JP3314189B2 - Method for diagnosing the activity of wastewater treatment organisms - Google Patents

Method for diagnosing the activity of wastewater treatment organisms

Info

Publication number
JP3314189B2
JP3314189B2 JP18357493A JP18357493A JP3314189B2 JP 3314189 B2 JP3314189 B2 JP 3314189B2 JP 18357493 A JP18357493 A JP 18357493A JP 18357493 A JP18357493 A JP 18357493A JP 3314189 B2 JP3314189 B2 JP 3314189B2
Authority
JP
Japan
Prior art keywords
activity
protein
wastewater treatment
organism
organisms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18357493A
Other languages
Japanese (ja)
Other versions
JPH0743361A (en
Inventor
泰彦 小松
均 岩橋
克英 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP18357493A priority Critical patent/JP3314189B2/en
Publication of JPH0743361A publication Critical patent/JPH0743361A/en
Application granted granted Critical
Publication of JP3314189B2 publication Critical patent/JP3314189B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Peptides Or Proteins (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、排水処理生物の活性診
断方法に関する。
The present invention relates to a method for diagnosing the activity of wastewater treatment organisms.

【0002】[0002]

【従来の技術】従来より、し尿、下水、各種産業排水等
を分解除去する方法として、生物処理法が広く普及して
いる。しかし、生物処理法は物理的処理法、化学的処理
法に比べてランニングコスト等で優位に立つものの、処
理水質の不安定さという点で課題を残している。これ
は、排水処理生物(以下生物という)の活性を失わせ、
処理系外への流失や死滅を引き起こす環境因子(有機物
負荷、pH、水温、重金属塩類や酸、アルカリ等の成育
障害物質の流入)の変動に由来するためである。このた
め、安定した処理水質を得るためには、絶えず環境因子
の変動に対して監視する必要があり、更にこの結果に基
づいて維持管理を行う必要がある。
2. Description of the Related Art Conventionally, a biological treatment method has been widely used as a method for decomposing and removing human waste, sewage, various industrial wastewater, and the like. However, the biological treatment method has advantages in running cost and the like as compared with the physical treatment method and the chemical treatment method, but has a problem in the instability of treated water quality. This causes the activity of wastewater treatment organisms (hereinafter called organisms) to be lost,
This is due to fluctuations in environmental factors (organic load, pH, water temperature, inflow of growth-disturbing substances such as heavy metal salts, acids, and alkalis) that cause runoff or death outside the treatment system. For this reason, in order to obtain stable treated water quality, it is necessary to constantly monitor for changes in environmental factors, and it is necessary to perform maintenance based on the results.

【0003】その一つの方法として、フィードフォワー
ド法がある。これは、水温や廃水中のpH、アルカリ
度、電気伝導度および濁度等の物理化学量を計測し、こ
れをもとに凝集剤注入を制御し、活性汚泥法のフロック
を監視するものである。しかし、この方法ではフロック
形成状況を直接反映させて制御することはできず、この
点で確実性に欠けるとされている。
[0003] One of the methods is a feedforward method. This measures the physical temperature, pH, alkalinity, electrical conductivity, turbidity, etc. of the wastewater, controls the coagulant injection based on this, and monitors the floc of the activated sludge method. is there. However, in this method, control cannot be performed by directly reflecting the state of floc formation, and it is said that this method lacks certainty.

【0004】また、近年フロックのオンライン画像認識
による監視システムが考案されているが、精度の問題や
適用範囲も大規模な処理施設に限定されるため課題は多
く、実用にはなお時間を要する。
[0004] In recent years, a monitoring system based on Flock's online image recognition has been devised. However, there are many problems because accuracy problems and application range are limited to large-scale processing facilities, and practical use still requires time.

【0005】よって、現状の処理施設においては、依
然、目視や水質分析あるいは指標となる微小動物の観察
等と、この結果をもとにした技樹者の判断によって、維
持管理が行われている。
[0005] Therefore, in the current treatment facility, maintenance is still carried out by visual observation, water quality analysis, observation of micro-animals serving as indices, and the like, and judgment of a technical expert based on the results. .

【0006】[0006]

【発明が解決しょうとする課題】一般に、生物自身の活
性と廃水を分解除去するといった処理機能との間には、
密接な関係がある。すなわち、適切な維持管理によって
活性が高められた生物は、廃水の分解除去を効率良く行
うことができる。よって、事前に生物活性を把握するこ
とができれば、今後の処理性能を予測することができ、
最適な維持管理が可能となる。
In general, there is a difference between the activity of the organism itself and the treatment function of decomposing and removing wastewater.
There is a close relationship. That is, the organism whose activity has been enhanced by appropriate maintenance can efficiently perform the decomposition and removal of the wastewater. Therefore, if biological activity can be grasped in advance, future processing performance can be predicted,
Optimal maintenance is possible.

【0007】ところが、従来技術では、水質分析等の結
果にもとづき、生物活性を予測しているために、生物の
実態把握は間接的なものにならざるを得ない。例えば、
水質分析を行った結果、異常は認められなかった場合で
も、翌日に水質が急変して生物活性が失われ、良好な水
質が得られないという様な事例もしばしば見受けられ
る。すなわち、従来技術では、慢性的なストレス環境下
での生物の実態を把握することが困難である。こうした
意味において、より直接的な生物活性の測定技術の確立
が望まれる。
However, in the prior art, since the biological activity is predicted on the basis of the results of water quality analysis and the like, grasping the actual state of living organisms must be indirect. For example,
As a result of water quality analysis, even if no abnormality is found, there are often cases where the water quality changes suddenly the next day, the biological activity is lost, and good water quality cannot be obtained. That is, it is difficult for the conventional technology to grasp the actual state of the organism under a chronic stress environment. In this sense, it is desired to establish a technique for measuring biological activity more directly.

【0008】また、従来技術では、サンプリングから分
析結果を得るまでに時間がかかるため、維持管理が滞る
というケースも見受けられる。
In the prior art, since it takes time to obtain an analysis result from sampling, there are cases where maintenance is delayed.

【0009】さらに、分析項目が広範になった場合、多
大な労力と多様な専門知識が要求されるので、誰でも簡
便に処理状況を判断することは困難である。
Furthermore, if the analysis items become widespread, a great deal of labor and various specialized knowledge are required, so that it is difficult for anyone to easily judge the processing status.

【0010】本発明は、上記の課題に鑑みてなされたも
のであり、適切な維持管理を行うことを目的に、直接的
に生物活性を迅速かつ簡便に把握する方法を提供するも
のである。
[0010] The present invention has been made in view of the above problems, and has as its object to provide a method for directly and quickly grasping the biological activity for the purpose of performing appropriate maintenance.

【0011】[0011]

【課題を解決するための手段】本発明は、生物処理施設
に成育する生物が、ストレス環境下で合成するストレス
タンパク(以下、HSPという)をもとに作成した活性
診断剤によって、迅速かつ簡便にその活性を把握し、適
切な維持管理を行う方法に関するものである。
Means for Solving the Problems The present invention provides a method for rapidly and simply using an activity diagnostic agent produced by an organism growing in a biological treatment facility based on a stress protein (hereinafter referred to as HSP) synthesized in a stress environment. It is concerned with a method of grasping the activity and performing appropriate maintenance.

【0012】先ず、本発明の原理となるストレス応答に
ついて述べる。微生物から高等動植物に至る全ての生物
細胞は、環境ストレス(高温、低温、静水圧、乾燥、紫
外線等)にさらされると、瞬時にHSPを合成し、これ
らの環境に耐える体制を整える。これをストレス応答と
言う。例えば、酵母細胞は至適増殖温度より十数度高い
温度環境におかれると、熱ショックタンパクと呼ばれる
一種のHSPを速やかに合成し、致死的高温に対する耐
性を獲得する。さらに、同様な熱ショック処理によっ
て、耐高温性のみならず耐圧、耐乾燥、耐凍、耐高濃度
酸素性が獲得されることが明らかになっている。ストレ
ス応答は、全ての生物に共通した機構であるため、生物
処理に関する多種多様なな生物、すなわち細菌、菌類、
藻類、原生動物、後生動物等においても、環境変動をス
トレスとして感受し、その際にHSPの合成を行う。本
発明は、これら生物のストレス応答を利用したものであ
る。
First, the stress response which is the principle of the present invention will be described. All living cells, from microorganisms to higher plants and animals, instantly synthesize HSP when exposed to environmental stresses (high temperature, low temperature, hydrostatic pressure, drying, ultraviolet rays, etc.), and establish a system that can withstand these environments. This is called a stress response. For example, when a yeast cell is placed in a temperature environment which is ten and several degrees higher than the optimum growth temperature, it rapidly synthesizes a kind of HSP called heat shock protein and acquires resistance to lethal high temperature. Further, it has been revealed that not only high temperature resistance but also pressure resistance, drying resistance, frost resistance and high concentration oxygen resistance can be obtained by the same heat shock treatment. Since the stress response is a mechanism common to all organisms, a wide variety of organisms involved in biological treatment: bacteria, fungi,
Algae, protozoa, metazoans and the like also sense environmental changes as stress, and synthesize HSP at that time. The present invention utilizes the stress response of these organisms.

【0013】次に、このストレス応答を利用した活性診
断方法について述べる。 (1)既設生物処理施設から採取した生物のHSPの獲
得。 (2)上記をもとにした活性診断剤の獲得。 (3)生物処理施設への適用。 の三段階に分けられる。以下、これに従い述べる。
Next, an activity diagnosis method using this stress response will be described. (1) Acquisition of HSP of organisms collected from existing biological treatment facilities. (2) Acquisition of an activity diagnostic agent based on the above. (3) Application to biological treatment facilities. Is divided into three stages. Hereinafter, description will be made in accordance with this.

【0014】(1)HSPの獲得 既設の生物処理施設から採取した生物を、室内実験で低
温や低pH、無負荷等のストレス環境にさらし、この際に
合成される特異的なHSPを電気泳動分離等の手法によ
り、HSP合成の再現性の確認実験を行った後、HSPの精製
を行い透析等の手法によりこれを獲得する。なお、これ
らの生物として活性汚泥や生物膜が挙げられるが、本発
明はこれらを限定するものではない。 (2)活性診断剤の作成 活性診断剤の作成には、ラットやウサギ等の実験動物の
血液中に精製したHSPを注入し、数週間後、採取した血
液を精製し抗体を得る。これに蛍光物質等の標識を付与
し、抗体に生物処理施設のH S Pが接触した場合、瞬時
にその存在を認識するようにする。本発明では、これを
活性診断剤として扱う。 (3)生物処理施設への適用 活性診断を行う生物処理施設の生物を採取し、これに事
前に作成した活性診断剤を接触させる。これらの生物が
ストレス環境下にさらされている場合、活性診断剤は鋭
敏に反応するので、活性の低下状態を迅速に判明でき
る。この結果をもとに迅速かつ適切な維持管理を行うこ
とが可能になる。また、その他の方法として、活性診断
剤を分子認識素子として処理施設に組み込み、自動制御
による維持管理システムを行うこともできる。すなわ
ち、処理施設に活性診断剤を分子認識素子として固定化
し、HSPとの抗原抗体反応をデバイスにより測定を常時
行う。測定結果は電気信号に変換され、これをもとに水
温やpH、凝集剤注入等は自動的に制御され、最適な状態
を維持することが可能になる。
(1) Acquisition of HSP An organism collected from an existing biological treatment facility is exposed to a stress environment such as low temperature, low pH, and no load in a laboratory experiment, and the specific HSP synthesized at this time is subjected to electrophoresis. After conducting an experiment to confirm the reproducibility of HSP synthesis by a technique such as separation, HSP is purified and obtained by a technique such as dialysis. In addition, these living organisms include activated sludge and biofilm, but the present invention is not limited thereto. (2) Preparation of an activity diagnostic agent To prepare an activity diagnostic agent, purified HSP is injected into the blood of a laboratory animal such as a rat or rabbit, and several weeks later, the collected blood is purified to obtain an antibody. A label such as a fluorescent substance is added to this, so that when the HSP of the biological treatment facility comes into contact with the antibody, the presence thereof is instantly recognized. In the present invention, this is treated as an activity diagnostic agent. (3) Application to biological treatment facilities Organisms from a biological treatment facility for activity diagnosis are collected and contacted with an activity diagnostic agent created in advance. When these organisms are exposed to a stress environment, the activity diagnostic agent responds sharply, so that the state of decreased activity can be quickly identified. Based on this result, quick and appropriate maintenance can be performed. As another method, an active diagnostic agent can be incorporated into a processing facility as a molecular recognition element, and a maintenance system by automatic control can be performed. That is, an active diagnostic agent is immobilized in a treatment facility as a molecular recognition element, and an antigen-antibody reaction with HSP is constantly measured by a device. The measurement result is converted into an electric signal, based on which the water temperature, pH, coagulant injection and the like are automatically controlled, and an optimal state can be maintained.

【0015】[0015]

【実施例】本発明の実施例を以下説明する。生物処理施
設の生物がさらされるストレスには、様々なものがあ
る。本発明の実施例では飢餓状態を取上げ、この際、合
成されるHSPの確認を行った。
Embodiments of the present invention will be described below. There are various stresses to which the organisms of the biological treatment facility are exposed. In the examples of the present invention, starvation was taken out, and at this time, HSP to be synthesized was confirmed.

【0016】表1に示す組成を持つ人口下水倍地により
馴養した活性汚泥を採取し、これを遠心分離した後、汚
泥濃度として約2000mmg/lになるように調整し、同
様の倍地で回分培養実験を144時間行った。培養温度
は23℃とした。培養開始から径時的に活性汚泥を採取
し、これを遠心分離によって上澄み部分と汚泥部分に分
けた。上澄み部分は、有機態炭素濃度(以下、TOCと
いう)の測定に用い、これにより基質の消長を確認し、
飢餓状態下にあるか否かの指標とした。
Activated sludge acclimated to artificial sewage media having the composition shown in Table 1 was collected, centrifuged, adjusted to a sludge concentration of about 2000 mmg / l, and batched in the same media. The culture experiment was performed for 144 hours. The culture temperature was 23 ° C. Activated sludge was collected over time from the start of culturing, and this was separated into a supernatant portion and a sludge portion by centrifugation. The supernatant is used to measure the concentration of organic carbon (hereinafter referred to as TOC), thereby confirming the fate of the substrate,
It was used as an indicator of whether or not a person was starving.

【0017】[0017]

【表1】 [Table 1]

【0018】また、汚泥部分にトリスードデシル硫酸ナ
トリウム緩衝液を加えた後、ポリアクリルアミド電気泳
動によりタンパクの分画分子量を求め、これよりHSP
の合成を確認した。
After adding a trisodium decyl sulfate buffer to the sludge portion, the molecular weight cutoff of the protein was determined by polyacrylamide electrophoresis, and the HSP
Was confirmed.

【0019】TOCの経時変化の結果を図1に示す。こ
れにより、基質中のTOCは活性汚泥により速やかに消
費され、さらに培養24時間以降のTOCは全て無機態
炭素に由来したことから、この活性汚泥は培養24時間
以降、飢餓状態にあると考えられる。このため、以下こ
の培養期間のタンパクに着目することにした。
FIG. 1 shows the results of the change over time in TOC. Thereby, the TOC in the substrate was quickly consumed by the activated sludge, and the TOC after 24 hours of culture was all derived from inorganic carbon. Therefore, it is considered that this activated sludge was starved after 24 hours of culture. . For this reason, we will focus on the proteins during this culture period.

【0020】培養144時間までの活性汚泥のタンパク
変化を図2(写真の模写図)に示す。この結果、培養9
6時間目と144時間目の分子量約29キロダルトン付
近に、他の培養期間ではみられなかった分子量のタンパ
クが認められた。これらの二次元等電点電気泳動を行っ
た結果、同様に96時間目と144時間目のタンパクの
分画分子量の分布は他の培養期間のものとは異なってい
た。
FIG. 2 (schematic diagram of the photograph) shows the change of protein in activated sludge up to 144 hours of culture. As a result, culture 9
At a molecular weight of about 29 kilodaltons at 6 hours and 144 hours, a protein having a molecular weight not observed in other culture periods was observed. As a result of these two-dimensional isoelectric focusing, the distribution of the molecular weight cut-off of the protein at 96 hours and 144 hours was different from those in other culture periods.

【0021】以上の実施例より、回分培養により基質が
すべて消費され、飢餓状態下にある活性汚泥は、特異的
なタンパクを合成することが確認された。
From the above examples, it was confirmed that all substrates were consumed by batch culture, and activated sludge under starvation synthesized a specific protein.

【0022】[0022]

【発明の効果】本発明による活性診断剤は、迅速かつ簡
便に生物の活性を診断し、適切な生物処理施設の維持管
理を可能とするものである。また、本発明を従来の水質
分析等と組合せることにより、自動制御による維持管理
を構築することができる。
The activity diagnostic agent according to the present invention enables quick and simple diagnosis of the activity of an organism and enables maintenance and management of an appropriate biological treatment facility. In addition, by combining the present invention with a conventional water quality analysis or the like, maintenance by automatic control can be constructed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】TOCの径時変化を示す図。FIG. 1 is a diagram showing a time-dependent change in TOC.

【図2】活性汚泥のタンパク変化を示す説明図。FIG. 2 is an explanatory diagram showing a change in protein of activated sludge.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01N 33/18 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) G01N 33/18

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】し尿、下水、各種産業排水等の生物処理施
設に生育する廃水処理生物にストレス環境を与えて、該
生物にストレスタンパクを合成させるとともに該タンパ
クを分離、精製し、精製したストレスタンパクを実験動
物の血液中に注入した後、採取された血液を精製して、
該ストレス蛋白に対する抗体を得、該抗体に標識を付与
して活性診断剤を作成し、該活性診断剤を廃水処理生物
に反応させることを特徴とする廃水処理生物の活性診断
方法。
The present invention provides a wastewater treatment organism that grows in a biological treatment facility such as night soil, sewage, and various industrial wastewaters by applying a stress environment to the organism to synthesize a stress protein, and to separate and purify the protein. After injecting the protein into the blood of the experimental animal, the collected blood is purified,
A method for diagnosing the activity of a wastewater treatment organism, comprising obtaining an antibody against the stress protein, labeling the antibody to prepare an activity diagnostic agent, and reacting the activity diagnostic agent with the wastewater treatment organism.
JP18357493A 1993-07-26 1993-07-26 Method for diagnosing the activity of wastewater treatment organisms Expired - Lifetime JP3314189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18357493A JP3314189B2 (en) 1993-07-26 1993-07-26 Method for diagnosing the activity of wastewater treatment organisms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18357493A JP3314189B2 (en) 1993-07-26 1993-07-26 Method for diagnosing the activity of wastewater treatment organisms

Publications (2)

Publication Number Publication Date
JPH0743361A JPH0743361A (en) 1995-02-14
JP3314189B2 true JP3314189B2 (en) 2002-08-12

Family

ID=16138198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18357493A Expired - Lifetime JP3314189B2 (en) 1993-07-26 1993-07-26 Method for diagnosing the activity of wastewater treatment organisms

Country Status (1)

Country Link
JP (1) JP3314189B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4375265B2 (en) * 2005-03-25 2009-12-02 住友化学株式会社 Microbial acclimatization method and organic wastewater treatment method with acclimatized microorganisms

Also Published As

Publication number Publication date
JPH0743361A (en) 1995-02-14

Similar Documents

Publication Publication Date Title
Hoppe Microbial extracellular enzyme activity: a new key parameter in aquatic ecology
Wentzel et al. Batch test for characterisation of the carbonaceous materials in municipal wastewaters
Azam et al. Measurement of bacterioplankton growth in the sea and its regulation by environmental conditions
Kumlanghan et al. Microbial BOD sensor for monitoring treatment of wastewater from a rubber latex industry
Tan et al. Microbial membrane-modified dissolved oxygen probe for rapid biochemical oxygen demand measurement
Adams et al. Deoxyribonucleic acid (DNA) analysis by restriction fragment length polymorphisms of blood and other body fluid stains subjected to contamination and environmental insults
Burney et al. Dissolved carbohydrate and microbial ATP in the North Atlantic: concentrations and interactions
ATE297471T1 (en) METHOD AND KITS FOR PROCESSING MYCOBACTERIA AND BACTERIA CONTAINING MYCOLIC ACID
Strand et al. Rapid BOD measurement for municipal wastewater samples using a biofilm electrode
JPH0231892A (en) Control for hydrophilically active sludge type water disposal process
Craggs et al. Wastewater nutrient removal by marine microalgae cultured under ambient conditions in mini-ponds
JP3314189B2 (en) Method for diagnosing the activity of wastewater treatment organisms
Francoeur et al. Periphytic photosynthetic stimulation of extracellular enzyme activity in aquatic microbial communities associated with decaying Typha litter
Kellner et al. An automated, robotic biosensor for the electrochemical detection of E. coli in water
Kaplan et al. Assessment of [3H] thymidine incorporation into DNA as a method to determine bacterial productivity in stream bed sediments
CN102175825A (en) Biological monitoring system and method for monitoring sudden change of high-turbidity and low-temperature water quality
CN106771043B (en) A method of quickly analyzing water-soluble organic nitrogen biological effectiveness
CN111540416A (en) Environment pollutant source analysis method
FR2769323A1 (en) Analysis of microbial populations by hybridization with rRNA probe
CN106047849B (en) A kind of detection method of microorganism system of fixation and preparation method thereof and water body toxicity
Kanavillil et al. Characterization of natural biofilms in temperate inland waters
Rochelle et al. Cryptosporidium oocysts in drinking water and recreational water
Hwang et al. Evaluating a correlation between volatile suspended solid and adenosine 5′-triphosphate levels in anaerobic treatment of high organic suspended solids wastewater
Trent et al. Pressure effects on the temperature range for growth and survival of the marine bacterium Vibrio harveyi: implications for bacteria attached to sinking particles
JP5709038B2 (en) BOD sensor, BOD measuring method and BOD measuring device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term