔質炭素を、防毒マスク用吸
収缶に充填し、有毒ガスを吸収したときの体積膨張を利
用して、吸収缶の寿命を判定することができる。 (1)ガスを吸収したときの体積膨張を利用して、警報
器を有する電気回路の電極を接続させる。 (2)ガスを吸収したときの体積膨張を利用して、感圧
紙の変色などを起こさせる。 (3)ガスを吸収したときの体積膨張を利用して、その
体積変化を電気的又は視覚的に測定する。 (4)ガスを吸収したときの体積膨張を利用して、圧力
センサーに圧力を加える。
That is, in the present invention, porous carbon having a characteristic of expanding in volume when gas is adsorbed is filled in an absorption can for a gas mask, and the absorption of toxic gas is performed by utilizing the volume expansion when the toxic gas is absorbed. The life of the can can be determined. (1) The electrodes of the electric circuit having the alarm are connected by utilizing the volume expansion when the gas is absorbed. (2) Discoloration of pressure-sensitive paper is caused by utilizing volume expansion when gas is absorbed. (3) The change in volume is measured electrically or visually by utilizing the volume expansion when the gas is absorbed. (4) Pressure is applied to the pressure sensor using volume expansion when gas is absorbed.

【0020】参考例 多孔質炭素の調製方法 富士デヴィソン化学のマイクロビーズシリカゲル4B
(粒子径:100−200mesh、表面積:473m
2 /g、細孔容積0.86cm3 /g、平均細孔直径:
7.3nm)を主に原料して用い、エステル炭化法によ
り多孔質炭素を調製した。4−フェニル−1,2−ジオ
キシベンゼンを含浸させたシリカゲル(重量百分率:5
0%)を窒素気流中300℃で1時間熱処理してその表
面をエステル化反応させ、未反応の有機化合物はアセト
ンで洗浄して除去した。このエステル化処理したシリカ
ゲルを減圧下(<5Pa)、700−1000℃で熱処
理してシリカゲル表面に化学結合した有機化合物を炭化
し、炭素被覆シリカゲルとした。さらに、これをフッ化
水素酸で処理することによりシリカゲルを溶解除去し、
水洗ののち120℃で空気乾燥して多孔質炭素を得た。
Reference Example Method for Preparing Porous Carbon Microbead Silica Gel 4B by Fuji Devison Chemical
(Particle size: 100-200 mesh, surface area: 473 m
2 / g, pore volume 0.86 cm 3 / g, average pore diameter:
(7.3 nm) was mainly used as a raw material, and porous carbon was prepared by an ester carbonization method. Silica gel impregnated with 4-phenyl-1,2-dioxybenzene (weight percentage: 5
(0%) was heat-treated at 300 ° C. for 1 hour in a nitrogen stream to cause an esterification reaction on the surface, and unreacted organic compounds were removed by washing with acetone. The esterified silica gel was heat-treated at 700 to 1000 ° C. under reduced pressure (<5 Pa) to carbonize the organic compound chemically bonded to the silica gel surface to obtain a carbon-coated silica gel. Furthermore, the silica gel is dissolved and removed by treating it with hydrofluoric acid,
After washing with water, air drying was performed at 120 ° C. to obtain porous carbon.

【0021】この多孔質炭素の物質吸着時の体積の膨張
率(最大膨張率)を各種の物質について測定した結果を
以下に示す。 ベンゼン:31% トルエン:32% キシレン:32% クロロホルム:31% 四塩化炭素:29% ブタノール:27% プロパノール:26% オクタン:26% ヘプタン:25% シクロヘキサン:24% エタノール:24% ヘキサン:23% ペンタン:21% メタノール:20%
The results of measuring the expansion rate (maximum expansion rate) of the volume of the porous carbon upon adsorption of the substance for various substances are shown below. Benzene: 31% Toluene: 32% Xylene: 32% Chloroform: 31% Carbon tetrachloride: 29% Butanol: 27% Propanol: 26% Octane: 26% Heptane: 25% Cyclohexane: 24% Ethanol: 24% Hexane: 23% Pentane: 21% Methanol: 20%

【0022】[0022]

【発明の効果】本発明の方法は以下のようなの利点を有
する。 (a)比較的構造が簡単な装置で用いることができる。 (b)対応できるガスの種類が多い。 (c)温湿度にあまり影響されない。 (d)マスクを外すことなく吸収缶の寿命が分かる。
The method of the present invention has the following advantages. (A) It can be used in an apparatus having a relatively simple structure. (B) There are many types of gases that can be handled. (C) It is hardly affected by temperature and humidity. (D) The life of the absorber can be determined without removing the mask.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の吸収剤の吸収限界の検知方法の概略
説明図。
FIG. 1 is a schematic explanatory view of a method for detecting an absorption limit of an absorbent according to the present invention.

【図2】 本発明の吸収剤の吸収限界の検知方法の概略
説明図。
FIG. 2 is a schematic explanatory view of a method for detecting an absorption limit of an absorbent according to the present invention.

【図3】 本発明の吸収剤の吸収限界の検知方法の概略
説明図。
FIG. 3 is a schematic explanatory view of a method for detecting an absorption limit of an absorbent according to the present invention.

【図4】 本発明の吸収剤の吸収限界の検知方法の概略
説明図。
FIG. 4 is a schematic explanatory view of a method for detecting an absorption limit of an absorbent according to the present invention.

【図5】 本発明の吸収剤の吸収限界の検知方法の概略
説明図。
FIG. 5 is a schematic explanatory view of a method for detecting an absorption limit of an absorbent according to the present invention.

フロントページの続き (56)参考文献 特開 昭57−166172(JP,A) 特開 昭56−89056(JP,A) 特開 昭60−217205(JP,A) 特開 昭57−125760(JP,A) 特開 平2−150758(JP,A) 特開 昭55−147123(JP,A) 実開 平4−80554(JP,U) (58)調査した分野(Int.Cl.7,DB名) G01N 19/10 A62B 18/02 G01N 7/04 JICSTファイル(JOIS)Continuation of the front page (56) References JP-A-57-166172 (JP, A) JP-A-56-89056 (JP, A) JP-A-60-217205 (JP, A) JP-A-57-125760 (JP, A) JP-A-2-150758 (JP, A) JP-A-55-147123 (JP, A) JP-A-4-80554 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB G01N 19/10 A62B 18/02 G01N 7/04 JICST file (JOIS)

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ガス状物質の吸収剤への吸収限界を検知
する方法であって、前記ガス状物質を吸収すると体積が
膨張する多孔質炭素を、前記吸収剤とともに前記ガス状
物質に曝し、前記多孔質炭素の体積の膨張の程度から前
記吸収剤の吸収限界を検知する方法。
1. A method for detecting an absorption limit of a gaseous substance to an absorbent, the method comprising: exposing porous carbon, which expands in volume when absorbing the gaseous substance, to the gaseous substance together with the absorbent; A method of detecting the absorption limit of the absorbent from the degree of expansion of the volume of the porous carbon.
【請求項2】 ガス状物質を吸収すると体積が膨張する
多孔質炭素が、エステル炭化法多孔質炭素である請求項
1記載の方法。
2. The method according to claim 1, wherein the porous carbon that expands in volume when absorbing a gaseous substance is an ester carbonized porous carbon.
【請求項3】 ガス状物質がガス状の有機化合物又は無
機化合物である請求項1記載の方法。
3. The method according to claim 1, wherein the gaseous substance is a gaseous organic or inorganic compound.
【請求項4】 多孔質炭素の体積の膨張の程度を物理的
又は化学的に測定する請求項1記載の方法。
4. The method according to claim 1, wherein the degree of expansion of the volume of the porous carbon is measured physically or chemically.
【請求項5】 多孔質炭素の体積の膨張の程度の物理的
測定を、電気接点の開閉により行う請求項4記載の方
法。
5. The method according to claim 4, wherein the physical measurement of the degree of expansion of the volume of the porous carbon is performed by opening and closing electrical contacts.
【請求項6】 多孔質炭素の体積の膨張の程度の物理的
測定を、圧力センサーを用いて行う請求項4記載の方
法。
6. The method according to claim 4, wherein the physical measurement of the degree of expansion of the volume of the porous carbon is performed using a pressure sensor.
【請求項7】 多孔質炭素の体積の膨張の程度の化学的
測定を、感圧紙を用いて行う請求項4記載の方法。
7. The method according to claim 4, wherein the chemical measurement of the degree of expansion of the volume of the porous carbon is performed using pressure-sensitive paper.
【請求項8】 多孔質炭素の体積の膨張の程度を視覚的
に感知する請求項1記載の方法。
8. The method of claim 1, wherein the degree of volume expansion of the porous carbon is visually sensed.
JP12130194A 1994-06-02 1994-06-02 Detection method of absorption limit of absorbent Expired - Lifetime JP3319874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12130194A JP3319874B2 (en) 1994-06-02 1994-06-02 Detection method of absorption limit of absorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12130194A JP3319874B2 (en) 1994-06-02 1994-06-02 Detection method of absorption limit of absorbent

Publications (2)

Publication Number Publication Date
JPH07325024A JPH07325024A (en) 1995-12-12
JP3319874B2 true JP3319874B2 (en) 2002-09-03

Family

ID=14807875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12130194A Expired - Lifetime JP3319874B2 (en) 1994-06-02 1994-06-02 Detection method of absorption limit of absorbent

Country Status (1)

Country Link
JP (1) JP3319874B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102475354B1 (en) * 2022-07-08 2022-12-07 서울특별시 Activated carbon expansion rate measuring device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4302853B2 (en) * 2000-04-03 2009-07-29 新コスモス電機株式会社 How to monitor absorber breakthrough
WO2016010855A1 (en) * 2014-07-15 2016-01-21 C2Sense Llc Formulations for enhanced chemiresistive sensing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102475354B1 (en) * 2022-07-08 2022-12-07 서울특별시 Activated carbon expansion rate measuring device

Also Published As

Publication number Publication date
JPH07325024A (en) 1995-12-12

Similar Documents

Publication Publication Date Title
US4146887A (en) Respirator cartridge end-of-service life indicator
US5512882A (en) Chemical sensing apparatus and methods
CA1116063A (en) Monitoring device
US7992426B2 (en) Apparatus and method for increasing the selectivity of FET-based gas sensors
US4847594A (en) Sensor for detecting the exhaustion of an adsorbent bed
JPH0783813B2 (en) Sorbent filter
JP6774127B2 (en) Formaldehyde detection sensor and system using it
US9329161B2 (en) Monitoring of the functionality of a converter of a breath analysis apparatus
JP3319874B2 (en) Detection method of absorption limit of absorbent
JPH06324049A (en) Solid particulate carrier, wherein permanganate is adsorbed
US4455378A (en) Method of determining the content of an anesthetic gas in a selected location
JP2002005797A (en) Passive sampler for collecting of volatile organic compound
JPH10513554A (en) Method for extending the shelf life of a colorimetric device for indicating carbon dioxide and a package containing the device
JPS60222144A (en) Gas filter
US5371467A (en) Gas sensor probe tip with integrating filter
US7318910B2 (en) Chemical dosimeter
JPH05340910A (en) Gas sensor
CN1259059A (en) A compound for removing harmful components from cigarette smoking and a method for preparing the compound
JPS5930222B2 (en) Specific gas detection method
JP2008530534A (en) Trace gas sensor with reduced degradation
JP2001041945A (en) Method and apparatus for inspection of gas canister
Maggs A non-destructive test of vapour filters
JPH0618289Y2 (en) Gas detector
JPH0475455B2 (en)
JPS61172045A (en) Gas detection element with filter

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090621

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100621

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100621

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110621

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120621

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120621

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130621

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140621

Year of fee payment: 12

EXPY Cancellation because of completion of term