JP3316863B2 - Red mud separation method - Google Patents

Red mud separation method

Info

Publication number
JP3316863B2
JP3316863B2 JP34257591A JP34257591A JP3316863B2 JP 3316863 B2 JP3316863 B2 JP 3316863B2 JP 34257591 A JP34257591 A JP 34257591A JP 34257591 A JP34257591 A JP 34257591A JP 3316863 B2 JP3316863 B2 JP 3316863B2
Authority
JP
Japan
Prior art keywords
red mud
sodium aluminate
alumina
aluminate solution
bauxite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34257591A
Other languages
Japanese (ja)
Other versions
JPH05170433A (en
Inventor
光明 村上
卓雄 原戸
隆浩 石田
善夫 熊谷
道和 稲見
和久 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP34257591A priority Critical patent/JP3316863B2/en
Publication of JPH05170433A publication Critical patent/JPH05170433A/en
Application granted granted Critical
Publication of JP3316863B2 publication Critical patent/JP3316863B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/04Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom
    • C01F7/06Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom by treating aluminous minerals or waste-like raw materials with alkali hydroxide, e.g. leaching of bauxite according to the Bayer process
    • C01F7/0646Separation of the insoluble residue, e.g. of red mud
    • C01F7/0653Separation of the insoluble residue, e.g. of red mud characterised by the flocculant added to the slurry

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は赤泥の分離方法に関す
る。更に詳細には、高温度アルミン酸ソーダ溶液よりの
迅速な赤泥の分離方法に関するものである。
The present invention relates to a method for separating red mud. More particularly, the present invention relates to a method for rapidly separating red mud from a high-temperature sodium aluminate solution.

【0002】[0002]

【従来の技術】周知のようにバイヤー法によるアルミナ
含有鉱石からのアルミナ分の抽出は、たとえば粉砕され
たボーキサイトをカセインソーダ溶液と混合し管状反応
器やオートクレーブ中で蒸煮してボーキサイト中のアル
ミナ分をアルミン酸ソーダ溶液として抽出することによ
って行われているが、その際アルミナ分が抽出されると
ともに、ボーキサイト中に含まれる反応性シリカも溶出
する。
2. Description of the Related Art As is well known, extraction of alumina content from alumina-containing ore by the Bayer method involves, for example, mixing pulverized bauxite with a casein soda solution and steaming in a tubular reactor or an autoclave to remove the alumina content in the bauxite. The extraction is performed as a sodium aluminate solution. At this time, the alumina component is extracted and the reactive silica contained in the bauxite is also eluted.

【0003】この液中に溶出した反応性シリカを含んだ
ままのアルミン酸ソーダ溶液を水酸化アルミニウムの析
出工程に送り析出させた場合には、液中のシリカも同時
に分解析出し、水酸化アルミニウム中に混在するため、
水酸化アルミニウムの品質の低下を招き好ましくない。
When the sodium aluminate solution containing the reactive silica eluted in the liquid is sent to the aluminum hydroxide precipitation step and precipitated, the silica in the liquid is also decomposed and precipitated at the same time, and the aluminum hydroxide is precipitated. Because it is mixed in,
The quality of aluminum hydroxide is deteriorated, which is not preferable.

【0004】それ故、水酸化アルミニウムの析出工程に
送る前に液中の反応性シリカはアルミナおよびアルカリ
溶液の一部と反応させて、不溶性のソーダライトあるい
はゼオライトとする脱硅操作が必要である。脱硅操作に
より生成したソーダライト或いはゼオライトは通常、溶
解残渣(以下赤泥と称する)とともに廃棄される。
[0004] Therefore, it is necessary to carry out a desiliconization operation in which the reactive silica in the liquid is reacted with alumina and a part of the alkaline solution to form insoluble sodalite or zeolite before being sent to the aluminum hydroxide precipitation step. . The sodalite or zeolite produced by the desiliconization operation is usually discarded together with the dissolved residue (hereinafter referred to as red mud).

【0005】原料中のボーキサイトに反応性シリカの含
有量が多い程、さらにはボーキサイトからのアルミナの
抽出に際し、液中への反応性シリカ溶出率が高い程、脱
硅操作に於いて損失するアルミナ及びアルカリ溶液の量
は増加し、経済的でない。
[0005] The higher the content of reactive silica in the bauxite in the raw material, and the higher the rate of reactive silica elution into the liquid during the extraction of alumina from the bauxite, the higher the amount of alumina lost in the desiliconization operation. And the amount of alkaline solution increases and is not economical.

【0006】また近年原料ボーキサイトもシリカ含有量
が少なくかつアルミナ含有量の高い比較的低温度で抽出
し得るアルミナ三水和物を主体として含有する良質のボ
ーキサイトの入手が困難となり、序々にシリカ含有量の
高いボーキサイトの使用を余儀なくされる傾向にある。
In recent years, it has become difficult to obtain high-quality bauxite mainly containing alumina trihydrate which has a low silica content and a high alumina content and can be extracted at a relatively low temperature. There is a tendency to use high bauxite.

【0007】このボーキサイト中の反応性シリカに起因
するアルカリ溶液の損失低減法として、ボーキサイト中
のアルミナと反応性シリカのアルカリ溶液への溶解速度
差を利用してアルミナを選択的に溶解させる方法が教示
されている。(特公昭37-825号或いは特公昭62-230613
号)
As a method of reducing the loss of the alkaline solution caused by the reactive silica in the bauxite, there is a method of selectively dissolving the alumina by utilizing the difference in the dissolution rate of the alumina in the bauxite and the reactive silica in the alkaline solution. Is taught. (Japanese Patent Publication No. 37-825 or Japanese Patent Publication No. 62-230613)
issue)

【0008】該方法に於いては通常110〜160℃程
度の温度で実質的にアルミナを抽出した後、可能な限り
速くアルミン酸ソーダ液と赤泥を分離する事が赤泥中よ
りの反応性シリカの溶出を防止する点より有利である。
従来アルミン酸ソーダ溶液よりの赤泥の分離はフラッシ
ャー等により熱を回収された後の沸点以下の温度となっ
たアルミン酸ソーダ溶液中より実施されている。しかし
ながら、赤泥分離後のアルミン酸ソーダ液中に溶解する
シリカ成分を脱硅生成物として除去する後工程の処理を
考慮するならば、アルミン酸ソーダ液は出来るだけ高温
であることが脱硅速度が速く、脱硅設備をコンパクト化
し得るので有利である。
In this method, it is usually necessary to separate alumina sodium liquid and red mud as quickly as possible after substantially extracting alumina at a temperature of about 110 to 160 ° C. It is more advantageous than preventing silica elution.
Conventionally, separation of red mud from a sodium aluminate solution has been carried out from a sodium aluminate solution having a temperature below the boiling point after heat is recovered by a flasher or the like. However, considering the post-treatment of removing the silica component dissolved in the sodium aluminate solution after the red mud separation as a silicon removal product, it is considered that the sodium aluminate solution is as high as possible in temperature. However, it is advantageous because the desiliconization equipment can be made compact.

【0009】それ故、本発明者らは高温アルミン酸ソー
ダ液中より赤泥を迅速に除去することを目的として、従
来公知の赤泥凝集剤を用い、高温アルミン酸ソーダ液中
の赤泥分離試験を行ったところ、従来法である例えば沸
点以下(60〜90℃程度)のアルミン酸ソーダ液に於
いては優れた凝集、分離効果を発揮する凝集剤であって
も、約100℃を越える沸点以上のアルミン酸ソーダ液
に対しては凝集効果が著しく低下するとの知見を得た。
Therefore, the present inventors used a conventionally known red mud coagulant to quickly remove red mud from high-temperature sodium aluminate liquid, and separated red mud from high-temperature sodium aluminate liquid. Tests have shown that in the conventional method, for example, in a sodium aluminate solution having a boiling point or lower (about 60 to 90 ° C.), even a flocculant exhibiting excellent flocculating and separating effects exceeds about 100 ° C. It has been found that the coagulation effect is significantly reduced for sodium aluminate liquid having a boiling point or higher.

【0010】[0010]

【発明の解決しようとする課題】かかる事情下に鑑み、
本発明者らは高温度のアルミン酸ソーダ液よりの赤泥分
離に極めて有効な方法を見出すべく鋭意検討した結果、
特定の凝集剤は高温度のアルミン酸ソーダ液中からの赤
泥の分離に於いても著しい効果を発揮する事を見出し、
本発明方法を完成するに至った。
In view of such circumstances,
The present inventors have intensively studied to find a very effective method for separating red mud from high-temperature sodium aluminate liquid,
Certain coagulants have been found to have a significant effect on the separation of red mud from sodium aluminate liquid at high temperatures,
The present invention has been completed.

【0011】[0011]

【課題を解決するための手段】すなわち、本発明はアル
ミナ含有鉱石をアルカリ溶液で溶解して得られるアルミ
ン酸ソーダ溶液よりの赤泥の分離に於いて、赤泥中の未
溶出反応性シリカ量が少なくとも5重量%以上存在し、
かつ温度が常圧沸点以上であるアルミン酸ソーダ溶液に
平均分子量1200万以上、イオン性40〜60%の合
成有機高分子凝集剤を添加して分離を行うことを特徴と
するアルミン酸ソーダ溶液よりの赤泥の分離方法を提供
するにある。
That is, the present invention relates to the separation of red mud from a sodium aluminate solution obtained by dissolving an alumina-containing ore with an alkaline solution, and the amount of uneluted reactive silica in the red mud. Is present at least 5% by weight or more,
And the temperature is sodium aluminate solution to the average molecular weight 12 million or more and atmospheric pressure boiling point above, from sodium aluminate solution and performing separation by adding ionic 40% to 60% of a synthetic organic polymer flocculant To provide a method for separating red mud.

【0012】以下、本発明方法を更に詳細に説明する。
本発明の対象とするアルミン酸ソーダ溶液としては沸点
以上、具体的には約110℃以上、好ましくは約120
℃〜約150℃で、かつ分離に処する赤泥が少なくとも
5重量%以上の未溶出反応性シリカを含有するものを必
須とする。
Hereinafter, the method of the present invention will be described in more detail.
The sodium aluminate solution to be used in the present invention has a boiling point or higher, specifically about 110 ° C. or higher, preferably about 120 ° C. or higher.
C. to about 150.degree. C., and the red mud subjected to separation contains at least 5% by weight or more of uneluted reactive silica.

【0013】本発明方法において、原料として使用する
アルミナ含有鉱石は含有するアルミナの結晶形態がアル
ミナ3水和物を主体(通常、アルミナ3水和物の含有量
が鉱石中の含有アルミナに対し約50重量%以上、好ま
しくは約70重量%以上)とし、かつ反応性シリカを含
有するボーキサイト、ラテライト鉱等が挙げられる。反
応性シリカの含有量は特に限定されるものではないが、
通常鉱石に対し約0.5重量%〜約15重量%、普通に
は約0.5重量%〜約10重量%である。
In the method of the present invention, the alumina-containing ore used as a raw material is mainly composed of alumina trihydrate having a crystal form of alumina (usually, the content of alumina trihydrate is about 10% of that contained in the ore. 50% by weight or more, preferably about 70% by weight or more), and bauxite and laterite ore containing reactive silica. Although the content of the reactive silica is not particularly limited,
Usually from about 0.5% to about 15%, usually from about 0.5% to about 10% by weight of the ore.

【0014】本発明方法の実施に際し、原料ボーキサイ
トはそのまま、または粗砕した後、アルカリ含有溶液と
混合しスラリー状となし抽出装置に送られる。
In carrying out the method of the present invention, the raw material bauxite, as it is, or after crushing, is mixed with an alkali-containing solution and is sent to a slurry-less extraction device.

【0015】抽出装置に送られるスラリー中の原料ボー
キサイトの粒径は、アルミナと反応性シリカの溶解速度
差を大きくするためには、細かいほど有利であるが、ア
ルミン酸ソーダ溶液と赤泥の分離工程では一般に粒径が
大きくなるほど分離が容易となるので、通常20メッシ
ュ以下、好ましくは60メッシュ以下で使用される。
[0015] The particle size of the raw material bauxite in the slurry sent to the extraction device is more advantageous as the particle size becomes smaller in order to increase the dissolution rate difference between alumina and reactive silica. In the process, the larger the particle size is, the easier the separation becomes. Generally, it is used at 20 mesh or less, preferably at 60 mesh or less.

【0016】ボーキサイトスラリー化溶液は、ボーキサ
イトを輸送可能なスラリーとする量であればよく、少な
いほど好ましく、ボーキサイトの種類、粒径等によって
変わるが、一般にはスラリーの固形濃度が約5重量%以
上、好適には10〜30重量%となるように調整され
る。
The amount of the bauxite slurry-forming solution may be any amount as long as the bauxite can be transported, and the smaller the amount, the better. The solution varies depending on the type and particle size of the bauxite, but generally the solid concentration of the slurry is about 5% by weight or more. It is adjusted so as to be preferably 10 to 30% by weight.

【0017】ボーキサイト中のアルミナの溶出はアルミ
ナの結晶形態がアルミナ三水和物(ギブサイト)である
ものは非常に速く同一Na2 O濃度では温度依存性が大
きい。従ってボーキサイト中のアルミナを十分に溶解さ
せ、反応性シリカの溶出を抑えたアルミナの抽出方法と
しては、アルミナの溶解に必要な温度に瞬時に昇温させ
ることが理想的である。それ故、反応性シリカ含有量の
大きいボーキサイトを用いる場合には抽出装置としては
逆混合が小さく熱交換能力の大きい迅速な加熱が可能な
二重型熱交換器、多管式熱交換器等の管状反応器の使用
が推奨される。
Elution of alumina in bauxite is very rapid when the crystal form of alumina is alumina trihydrate (gibbsite) is very temperature-dependent at the same Na 2 O concentration. Therefore, as an extraction method of alumina in which alumina in bauxite is sufficiently dissolved and elution of reactive silica is suppressed, it is ideal to instantaneously raise the temperature to a temperature necessary for dissolving alumina. Therefore, when using bauxite having a large content of reactive silica, a tubular heat exchanger, such as a double heat exchanger or a multi-tube heat exchanger, capable of rapid heating with a small backmixing and a large heat exchange capacity is used as an extraction device. The use of a reactor is recommended.

【0018】抽出に必要な温度と時間は、ボーキサイト
の種類、粒径、アルカリ水溶液のNa2 O濃度、Al2
3 濃度、仕込みモル比等によって異なり、ボーキサイ
ト、苛性ソーダの原単位と単価;装置費用、分離装置の
性能及び脱硅工程性能等より、経済的最適点に設定され
るが、一般的に抽出液のNa2 O濃度は約100〜約1
60g/l、抽出温度(抽出装置出口温度を言う。)
は、約110〜約160℃、抽出時間は10分以内、好
ましくは抽出温度は約120〜約150℃、抽出時間は
5分以内に設定される。この抽出温度、抽出時間以上で
はボーキサイトよりのアルミナの抽出率を高くして反応
性シリカの溶出を抑制し苛性ソーダ損失量を減少させる
ことが困難となる。
The temperature and time required for the extraction depend on the type of bauxite, the particle size, the concentration of Na 2 O in the aqueous alkali solution, the concentration of Al 2
It depends on the O 3 concentration, the molar ratio of the charge, etc., and is set at the economically optimum point according to the basic unit and unit price of bauxite and caustic soda; the equipment cost, the performance of the separation equipment, and the performance of the desiliconization process. Na 2 O concentration of about 100 to about 1
60 g / l, extraction temperature (refers to extraction device outlet temperature)
Is set at about 110 to about 160 ° C., the extraction time is set within 10 minutes, preferably the extraction temperature is set at about 120 to about 150 ° C., and the extraction time is set within 5 minutes. Above the extraction temperature and extraction time, it becomes difficult to increase the extraction rate of alumina from bauxite, suppress the elution of reactive silica, and reduce the amount of caustic soda loss.

【0019】抽出工程に於いてはボーキサイトよりのア
ルミナ三水和物の抽出率は出来る限り高く、かつ反応性
シリカの溶出は出来る限り抑制する条件に設定するが、
通常アルミナの抽出率は約80%以上、好ましくは約8
5%以上、またシリカの溶出は約70重量%以下、好ま
しくは約50重量%以下になるよう設定すればよい。
In the extraction step, the extraction rate of alumina trihydrate from bauxite is set as high as possible, and the elution of reactive silica is set as low as possible.
Usually, the extraction ratio of alumina is about 80% or more, preferably about 8%.
The concentration may be set to 5% or more, and the elution of silica to about 70% by weight or less, preferably about 50% by weight or less.

【0020】アルミナ抽出後のスラリーは、直ちに固液
分離装置に送られ、アルミン酸ソーダ溶液と赤泥とに分
離される。本発明方法に於いてはこの固液分離は抽出温
度とほぼ等温で実施される。
The slurry after the alumina extraction is immediately sent to a solid-liquid separator, where it is separated into a sodium aluminate solution and red mud. In the method of the present invention, the solid-liquid separation is carried out at substantially the same temperature as the extraction temperature.

【0021】本発明方法では固液分離に際し、アルミン
酸ソーダ溶液中に平均分子量約1200万以上、イオン
性約40〜約60%の合成有機高分子凝集剤、より具体
的には平均分子量約1200万以上、好ましくは約14
00万以上、イオン性約40〜約60%、好ましくはイ
オン性約45〜約55%のアクリル酸ソーダとアクリル
アミドとの共重合体よりなる合成有機高分子凝集剤を赤
泥(乾体基準)に対して約0.005〜約0.1重量
%、好ましくは約0.02〜約0.06重量%の割合で
添加する。
In the method of the present invention, a synthetic organic polymer flocculant having an average molecular weight of about 12 million or more and an ionicity of about 40 to about 60% in a sodium aluminate solution upon solid-liquid separation, more specifically, an average molecular weight of about 1200 10,000 or more, preferably about 14
A synthetic organic polymer flocculant comprising a copolymer of sodium acrylate and acrylamide having a ionicity of about 40 to about 60%, preferably about 45 to about 55%, is preferably red mud (dry basis). About 0.005 to about 0.1% by weight, preferably about 0.02 to about 0.06% by weight.

【0022】アルミン酸ソーダ溶液中に添加する凝集剤
の添加量が上記範囲より少ない場合には十分な分離速度
が得られないし、上記範囲を越えて添加しても添加量に
見合う効果の発現がないばかりか、アルミン酸ソーダ溶
液中に有機物として残存し、析出水酸化アルミニウムの
着色原因となるので好ましくない。
If the amount of the coagulant added to the sodium aluminate solution is less than the above range, a sufficient separation speed cannot be obtained, and even if the amount exceeds the above range, an effect commensurate with the added amount will be exhibited. Not only, it is not preferable because it remains as an organic substance in the sodium aluminate solution and causes coloring of precipitated aluminum hydroxide.

【0023】更に本発明方法に於いて凝集剤の添加はア
ルミン酸ソーダ溶液中の赤泥中の未溶出反応性シリカが
少なくとも約5重量%以上、好ましくは約7重量%以上
の存在下に於いて行われる。この条件を満たす場合には
特公昭48-37678号公報の記載に見られる如く、5重量%
未満の反応性シリカを含有する赤泥に比較し、著しく分
離速度の向上が見られる。
Further, in the method of the present invention, the addition of the flocculant is carried out in the presence of at least about 5% by weight, preferably about 7% by weight, of unresolved reactive silica in red mud in a sodium aluminate solution. It is done. When this condition is satisfied, as described in JP-B-48-37678, 5% by weight
The separation rate is significantly improved as compared with red mud containing less than less reactive silica.

【0024】本発明方法で用いられる固液分離装置とし
ては、固液、特に赤泥の滞留時間が短かく、赤泥に同伴
されるアルミン酸ソーダ溶液量が少なく出来る装置であ
ればよく、一般的に高速分離型シックナー、遠心分離器
(デカンター)などが用いられる。
The solid-liquid separation device used in the method of the present invention may be any device as long as it has a short residence time of solid-liquid, particularly red mud, and can reduce the amount of sodium aluminate solution entrained in the red mud. A high-speed separation type thickener, a centrifugal separator (decanter) and the like are typically used.

【0025】固液分離工程において分離されたアルミン
酸ソーダ溶液は、そのまま、または必要に応じて間接加
熱、または生蒸気の吹き込みにより間接加熱された後、
次いで脱硅反応槽(脱硅工程)に送られる。脱硅工程に
おいては、アルミン酸ソーダ溶液はそのまま、または必
要に応じて固体硅酸塩物質を主成分とする種子を添加し
て、脱硅反応槽へ送られ、抽出液中に溶解したシリカを
アルミナ及びアルカリ溶液の一部と反応させ、不溶性の
ソーダライトあるいはゼオライト等の硅酸塩物質として
析出させる。
The sodium aluminate solution separated in the solid-liquid separation step is indirectly heated as it is or, if necessary, indirectly heated or by injecting live steam.
Next, it is sent to the desiliconization reaction tank (silicon denitrification process). In the desiliconization step, the sodium aluminate solution is used as it is, or if necessary, seeds containing a solid silicate substance as a main component are added, and sent to the desiliconization reaction tank to remove the silica dissolved in the extract. It reacts with alumina and a part of the alkaline solution and precipitates as a silicate material such as insoluble sodalite or zeolite.

【0026】脱硅反応槽としては抽出液中より反応性シ
リカを脱硅生成物として析出せしめる滞留時間を与える
ものであれば、特にその形状を制限するものではない
が、好ましくは逆混合の少ない多段型の攪拌機付き反応
槽が使用される。
The desiliconization reaction tank is not particularly limited in its shape as long as it provides a residence time for precipitating the reactive silica as a desiliconization product from the extract. A multi-stage reactor with a stirrer is used.

【0027】脱硅条件として、脱硅反応温度は前工程の
温度により決まるが、通常約115〜約160℃、処理
時間約15分〜約5時間、好ましくは約120℃〜約1
40℃、処理時間約0.5時間〜約3時間に設定され
る。脱硅処理後の抽出液は冷却後、脱硅生成物と清澄化
されたアルミン酸ソーダ溶液に固液分離され、該溶液は
水酸化アルミニウムの析出工程に送られる。
As the silicon removal conditions, the silicon removal reaction temperature is determined by the temperature of the previous step, but is usually about 115 to about 160 ° C., and the processing time is about 15 minutes to about 5 hours, preferably about 120 ° C. to about 1 hour.
The temperature is set at 40 ° C. and the processing time is about 0.5 hours to about 3 hours. After the silicon removal treatment, the extract is cooled and then solid-liquid separated into a silicon removal product and a clarified sodium aluminate solution, and the solution is sent to an aluminum hydroxide precipitation step.

【0028】析出工程に送られたアルミン酸ソーダ溶液
は微粒の水酸化アルミニウムよりなる種子を添加して水
酸化アルミニウムを析出した後、析出水酸化アルミニウ
ムとアルミン酸ソーダ溶液を分離し、水酸化アルミニウ
ムは水洗された後、ろ過され製品として、一方水酸化ア
ルミニウム分離後のアルミン酸ソーダ溶液はボーキサイ
トからのアルミナの抽出用アルカリ液として循環使用さ
れる。アルミン酸ソーダ溶液からの水酸化アルミニウム
の析出温度は従来公知の範囲であればよく特に制限され
ないが、通常約50°C〜約70°Cで実施される。
The sodium aluminate solution sent to the precipitation step is prepared by adding fine aluminum hydroxide seeds to precipitate aluminum hydroxide, and then separating the precipitated aluminum hydroxide from the sodium aluminate solution, After being washed with water and filtered, the sodium aluminate solution after separation of aluminum hydroxide is recycled and used as an alkaline solution for extracting alumina from bauxite. The precipitation temperature of aluminum hydroxide from the sodium aluminate solution is not particularly limited as long as it is within a conventionally known range, and is usually carried out at about 50 ° C. to about 70 ° C.

【0029】アルミン酸ソーダ溶液の冷却にはフラッシ
ュ蒸発や間接型熱交換器が用いられ、フラッシュ蒸発で
はフラッシユした蒸気は回収蒸気としてボーキサイトス
ラリーや循環アルミン酸ソーダ溶液の予熱に、また間接
型熱交換器も同様にボーキサイトスラリーや循環アルミ
ン酸ソーダ溶液の予熱に用いられる。
A flash evaporation or an indirect heat exchanger is used for cooling the sodium aluminate solution. In the flash evaporation, the flashed steam is used as recovered steam for preheating the bauxite slurry or the circulating sodium aluminate solution, and for indirect heat exchange. The vessel is also used for preheating the bauxite slurry and the circulating sodium aluminate solution.

【0030】[0030]

【発明の効果】以上詳述した本発明方法によれば高温の
アルミン酸ソーダ溶液からの赤泥の沈降速度が速いた
め、高温での迅速な固液分離を可能ならしめるもので、
改良型バイヤープロセスに適用する場合その工業的価値
は頗る大なるものである。
According to the method of the present invention described in detail above, since the sedimentation speed of red mud from a high-temperature sodium aluminate solution is high, rapid solid-liquid separation at a high temperature is made possible.
When applied to an improved buyer process, its industrial value is very large.

【0031】[0031]

【実施例】以下本発明方法を実施例によりさらに詳細に
説明するが、本発明はこれらの実施例に限定されるもの
ではない。尚、本発明にいう赤泥中の未溶出反応性シリ
カ%(R)は次のように定義される。 R=A−1.613B ここにおいて、 R:赤泥中の未溶出反応性シリカの割合(重量%) A:JIS−M−8361(1963)に準拠して求め
た赤泥中の全反応性シリカ割合(重量%) B:JIS−R−3101(1963)に準拠して求め
た赤泥中の結合ソーダ割合(重量%)
EXAMPLES The method of the present invention will be described below in more detail with reference to examples, but the present invention is not limited to these examples. Incidentally, the non-eluted reactive silica% (R) in the red mud according to the present invention is defined as follows. R = A-1.613B where: R: ratio of uneluted reactive silica in red mud (% by weight) A: total reactivity in red mud determined based on JIS-M-8361 (1963) Silica ratio (% by weight) B: Ratio of bound soda in red mud (% by weight) determined based on JIS-R-3101 (1963)

【0032】また凝集剤の分離性能試験(固体回収率)
は以下のように実施した。図1に示す内径150mm、
長さ600mmの下部が円錐形状を有するステンレス製
円筒形状(内部空洞)よりなる固液分離装置を用い、該
容器の下端より約1/3の高さに位置するスラリー供給
口1よりスラリーを連続的に供給し、円筒容器内で重力
分離し、上部2より上澄み液、下部3より濃縮スラリー
を連続的に取出し、所定時間の供給スラリー濃度及び量
と固液分離装置下部より取出される濃縮スラリー濃度及
び量より固体回収率を求めた。
[0032] Separation performance test of flocculant (solid recovery)
Was performed as follows. 150 mm inner diameter shown in FIG.
Using a solid-liquid separator having a cylindrical shape (internal cavity) made of stainless steel and having a conical lower part with a length of 600 mm, slurry is continuously fed from a slurry supply port 1 located at a height of about 1/3 from the lower end of the container. Is supplied and concentrated by gravity in a cylindrical container, and the supernatant liquid is taken out continuously from the upper part 2 and the concentrated slurry is taken out from the lower part 3, and the concentration and amount of the supplied slurry for a predetermined time and the concentrated slurry taken out from the lower part of the solid-liquid separator The solid recovery was determined from the concentration and amount.

【0033】実施例1 Na2 O145g/l、Al2 3 77g/lのアルミ
ン酸ソーダ溶液1リットルに対して100メッシュに粉
砕した表1に示される組成のボーキサイト170gを分
散混合してなるスラリーを管径10mm、長さ220m
の管型反応器に流速2.1m/secで連続的に供給
し、スラリーの反応器出口温度が130℃になるよう加
熱してボーキサイトからアルミナの抽出を行った。反応
器のスラリー取り出し口から得られたスラリーを形成す
るアルミン酸ソーダ溶液はNa2 O130g/l、Al
2 3 147g/lであり、赤泥中の未反応性シリカは
9.7重量%であった。次いで一部の溶解スラリーをそ
のままの温度(130℃)に保ったまま、赤泥に対して
0.04重量%の高分子凝集剤(商品名PA−372:
栗田工業株式会社製、分子量1400万、イオン性50
%、ポリアクリル酸ソーダとポリアクリルアミドの共重
合体)を加え、図1に示す固液分離装置により固液分離
能を測定した。その結果を表2に示す。また高分子凝集
剤を添加するアルミン酸ソーダ溶液の温度を95℃に冷
却した後、該温度での凝集剤の固液分離能を測定した。
その結果を表2に示す。
Example 1 A slurry obtained by dispersing and mixing 170 g of bauxite having the composition shown in Table 1 and ground to 100 mesh with 1 liter of a sodium aluminate solution containing 145 g / l of Na 2 O and 77 g / l of Al 2 O 3. Pipe diameter 10mm, length 220m
Was continuously supplied to the tubular reactor at a flow rate of 2.1 m / sec, and the slurry was heated so that the reactor outlet temperature became 130 ° C. to extract alumina from bauxite. The sodium aluminate solution forming the slurry obtained from the slurry outlet of the reactor was Na 2 O 130 g / l, Al
The amount of 2 O 3 was 147 g / l, and the amount of unreacted silica in the red mud was 9.7% by weight. Next, while maintaining a part of the dissolved slurry at the same temperature (130 ° C.), 0.04% by weight of a polymer flocculant (trade name PA-372:
Kurita Water Industries Ltd., molecular weight 14 million, ionic 50
%, A copolymer of sodium polyacrylate and polyacrylamide), and the solid-liquid separation ability was measured by the solid-liquid separation device shown in FIG. Table 2 shows the results. After cooling the temperature of the sodium aluminate solution to which the polymer flocculant was added to 95 ° C., the solid-liquid separation ability of the flocculant at that temperature was measured.
Table 2 shows the results.

【0034】比較例1及び2 凝集剤として高分子凝集剤PA−372に代え、分子量
1000万、イオン性80%の高分子凝集剤(商品名P
A−318:栗田工業株式会社製)、及び分子量600
万、イオン性100%の高分子凝集剤(商品名PA−3
12:栗田工業株式会社製)を用いた他は実施例1と同
様に固液分離能を測定した。その結果を表2に示す。
Comparative Examples 1 and 2 A polymer flocculant having a molecular weight of 10 million and an ionicity of 80% (trade name: P) was used in place of the polymer flocculant PA-372 as a flocculant.
A-318: manufactured by Kurita Industry Co., Ltd.) and a molecular weight of 600
100% ionic polymer flocculant (trade name PA-3)
12: manufactured by Kurita Water Industries Ltd.) except that solid-liquid separation ability was measured in the same manner as in Example 1. Table 2 shows the results.

【0035】比較例3 実施例1と同一のアルミン酸ソーダ溶液及びボーキサイ
トをオートクレーブ中に導入し、約140℃の温度で6
0分間攪拌しボーキサイトよりアルミナの抽出処理を行
った。抽出処理後のスラリー中のアルミン酸ソーダ溶液
はNa2 O130g/l、Al2 3 144g/lであ
り、赤泥中の未反応性シリカは0.5重量%以下であっ
た。次いでこのスラリーを実施例1と同様の高分子凝集
剤を用い同様の方法で凝集剤の固液分離能を測定した。
その結果を表2に示す。
Comparative Example 3 The same sodium aluminate solution and bauxite as in Example 1 were introduced into an autoclave and heated at a temperature of about 140.degree.
The mixture was stirred for 0 minute and an alumina extraction treatment was performed from bauxite. The sodium aluminate solution in the slurry after the extraction treatment was 130 g / l of Na 2 O and 144 g / l of Al 2 O 3 , and the unreacted silica in the red mud was 0.5% by weight or less. Next, this slurry was measured for solid-liquid separation ability of the flocculant by the same method using the same polymer flocculant as in Example 1.
Table 2 shows the results.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【表2】 [Table 2]

【図面の簡単な説明】[Brief description of the drawings]

【図1】凝集剤の固液分離性能試験に用いた固液分離装
置の概略図である。
FIG. 1 is a schematic diagram of a solid-liquid separation device used for a solid-liquid separation performance test of a flocculant.

【符号の説明】[Explanation of symbols]

1はスラリー供給口、2は容器上部、3は容器下部を示
す。
1 is a slurry supply port, 2 is an upper part of the container, and 3 is a lower part of the container.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 熊谷 善夫 愛媛県新居浜市惣開町5番1号 住友化 学工業株式会社内 (72)発明者 稲見 道和 愛媛県新居浜市惣開町5番1号 住友化 学工業株式会社内 (72)発明者 石橋 和久 愛媛県新居浜市惣開町5番1号 住友化 学工業株式会社内 (56)参考文献 特開 昭57−51117(JP,A) 特開 昭63−248717(JP,A) 特公 昭48−37678(JP,B1) (58)調査した分野(Int.Cl.7,DB名) C01F 7/06 B01D 21/01 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yoshio Kumagai 5-1, Sokai-cho, Niihama-shi, Ehime Sumitomo Chemical Industries, Ltd. (72) Inventor Michikazu Inami 5-1, Sokai-cho, Niihama-shi, Ehime Sumitomo Inside Kagaku Kogyo Co., Ltd. (72) Inventor Kazuhisa Ishibashi 5-1 Sokaicho, Niihama-shi, Ehime Prefecture Sumitomo Kagaku Kogyo Co., Ltd. (56) References JP-A-57-51117 (JP, A) JP-A-63 -248717 (JP, A) JP 48-37678 (JP, B1) (58) Fields investigated (Int. Cl. 7 , DB name) C01F 7/06 B01D 21/01

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 アルミナ含有鉱石をアルカリ溶液で溶解
して得られるアルミン酸ソーダ溶液よりの赤泥の分離に
於いて、赤泥中の未溶出反応性シリカ量が少なくとも5
重量%以上存在し、かつ温度が常圧沸点以上であるアル
ミン酸ソーダ溶液に平均分子量1200万以上、イオン
性40〜60%の合成有機高分子凝集剤を添加して分離
を行うことを特徴とするアルミン酸ソーダ溶液よりの赤
泥の分離方法。
In the separation of red mud from a sodium aluminate solution obtained by dissolving an alumina-containing ore with an alkaline solution, the amount of uneluted reactive silica in the red mud is at least 5%.
There above wt%, and the temperature is sodium aluminate solution to the average molecular weight 12 million or more and atmospheric pressure boiling point above, and characterized in that the separation by adding a ionic 40% to 60% of a synthetic organic polymer flocculant Of red mud from sodium aluminate solution.
【請求項2】 合成有機高分子凝集剤が、アクリル酸ソ
ーダとアクリルアミドの共重合体であることを特徴とす
る請求項1記載の赤泥の分離方法。
2. The method for separating red mud according to claim 1, wherein the synthetic organic polymer flocculant is a copolymer of sodium acrylate and acrylamide.
JP34257591A 1991-12-25 1991-12-25 Red mud separation method Expired - Lifetime JP3316863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34257591A JP3316863B2 (en) 1991-12-25 1991-12-25 Red mud separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34257591A JP3316863B2 (en) 1991-12-25 1991-12-25 Red mud separation method

Publications (2)

Publication Number Publication Date
JPH05170433A JPH05170433A (en) 1993-07-09
JP3316863B2 true JP3316863B2 (en) 2002-08-19

Family

ID=18354828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34257591A Expired - Lifetime JP3316863B2 (en) 1991-12-25 1991-12-25 Red mud separation method

Country Status (1)

Country Link
JP (1) JP3316863B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2139812B1 (en) * 2007-04-20 2019-01-02 Cytec Technology Corp. Use of silicon-containing polymers to improve red mud flocculation in the bayer process
CN102858462A (en) * 2010-02-12 2013-01-02 塞特克技术公司 Flocculant compositions containing silicon-containing polymers
CN104876251A (en) * 2015-05-05 2015-09-02 刘永刚 Process for rapidly separating sodium aluminate solution and washing red mud in aluminum oxide production

Also Published As

Publication number Publication date
JPH05170433A (en) 1993-07-09

Similar Documents

Publication Publication Date Title
EP0618882B1 (en) Improved process for separating red mud in production of alumina from bauxite
EP0382383B1 (en) Improved process for producing alumina from bauxite
US2806766A (en) Process of purifying caustic aluminate liquors
US20070003462A1 (en) Removal of non-water soluble substances from solutions of aqueous metal extracts
EP0389061B1 (en) Process for the production of aluminium hydroxide from bauxite
CA1082883A (en) Method for removing ferrous iron from alkali metal aluminate liquor
JP3316863B2 (en) Red mud separation method
US5545384A (en) Process for production of aluminum hydroxide from ore containing alumina
CA2288815C (en) Process for producing aluminum hydroxide from alumina-containing ore
IE76299B1 (en) Trihydrate clarification aid for the bayer process
CA1277479C (en) Process for purifying alumina
EP0564659B1 (en) Process for producing aluminum hydroxide from alumina-containing ore
JPH0256285B2 (en)
JP3438240B2 (en) Method for producing aluminum hydroxide from alumina-containing ore
US5547647A (en) Production of alumina
EP0211338A2 (en) Process for making alumina
JPH02258621A (en) Decreasing quantity of organic carbon in caustic aluminate solution and increasing solubility of bauxite in caustic aluminate solution
JPS62230613A (en) Production of aluminum hydroxide from bauxite
AU668979B2 (en) Extracting alumina from bauxite
JPS5951488B2 (en) How to remove organic matter
EP0686599A1 (en) Process for improving the settling rate and/or clarity of feeds in the bayer process
JPS60131824A (en) Removing method of organic substance in bayer process

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080614

Year of fee payment: 6

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090614

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090614

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100614

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100614

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110614

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110614

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120614

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120614

Year of fee payment: 10