JP3313129B2 - Graphite structure carbon intercalation compound, its production method and thermoelectric conversion element - Google Patents
Graphite structure carbon intercalation compound, its production method and thermoelectric conversion elementInfo
- Publication number
- JP3313129B2 JP3313129B2 JP03070292A JP3070292A JP3313129B2 JP 3313129 B2 JP3313129 B2 JP 3313129B2 JP 03070292 A JP03070292 A JP 03070292A JP 3070292 A JP3070292 A JP 3070292A JP 3313129 B2 JP3313129 B2 JP 3313129B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- graphite
- compound
- tellurium
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims description 215
- 150000001875 compounds Chemical class 0.000 title claims description 81
- 238000009830 intercalation Methods 0.000 title claims description 74
- 230000002687 intercalation Effects 0.000 title claims description 70
- 238000006243 chemical reaction Methods 0.000 title claims description 49
- 229910052799 carbon Inorganic materials 0.000 title claims description 38
- 238000004519 manufacturing process Methods 0.000 title claims description 19
- 229910002804 graphite Inorganic materials 0.000 claims description 164
- 239000010439 graphite Substances 0.000 claims description 164
- 239000010410 layer Substances 0.000 claims description 118
- 238000003780 insertion Methods 0.000 claims description 71
- 230000037431 insertion Effects 0.000 claims description 71
- 239000000758 substrate Substances 0.000 claims description 69
- 150000002430 hydrocarbons Chemical class 0.000 claims description 66
- 238000000034 method Methods 0.000 claims description 57
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 claims description 56
- 229910052714 tellurium Inorganic materials 0.000 claims description 45
- 239000000463 material Substances 0.000 claims description 42
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 31
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 27
- 229910052797 bismuth Inorganic materials 0.000 claims description 21
- 239000010949 copper Substances 0.000 claims description 21
- 229910052802 copper Inorganic materials 0.000 claims description 15
- 229910052742 iron Inorganic materials 0.000 claims description 15
- 230000008021 deposition Effects 0.000 claims description 14
- 229910052710 silicon Inorganic materials 0.000 claims description 11
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 10
- 230000015572 biosynthetic process Effects 0.000 claims description 10
- 238000000354 decomposition reaction Methods 0.000 claims description 10
- 229910052732 germanium Inorganic materials 0.000 claims description 9
- 239000011229 interlayer Substances 0.000 claims description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 8
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 8
- 239000010703 silicon Substances 0.000 claims description 7
- 150000004820 halides Chemical class 0.000 claims description 3
- 150000002894 organic compounds Chemical class 0.000 claims description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 156
- 238000010438 heat treatment Methods 0.000 description 81
- 239000002994 raw material Substances 0.000 description 59
- 239000007789 gas Substances 0.000 description 57
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 38
- 241000894007 species Species 0.000 description 37
- 239000011669 selenium Substances 0.000 description 28
- 229910052711 selenium Inorganic materials 0.000 description 26
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 24
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 23
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 19
- 229910052786 argon Inorganic materials 0.000 description 19
- 230000008569 process Effects 0.000 description 18
- 230000002194 synthesizing effect Effects 0.000 description 16
- 238000012546 transfer Methods 0.000 description 16
- ZHXAZZQXWJJBHA-UHFFFAOYSA-N triphenylbismuthane Chemical compound C1=CC=CC=C1[Bi](C=1C=CC=CC=1)C1=CC=CC=C1 ZHXAZZQXWJJBHA-UHFFFAOYSA-N 0.000 description 16
- ILXWFJOFKUNZJA-UHFFFAOYSA-N ethyltellanylethane Chemical compound CC[Te]CC ILXWFJOFKUNZJA-UHFFFAOYSA-N 0.000 description 15
- -1 ICl Chemical class 0.000 description 14
- 238000000151 deposition Methods 0.000 description 13
- 239000001294 propane Substances 0.000 description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 12
- 239000010453 quartz Substances 0.000 description 10
- 229910052759 nickel Inorganic materials 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 238000001704 evaporation Methods 0.000 description 7
- 238000005979 thermal decomposition reaction Methods 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 6
- 239000002585 base Substances 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 238000007796 conventional method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000008020 evaporation Effects 0.000 description 6
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium oxide Inorganic materials O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 6
- 229930195733 hydrocarbon Natural products 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 238000000197 pyrolysis Methods 0.000 description 6
- 239000004215 Carbon black (E152) Substances 0.000 description 5
- 238000010790 dilution Methods 0.000 description 5
- 239000012895 dilution Substances 0.000 description 5
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical group ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 4
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 4
- 238000009835 boiling Methods 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 125000003748 selenium group Chemical group *[Se]* 0.000 description 4
- 229910052723 transition metal Inorganic materials 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 3
- 229910018287 SbF 5 Inorganic materials 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 3
- VMPVEPPRYRXYNP-UHFFFAOYSA-I antimony(5+);pentachloride Chemical group Cl[Sb](Cl)(Cl)(Cl)Cl VMPVEPPRYRXYNP-UHFFFAOYSA-I 0.000 description 3
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 3
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 3
- 239000001307 helium Substances 0.000 description 3
- 229910052734 helium Inorganic materials 0.000 description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 229910000765 intermetallic Inorganic materials 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical compound O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 150000003624 transition metals Chemical class 0.000 description 3
- 238000005292 vacuum distillation Methods 0.000 description 3
- CXMYWOCYTPKBPP-UHFFFAOYSA-N 3-(3-hydroxypropylamino)propan-1-ol Chemical compound OCCCNCCCO CXMYWOCYTPKBPP-UHFFFAOYSA-N 0.000 description 2
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- 229910003691 SiBr Inorganic materials 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- KUKRQWSFGQRZIN-UHFFFAOYSA-N [Bi].[Hg] Chemical compound [Bi].[Hg] KUKRQWSFGQRZIN-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 235000010290 biphenyl Nutrition 0.000 description 2
- 239000004305 biphenyl Substances 0.000 description 2
- 229910000416 bismuth oxide Inorganic materials 0.000 description 2
- 229940036359 bismuth oxide Drugs 0.000 description 2
- TXKAQZRUJUNDHI-UHFFFAOYSA-K bismuth tribromide Chemical compound Br[Bi](Br)Br TXKAQZRUJUNDHI-UHFFFAOYSA-K 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 150000001805 chlorine compounds Chemical class 0.000 description 2
- DCFKHNIGBAHNSS-UHFFFAOYSA-N chloro(triethyl)silane Chemical compound CC[Si](Cl)(CC)CC DCFKHNIGBAHNSS-UHFFFAOYSA-N 0.000 description 2
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(I) oxide Inorganic materials [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 description 2
- QTMDXZNDVAMKGV-UHFFFAOYSA-L copper(ii) bromide Chemical compound [Cu+2].[Br-].[Br-] QTMDXZNDVAMKGV-UHFFFAOYSA-L 0.000 description 2
- 229960004643 cupric oxide Drugs 0.000 description 2
- KRFJLUBVMFXRPN-UHFFFAOYSA-N cuprous oxide Chemical compound [O-2].[Cu+].[Cu+] KRFJLUBVMFXRPN-UHFFFAOYSA-N 0.000 description 2
- 229940112669 cuprous oxide Drugs 0.000 description 2
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 description 2
- 238000002848 electrochemical method Methods 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 238000010574 gas phase reaction Methods 0.000 description 2
- 229940119177 germanium dioxide Drugs 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002366 halogen compounds Chemical class 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- 150000002391 heterocyclic compounds Chemical class 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- HYJBTSSKSKRUBH-UHFFFAOYSA-N iodo selenohypoiodite Chemical compound I[Se]I HYJBTSSKSKRUBH-UHFFFAOYSA-N 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 229910052747 lanthanoid Inorganic materials 0.000 description 2
- 150000002602 lanthanoids Chemical class 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 229910001507 metal halide Inorganic materials 0.000 description 2
- 150000005309 metal halides Chemical class 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- PVADDRMAFCOOPC-UHFFFAOYSA-N oxogermanium Chemical compound [Ge]=O PVADDRMAFCOOPC-UHFFFAOYSA-N 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000011403 purification operation Methods 0.000 description 2
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 2
- 239000002296 pyrolytic carbon Substances 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- AIFMYMZGQVTROK-UHFFFAOYSA-N silicon tetrabromide Chemical compound Br[Si](Br)(Br)Br AIFMYMZGQVTROK-UHFFFAOYSA-N 0.000 description 2
- 239000005049 silicon tetrachloride Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229910000059 tellane Inorganic materials 0.000 description 2
- VJHDVMPJLLGYBL-UHFFFAOYSA-N tetrabromogermane Chemical compound Br[Ge](Br)(Br)Br VJHDVMPJLLGYBL-UHFFFAOYSA-N 0.000 description 2
- IEXRMSFAVATTJX-UHFFFAOYSA-N tetrachlorogermane Chemical compound Cl[Ge](Cl)(Cl)Cl IEXRMSFAVATTJX-UHFFFAOYSA-N 0.000 description 2
- CUDGTZJYMWAJFV-UHFFFAOYSA-N tetraiodogermane Chemical compound I[Ge](I)(I)I CUDGTZJYMWAJFV-UHFFFAOYSA-N 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- KOECRLKKXSXCPB-UHFFFAOYSA-K triiodobismuthane Chemical compound I[Bi](I)I KOECRLKKXSXCPB-UHFFFAOYSA-K 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- 239000005046 Chlorosilane Substances 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910021591 Copper(I) chloride Inorganic materials 0.000 description 1
- 229910021590 Copper(II) bromide Inorganic materials 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 229910021575 Iron(II) bromide Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229910003902 SiCl 4 Inorganic materials 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 125000006267 biphenyl group Chemical group 0.000 description 1
- JRXXLCKWQFKACW-UHFFFAOYSA-N biphenylacetylene Chemical group C1=CC=CC=C1C#CC1=CC=CC=C1 JRXXLCKWQFKACW-UHFFFAOYSA-N 0.000 description 1
- JHXKRIRFYBPWGE-UHFFFAOYSA-K bismuth chloride Chemical compound Cl[Bi](Cl)Cl JHXKRIRFYBPWGE-UHFFFAOYSA-K 0.000 description 1
- BRCWHGIUHLWZBK-UHFFFAOYSA-K bismuth;trifluoride Chemical compound F[Bi](F)F BRCWHGIUHLWZBK-UHFFFAOYSA-K 0.000 description 1
- VQPFDLRNOCQMSN-UHFFFAOYSA-N bromosilane Chemical compound Br[SiH3] VQPFDLRNOCQMSN-UHFFFAOYSA-N 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- YGZSVWMBUCGDCV-UHFFFAOYSA-N chloro(methyl)silane Chemical compound C[SiH2]Cl YGZSVWMBUCGDCV-UHFFFAOYSA-N 0.000 description 1
- KOPOQZFJUQMUML-UHFFFAOYSA-N chlorosilane Chemical compound Cl[SiH3] KOPOQZFJUQMUML-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 description 1
- PZPGRFITIJYNEJ-UHFFFAOYSA-N disilane Chemical compound [SiH3][SiH3] PZPGRFITIJYNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 229940046149 ferrous bromide Drugs 0.000 description 1
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 1
- 229910000078 germane Inorganic materials 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- YUWFEBAXEOLKSG-UHFFFAOYSA-N hexamethylbenzene Chemical compound CC1=C(C)C(C)=C(C)C(C)=C1C YUWFEBAXEOLKSG-UHFFFAOYSA-N 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000012966 insertion method Methods 0.000 description 1
- GYCHYNMREWYSKH-UHFFFAOYSA-L iron(ii) bromide Chemical compound [Fe+2].[Br-].[Br-] GYCHYNMREWYSKH-UHFFFAOYSA-L 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- LXCFILQKKLGQFO-UHFFFAOYSA-N methylparaben Chemical compound COC(=O)C1=CC=C(O)C=C1 LXCFILQKKLGQFO-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 125000000018 nitroso group Chemical group N(=O)* 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229930015698 phenylpropene Natural products 0.000 description 1
- PARWUHTVGZSQPD-UHFFFAOYSA-N phenylsilane Chemical compound [SiH3]C1=CC=CC=C1 PARWUHTVGZSQPD-UHFFFAOYSA-N 0.000 description 1
- 230000035479 physiological effects, processes and functions Effects 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- JPJALAQPGMAKDF-UHFFFAOYSA-N selenium dioxide Chemical compound O=[Se]=O JPJALAQPGMAKDF-UHFFFAOYSA-N 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 229910052713 technetium Inorganic materials 0.000 description 1
- GKLVYJBZJHMRIY-UHFFFAOYSA-N technetium atom Chemical compound [Tc] GKLVYJBZJHMRIY-UHFFFAOYSA-N 0.000 description 1
- LAJZODKXOMJMPK-UHFFFAOYSA-N tellurium dioxide Chemical compound O=[Te]=O LAJZODKXOMJMPK-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 125000003698 tetramethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- FEONEKOZSGPOFN-UHFFFAOYSA-K tribromoiron Chemical compound Br[Fe](Br)Br FEONEKOZSGPOFN-UHFFFAOYSA-K 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Carbon And Carbon Compounds (AREA)
- Chemical Vapour Deposition (AREA)
Description
【0001】[0001]
【産業上の利用分野】この発明は、黒鉛構造炭素の層間
化合物、その製造方法及び熱電変換素子に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a graphite structure carbon interlayer.
The present invention relates to a compound, a method for producing the compound, and a thermoelectric conversion element .
【0002】[0002]
【従来の技術と発明が解決しようとする課題】従来の黒
鉛構造炭素の製造方法の代表的な1つとして気相熱分解
法がある。この方法は、原料をキャリアガスと共に基板
の設置された反応室へ導入し、反応室全体を加熱し、ま
たは基板を加熱して基板上に熱分解炭素を形成するとい
うものであった。2. Description of the Related Art A gas phase pyrolysis method is one of the typical methods for producing graphite-structured carbon. In this method, a raw material is introduced into a reaction chamber provided with a substrate together with a carrier gas, and the entire reaction chamber is heated, or the substrate is heated to form pyrolytic carbon on the substrate.
【0003】図6はプロパンを原料とし従来法によりニ
ッケル基板上に合成した黒鉛構造炭素の面間隔と合成時
の基板温度との関係を示す図である。この図では、基板
温度500〜700℃で面間隔が3.85〜4.0Å、
1000℃で3.5Å程度となっており、高温になる程
面間隔は小さくなり、800℃前後に境界領域がある。
このように、一般に気相熱分解による炭素の合成では基
板温度が高くなるにつれて、合成される黒鉛構造炭素の
結晶性が良くなる。このために、結晶性の高い高品質な
黒鉛構造炭素を合成するには、高温で合成することを要
し、高温耐性の基板が必要となる。FIG. 6 is a diagram showing the relationship between the plane spacing of graphite-structured carbon synthesized on a nickel substrate by a conventional method using propane as a raw material and the substrate temperature during synthesis. In this figure, at a substrate temperature of 500 to 700 ° C., the surface spacing is 3.85 to 4.0 °,
The temperature is about 3.5 ° at 1000 ° C., and the higher the temperature becomes, the smaller the plane spacing becomes, and there is a boundary area around 800 ° C.
As described above, in general, in the synthesis of carbon by gas phase pyrolysis, as the substrate temperature increases, the crystallinity of the synthesized graphite structure carbon improves. Therefore, in order to synthesize high-quality graphite-structured carbon having high crystallinity, it is necessary to synthesize at a high temperature, and a high-temperature-resistant substrate is required.
【0004】従って、従来より低温で高品質な黒鉛構造
炭素が合成できれば、工業的メリットがあることが理解
されるであろう。一方、本発明者らは、上記の気相熱分
解で、鉛、錫等の重金属の有機化合物の熱分解により黒
鉛層間化合物を製造する方法(USP4,714,63
9)やチタン(Ti)、バナジウム(V)、クロム(C
r)、タングステン(W)、モリブデン(Mo)、テク
ネチウム(Tc)等の遷移金属ハロゲン化物の熱分解に
よる黒鉛層間化合物の製造方法(特開昭61−2268
08号)を先に提案した。しかし、この気相熱分解法は
何れも黒鉛の原料を分解する温度と黒鉛を基板上に堆積
する温度、及び有機金属あるいは遷移金属ハロゲン化物
が熱分解される温度や分解によって生じた夫々の金属原
子が挿入される温度が等しい。すなわち、従来の同時合
成では黒鉛の原料ガスを熱分解する一つの温度で全プロ
セスが行われていたのである。[0004] Therefore, it will be understood that if high-quality graphite-structured carbon can be synthesized at a lower temperature than conventional, there is an industrial merit. On the other hand, the present inventors have proposed a method of producing a graphite intercalation compound by pyrolysis of an organic compound of a heavy metal such as lead or tin in the above-mentioned vapor phase pyrolysis (US Pat. No. 4,714,63).
9), titanium (Ti), vanadium (V), chromium (C
r), a method for producing a graphite intercalation compound by thermal decomposition of a transition metal halide such as tungsten (W), molybdenum (Mo), and technetium (Tc) (JP-A-61-2268).
08) was proposed earlier. However, in this vapor phase pyrolysis method, the temperature at which graphite raw material is decomposed, the temperature at which graphite is deposited on a substrate, the temperature at which organometallic or transition metal halides are pyrolyzed, and the respective metals generated by decomposition The temperature at which the atoms are inserted is equal. That is, in the conventional simultaneous synthesis, the entire process was performed at one temperature at which the raw material gas for graphite was thermally decomposed.
【0005】なお、黒鉛層間化合物の製造方法には、上
記の気相熱分解法以外に、溶媒法、電気化学的方法、混
合法、加圧法などが用いられ各種の挿入種が報告されて
いる。今まで知られている挿入種は、1)Li,Na,
K,Rb,Cs等のアルカリ金属、2)Mg,Ca,S
r等のアルカリ土類金属、3)塩素、臭素等のハロゲン
ガス類、4)ICl等のハロゲン化合物、5)SbCl
5 ,SbF5 ,AlCl3 ,FeCl3 、CuCl2 等
の金属ハロゲン化物、6)硝酸、硫酸、AsF 5 等の酸
類、7)アルカリ金属−水銀、水銀−ビスマス等の金属
間化合物等約300種類にも及んでいる(Advances in
Physics,30. 139(1981))。[0005] The method for producing a graphite intercalation compound includes the following.
Solvent method, electrochemical method, mixed method
Various legal species have been reported using legal and pressurized methods.
I have. Insertion species known so far include: 1) Li, Na,
Alkali metals such as K, Rb and Cs, 2) Mg, Ca, S
alkaline earth metals such as r, 3) halogens such as chlorine and bromine
Gases, 4) halogen compounds such as ICl, 5) SbCl
Five, SbFFive, AlClThree, FeClThree, CuClTwoetc
Metal halide, 6) nitric acid, sulfuric acid, AsF FiveEtc. acid
And 7) metals such as alkali metal-mercury and mercury-bismuth
About 300 kinds of intermetallic compounds etc. (Advances in
Physics, 30. 139 (1981)).
【0006】しかしながら、熱電変換材料としてみた場
合、上記の黒鉛層間化合物では満足しうるものがなかっ
た。However, when viewed as a thermoelectric conversion material, none of the above graphite intercalation compounds was satisfactory.
【0007】[0007]
【課題を解決するための手段】この発明によれば、テル
ル(Te)、ビスマス(Bi)、ゲルマニウム(G
e)、シリコン(Si)およびこれらの酸化物、鉄(F
e)の酸化物および銅(Cu)の酸化物から選択される
挿入種が、黒鉛構造の1層おき、または2層おきの周期
で規則的に挿入されてなることを特徴とする黒鉛構造炭
素の層間化合物およびそれを含む熱電変換素子が提供さ
れる。また、この発明によれば、上記黒鉛構造炭素の層
間化合物の製造方法であって、炭化水素化合物ガスの分
解領域A、基板を設けた生成物堆積領域B、および挿入
種ガスの発生領域Cを具備した装置で、領域Bの温度を
領域Aの温度より少なくとも50℃以上低い温度に設定
しながら、黒鉛構造炭素の層間化合物の基板への堆積を
行うことを特徴とする黒鉛構造炭素の層間化合物の製造
方法が提供される。 According to the present invention, a ter is provided.
(Te), bismuth (Bi), germanium (G
e), silicon (Si) and their oxides, iron (F
e) oxides and copper (Cu) oxides
The insertion species is a graphite structure every other layer or every other layer
Graphite-structured charcoal characterized by being regularly inserted in
Abstract: Provided are an elementary intercalation compound and a thermoelectric conversion element containing the same . Further, according to the present invention, the graphite structure carbon layer
A method for producing an intermetallic compound, the method comprising:
Solution area A, product deposition area B with substrate, and insertion
With the apparatus provided with the seed gas generation region C, the temperature of the region B
Set at least 50 ° C lower than the temperature of area A
While depositing intercalation compounds of graphite structure carbon on the substrate.
Of intercalation compound of graphite structure carbon characterized by performing
A method is provided.
【0008】この発明の製造方法によれば、従来法より
低温でかつ結晶性の高い黒鉛構造炭素が製造できる。そ
のためエネルギーの節約や比較的低温耐性の基板の使用
が可能となる。またこの発明の製造方法は150μV/
K以上の熱電能を有する黒鉛構造炭素の層間化合物、例
えばセレン、テルル、ゲルマニウム、鉄の酸化物、銅の
酸化物などを層間に有する化合物を製造することが可能
となる。なお、かかる層間化合物は熱電変換材として優
れたものである。According to the production method of the present invention, graphite structure carbon having a lower temperature and higher crystallinity than the conventional method can be produced. Therefore, it is possible to save energy and use a substrate having a relatively low temperature resistance. In addition, the manufacturing method of the present invention is 150 μV /
It becomes possible to produce an intercalation compound of graphite structure carbon having a thermoelectric power of K or more, for example, a compound having selenium, tellurium, germanium, an oxide of iron, an oxide of copper, or the like between layers. In addition, such an interlayer compound is excellent as a thermoelectric conversion material.
【0009】本発明の方法に用いる装置は、基本的に公
知の装置を利用できる。しかしながら、炭化水素化合物
ガスの分解領域Aおよび基板を設けた生成物堆積領域B
は、少なくとも同一の分解装置に設けられた場合、それ
ぞれの所望温度に独立的に制御できる構成が必要であ
る。この発明の方法に使う装置の基本的構成は図1に示
されているのでそれについて述べる。As the apparatus used in the method of the present invention, basically known apparatuses can be used. However, a hydrocarbon compound gas decomposition region A and a product deposition region B provided with a substrate
Need to have a configuration that can be independently controlled to each desired temperature, at least when provided in the same decomposition apparatus. The basic structure of the apparatus used in the method of the present invention is shown in FIG.
【0010】図1において、1は脂肪族炭化水素、芳香
族炭化水素、脂環族炭化水素等が収容された黒鉛原料容
器。2は挿入種の原料が収容された挿入種の供給源とな
る挿入種原料容器。3は反応管で、8は原料ガスを反応
管3へ移送する原料移送管である。移送管8の途中で黒
鉛原料容器からのガスと挿入種原料容器からのガスが混
合されて反応管3へ挿入種原料と黒鉛原料が同時に供給
される。4は高温側加熱炉、5は低温側加熱炉であり、
両者は夫々反応管3の高温室と低温室を加熱する。高温
側加熱炉4は、黒鉛原料容器から反応管3の高温室に導
入された黒鉛の原料となり、脂肪族炭化水素、芳香族炭
化水素、脂環族炭化水素等の原料ガスを熱分解する。In FIG. 1, reference numeral 1 denotes a graphite raw material container containing an aliphatic hydrocarbon, an aromatic hydrocarbon, an alicyclic hydrocarbon, and the like. Reference numeral 2 denotes an insertion seed material container serving as a supply source of the insertion seed containing the insertion seed material. Reference numeral 3 denotes a reaction tube, and reference numeral 8 denotes a raw material transfer tube for transferring the raw material gas to the reaction tube 3. The gas from the graphite raw material container and the gas from the inserted seed raw material container are mixed in the middle of the transfer pipe 8, and the inserted seed raw material and the graphite raw material are simultaneously supplied to the reaction tube 3. 4 is a high-temperature side heating furnace, 5 is a low-temperature side heating furnace,
Both heat the high temperature chamber and the low temperature chamber of the reaction tube 3 respectively. The high-temperature side heating furnace 4 becomes a graphite raw material introduced from the graphite raw material container into the high-temperature chamber of the reaction tube 3, and thermally decomposes a raw material gas such as an aliphatic hydrocarbon, an aromatic hydrocarbon, or an alicyclic hydrocarbon.
【0011】低温室に移送されてきた原料ガスは、基板
保持台7に載置された堆積生成用基板6上で黒鉛として
堆積し、このとき同時に移送されてくる挿入種ガスは黒
鉛の成長過程で黒鉛の層間に挿入される。反応管3へ導
入された蒸気の残余分は排気管9を介して排出される。
図2と図3の装置は、上記図1の装置変形であり、後述
する実施例において説明されるであろう。The raw material gas transferred to the low-temperature chamber is deposited as graphite on the deposition-forming substrate 6 placed on the substrate holding table 7, and at this time, the inserted seed gas transferred at the same time is a graphite growth process. Is inserted between graphite layers. The remainder of the steam introduced into the reaction tube 3 is discharged through the exhaust pipe 9.
The apparatus of FIGS. 2 and 3 is a modification of the apparatus of FIG. 1 described above, and will be described in an embodiment described later.
【0012】また図1〜図3の装置は、いずれも1つの
加熱炉の中に炭化水素化合物ガスの分解領域Aに相当す
る高温側加熱炉と、基板を設けた生成物堆積領域Bに相
当する低温側加熱炉が設けられている。しかし、高温側
加熱炉と低温側加熱炉はそれぞれ独立の加熱炉として、
気相移送用のパイプで連結した構成をすることができ
る。The apparatus shown in FIGS. 1 to 3 each correspond to a high-temperature side heating furnace corresponding to a hydrocarbon compound gas decomposition region A and a product deposition region B provided with a substrate in one heating furnace. A low-temperature side heating furnace is provided. However, the high-temperature heating furnace and low-temperature heating furnace are independent heating furnaces,
A configuration in which the pipes are connected by a gas phase transfer pipe can be employed.
【0013】さらに、挿入種ガスの発生領域Cは、図1
〜図3の装置では、分解領域Aと同一部位になってい
る。しかし、場合により低温側加熱炉を発生領域Cとし
て挿入種ガスの原料容器と低温側加熱炉を連結してもよ
い。さらに、発生領域Cを独立に設けてもよい。この発
明の黒鉛構造炭素の層間化合物の製造には、主原料とし
て炭化水素化合物ガスが用いられる。Further, the generation region C of the inserted seed gas is shown in FIG.
3 are the same as the decomposition area A. However, in some cases, the low-temperature heating furnace may be connected to the low-temperature heating furnace by using the low-temperature heating furnace as the generation region C. Further, the generation region C may be provided independently. The preparation of intercalation compounds of graphite structure-carbon of the present invention, the hydrocarbon compound gas is used as the main raw material.
【0014】炭化水素化合物としては、容易にガス状と
なり、分解されて炭素を発生するものであればよい。当
該分野で公知の種々の炭化水素化合物が利用できる。例
えば、炭化水素化合物は脂肪族又は芳香族の炭化水素、
ならびに異項環式化合物が含まれる。これらは、置換基
(ハロゲン原子、水酸基、スルホン酸基、ニトロ基、ニ
トロソ基、アミノ基、カルボキシル基など)を一部に有
していてもよい。The hydrocarbon compound may be any compound which easily becomes gaseous and is decomposed to generate carbon. Various hydrocarbon compounds known in the art can be used. For example, the hydrocarbon compound is an aliphatic or aromatic hydrocarbon,
And heterocyclic compounds. These may partially have a substituent (halogen atom, hydroxyl group, sulfonic group, nitro group, nitroso group, amino group, carboxyl group, etc.).
【0015】より具体的には、メタン、エタン、プロパ
ン、ブタン、ペンタン、ヘキサン、シクロヘキサン等の
飽和脂肪族炭化水素;エチレン、ジクロロエチレン、ジ
ブロモエチレン、2−ブチン、アセチレン、ジフェニル
アセチレン等の不飽和脂肪族炭化水素;ナフタレン、ア
ントラセン、ピレン、ベンゼン、トルエン、アリルベン
ゼン、ヘキサメチルベンゼン、アニリン、フェノール、
スチレン、ビフェニル等の芳香族炭化水素;ピリジン、
ピロール、チオフェン等の異項環式化合物が挙げられ
る。More specifically, saturated aliphatic hydrocarbons such as methane, ethane, propane, butane, pentane, hexane and cyclohexane; unsaturated fatty acids such as ethylene, dichloroethylene, dibromoethylene, 2-butyne, acetylene and diphenylacetylene; Group hydrocarbons: naphthalene, anthracene, pyrene, benzene, toluene, allylbenzene, hexamethylbenzene, aniline, phenol,
Aromatic hydrocarbons such as styrene and biphenyl; pyridine,
Heterocyclic compounds such as pyrrole and thiophene are exemplified.
【0016】ジクロロエチレン、アセチレン等の使用
は、基板の加熱温度をより低くすることができる。この
発明の黒鉛層間化合物の製造に用いる挿入種は、層間化
合物を形成しうるものであれば特に限定されない。しか
し、この発明の方法では、従来法では、層間化合物を得
ることができなかったSe,Teなどが挿入された層間
化合物の製造が可能となる。The use of dichloroethylene, acetylene or the like can lower the heating temperature of the substrate. The insertion species used for producing the graphite intercalation compound of the present invention is not particularly limited as long as it can form an intercalation compound. However, according to the method of the present invention, it is possible to produce an intercalation compound in which Se, Te, or the like has been inserted, in which an intercalation compound could not be obtained by the conventional method.
【0017】この発明で使用することが好ましい挿入種
ガスの発生用の原料としては次のものが挙げられる。 a)Se,Te,Si,Bi,Geのような金属、なら
びにこれらの酸化物(例:SeO2 ,TeO2 ,SiO
2 ,BiO2 ,Bi2 O3 ,GeO,GeO2 等)、ハ
ロゲン化物(例:SeCl4 ,SeBr4 ,SeI4 ,
TeCl4 ,TeBr4 ,TeI4 ,SiCl4 ,Si
Br4 ,BiCl4 ,BiBr4 ,BiI4 ,GeCl
4 ,GeBr4 ,GeI4 等);有機化合物(例:(C
6 H5 ) 2 Se2 ,(C6 H5 )SeCl,C8 H7 N
Se,C6 H5 SeH,SeC(NH2 )2 ,Si(O
CH3 )4 ,Si(OC2 H5 )4,SiH4 ,(C6
H 5 )3 SiH,(C6 H5 )3 SiCl,(CH3 )
3 SiCl,(CH3 )3 SiBr,(C2 H5 )3 S
iCl,(CH3 )4 Si,Si2 H6 ,(C6 H 5 )
3 Bi,GH4 等); b)FeまたはCuまたはこれらの酸化物(例:Fe
O,Fe3 O4 ,Fe2 O3 ,CuO,Cu2 O等)。
その他分解によって、FeまたはCuまたはこれらの酸
化物を形成しうる原料も使用できる。Inserts preferably used in the present invention
The raw materials for generating gas include the following. a) For metals such as Se, Te, Si, Bi, Ge
And these oxides (eg, SeOTwo, TeOTwo, SiO
Two, BiOTwo, BiTwoOThree, GeO, GeOTwoEtc.), c
Logenide (Example: SeClFour, SeBrFour, SeIFour,
TeClFour, TeBrFour, TeIFour, SiClFour, Si
BrFour, BiClFour, BiBrFour, BiIFour, GeCl
Four, GeBrFour, GeIFourEtc.); organic compounds (eg, (C
6HFive) TwoSeTwo, (C6HFive) SeCl, C8H7N
Se, C6HFiveSeH, SeC (NHTwo)Two, Si (O
CHThree)Four, Si (OCTwoHFive)Four, SiHFour, (C6
H Five)ThreeSiH, (C6HFive)ThreeSiCl, (CHThree)
ThreeSiCl, (CHThree)ThreeSiBr, (CTwoHFive)ThreeS
iCl, (CHThree)FourSi, SiTwoH6, (C6H Five)
ThreeBi, GHFourB) Fe or Cu or an oxide thereof (eg, Fe
O, FeThreeOFour, FeTwoOThree, CuO, CuTwoO etc.).
Other decomposition, Fe or Cu or their acids
Raw materials capable of forming a compound can also be used.
【0018】この発明の方法では、炭化水素化合物ガス
の分解領域Aの温度と基板を設けた生成物堆積領域Bの
温度は、異なるよう設定される。領域Bの温度は、領域
Aの温度より少なくとも50℃以上、好ましくは100
℃以上低く設定される。これら2つの領域の温度は、原
料の炭化水素化合物ガスの種類並びに挿入種ガスの原料
の種類に応じて設定される。In the method of the present invention, the temperature of the hydrocarbon compound gas decomposition region A and the temperature of the product deposition region B provided with the substrate are set to be different. The temperature of the region B is at least 50 ° C. higher than the temperature of the region A, preferably 100 ° C.
Set lower than ℃. The temperatures of these two regions are set according to the type of the hydrocarbon compound gas as the raw material and the type of the raw material of the insertion seed gas.
【0019】黒鉛構造炭素の層間化合物の製造では領域
Aの温度は一般に約300℃〜1600℃好ましくは約
400〜1500℃である。一方領域Bの温度は一般に
約300℃〜1100℃好ましくは約350〜1000
℃である。The temperature of the area A in the preparation of an intercalation compound of graphite structure-carbon is preferably generally about 300 ° C. to 1600 ° C. is about 400 to 1500 ° C.. On the other hand, the temperature in the region B is generally about 300 ° C to 1100 ° C, preferably about 350 to 1000 ° C.
° C.
【0020】しかしながら、上記の領域Aの温度は、炭
化水素化合物ガスの分解と、挿入種ガスの発生(領域
C)とを同時に行うのに適した温度である。挿入種の原
料からのガスの発生領域Cを別に設け、そこで発生した
挿入種ガスを領域Bに直接導入する場合は、領域Cの温
度は、挿入種の原料の種類を考慮して決められる。しか
し、この場合領域Bの温度は、領域Cの温度より少なく
とも50℃低く設定される。However, the temperature in the region A is a temperature suitable for simultaneously decomposing the hydrocarbon compound gas and generating the insertion seed gas (region C). In a case where a region C for generating a gas from the raw material of the insertion species is separately provided and the generated insertion species gas is directly introduced into the region B, the temperature of the region C is determined in consideration of the type of the raw material of the insertion species. However, in this case, the temperature of the region B is set at least 50 ° C. lower than the temperature of the region C.
【0021】挿入種原料の供給量を上記炭化水素化合物
供給量の約0.06〜3.0倍モルとする。より好まし
くは0.08〜1.5倍モルとする。これから逸脱した
条件においては、挿入種の挿入ができないか、若しく
は、挿入ができても、挿入種層が黒鉛層の3層おき以上
の希薄に挿入されるとか、あるいは過剰挿入により、経
時変化に伴う挿入種の析出が生じるという理由により、
本発明の上記挿入種を適正量挿入した黒鉛層間化合物を
形成することが困難となる。例えば、黒鉛原料となる炭
化水素化合物が下記条件 ・供給速度 0.05モル/時間〜1.5モル/時
間 ・分子数密度 2×1021分子/l〜2.6×1022
分子/l ・流速 0.5cm/分〜70cm/分 に設定された場合、挿入種原料の供給は下記条件: ・供給速度 0.004モル/時間〜2.3モル/
時間 ・分子数密度 1.6×1020分子/l〜4.0×1
022分子/l ・流速 0.5cm/分〜70cm/分 で行われるのが望ましい。The supply amount of the inserted seed material is set to about 0.06 to 3.0 times the supply amount of the hydrocarbon compound. More preferably, it is 0.08 to 1.5 times mol. Under conditions deviating from this, the insertion seed cannot be inserted, or even if it can be inserted, the insertion seed layer is inserted dilutely every three graphite layers or more, or due to excessive insertion, it may change over time. Because the precipitation of the intercalated species occurs,
It becomes difficult to form a graphite intercalation compound in which the above-mentioned insertion species of the present invention is inserted in an appropriate amount. For example, the hydrocarbon compound used as the graphite raw material is under the following conditions: • Supply rate: 0.05 mol / hr to 1.5 mol / hr • Molecular density: 2 × 10 21 molecules / l to 2.6 × 10 22
When the flow rate is set to 0.5 cm / min to 70 cm / min, the supply of the intercalated seed material is performed under the following conditions: The supply rate is 0.004 mol / hour to 2.3 mol /
Time ・ Molecular number density 1.6 × 10 20 molecules / l ~ 4.0 × 1
0 22 molecules / l · flow rate of 0.5 cm / min ~70Cm / carried out preferably in minutes.
【0022】挿入種原料ガス供給量並びに炭化水素供給
量を更に微細に制御することにより、挿入種層を黒鉛層
の何層おきに挿入するかという挿入種層の周期性の制御
された黒鉛層間化合物の製造が可能である。また、熱電
能が150μV/K以上である挿入種を黒鉛構造の1層
おき、または2層おきの周期で規則的に挿入することに
よって、熱電能の高い黒鉛層間化合物を得ることが可能
となる。By further finely controlling the supply amount of the insertion seed material gas and the supply amount of the hydrocarbon, the intercalation between the graphite layers in which the periodicity of the insertion seed layer is controlled is determined by the number of layers of the graphite layer to be inserted. Preparation of the compound is possible. In addition, by inserting insertion species having a thermoelectric power of 150 μV / K or more at intervals of every other layer or every two layers of the graphite structure, a graphite intercalation compound having a high thermoelectric power can be obtained. .
【0023】熱電能が150μV/K以上である挿入種
としてはTe,Bi,GeあるいはSiまたはこれらの
酸化物、Feの酸化物、Cuの酸化物等が挙げられる。
上記製造時に用いる基板としては、石英、サファイア、
アルミナ、SiC、Si等の無機物、又は銅、白金、ニ
ッケル、鉄等の金属が用いられる。特に、金属基板はそ
の導電性のゆえにそのまま導電体として用いることがで
きるので好ましい。中でも鉄族元素(鉄、コバルト、ニ
ッケル)又は、それを含む白金よりなる基板はさらに種
々の炭化水素化合物の熱分解反応に対する触媒作用及び
炭素の炭素化を促進する効果があり本発明の効果が特に
顕著なものであり好ましい。The thermoelectric power is T e as intercalating species is 150μV / K or more, Bi, Ge or Si, or an oxide thereof, oxides of Fe, oxides of Cu, and the like.
Quartz, sapphire,
Inorganic substances such as alumina, SiC and Si, or metals such as copper, platinum, nickel and iron are used. In particular, a metal substrate is preferable because it can be used as it is because of its conductivity. Among them, a substrate made of an iron group element (iron, cobalt, nickel) or platinum containing the same further has an effect of catalyzing a thermal decomposition reaction of various hydrocarbon compounds and an effect of accelerating carbonization of carbon. Particularly remarkable and preferable.
【0024】[0024]
【作用】本発明は、基板温度を低温に保持したまま原料
ガスの温度だけ高温にすると基板上に堆積される黒鉛構
造炭素の結晶性が向上することを見い出したことに基づ
いており、高温にされて分解した黒鉛原料炭料ガスがそ
の励起状態をある程度保ったまま基板上に達するように
され、上記原料ガスの分解領域Aの温度を高くするとよ
り結晶性が良くなる。The present invention is based on the finding that if the temperature of the raw material gas is increased while maintaining the substrate temperature at a low temperature, the crystallinity of the graphite structure carbon deposited on the substrate is improved. The graphite raw material gas decomposed and decomposed reaches the substrate while maintaining its excited state to some extent, and the higher the temperature of the decomposition region A of the raw material gas, the better the crystallinity.
【0025】挿入種原料ガス及び、炭化水素又は炭化水
素化合物ガスを原料とする熱CVD法により、挿入種の
蒸気雰囲気中で熱分解黒鉛又は熱分解炭素を形成し、該
熱分解黒鉛又は熱分解炭素の成長過程で黒鉛の層間に挿
入種を挿入する黒鉛層間化合物の製造方法において、成
長炉を高温室と低温室に分離することにより、低沸点又
は低炭化物形成温度を有する挿入種を挿入するため、挿
入種の沸点以下の温度に保持された低温基板上でも、挿
入種の蒸気雰囲気中で黒鉛成長を行える。この結果、S
e,Te等の低沸点、Bi,Ge,Si等の低炭化物形
成温度を有する挿入種を黒鉛の層間に挿入した黒鉛層間
化合物の製造が可能になった。[0025] Pyrolytic graphite or pyrolytic carbon is formed in a vapor atmosphere of the intercalating species by a thermal CVD method using the intercalating material gas and a hydrocarbon or hydrocarbon compound gas as raw materials. In a method for producing an intercalated graphite compound in which an intercalated species is inserted between layers of graphite in a carbon growth process, an intercalated species having a low boiling point or a low carbide forming temperature is inserted by separating a growth furnace into a high temperature chamber and a low temperature chamber. Therefore, even on a low-temperature substrate maintained at a temperature equal to or lower than the boiling point of the insertion species, graphite can be grown in a vapor atmosphere of the insertion species. As a result, S
It has become possible to produce a graphite intercalation compound in which an insertion species having a low boiling point such as e, Te or the like, or a low carbide formation temperature such as Bi, Ge, Si or the like is inserted between graphite layers.
【0026】更に、挿入種原料ガス供給量並びに炭化水
素濃度制御により、挿入種層を黒鉛層の何層おきに挿入
するかという挿入種層の周期性の制御された黒鉛層間化
合物の製造が可能になった。このような方法で黒鉛層間
化合物を製造することによって、大きな熱電能を有した
熱電変換材料の製造を可能にした。Further, by controlling the supply amount of the insertion seed material gas and the hydrocarbon concentration, it is possible to produce a graphite intercalation compound in which the periodicity of the insertion seed layer, that is, the interval between the insertion seed layers to be inserted, is controlled. Became. By producing a graphite intercalation compound by such a method, it has become possible to produce a thermoelectric conversion material having a large thermoelectric power.
【0027】すなわち、本発明の挿入種が黒鉛構造の1
層おきまたは2層おきの周期で規則的に挿入され、挿入
種が150μV/K以上の熱電能を有する黒鉛構造炭素
の層間化合物の製造が可能となる。本発明の層間化合物
は、格子間熱伝導率Kphを最少にする挿入種配置及び
層間化合物の熱電能αが挿入種のαとほぼ同じ値を示す
ことを見い出すことによりなされたものである。That is, the inserted species of the present invention has a graphite structure.
It is possible to produce an intercalation compound of graphite-structured carbon having a thermoelectric power of 150 μV / K or more, which is inserted regularly in every other layer or every two layers. The intercalation compound of the present invention has been made by finding an intercalated species arrangement that minimizes the interstitial thermal conductivity Kph and finding that the thermoelectric power α of the intercalated compound exhibits almost the same value as α of the intercalated species.
【0028】この現象の生じる機構は明確ではないが、
以下のように考えられる。すなわち、黒鉛層の層間に異
種原子層である挿入種層が挿入されると、層方向のフォ
ノン散乱が増幅される。そしてこの増幅効果は、挿入種
層の増加に伴い更に大きくなり、挿入種層が黒鉛層の2
層おきまたは1層おきに挿入された状態で最大となり、
Kphがほぼ0となる。The mechanism by which this phenomenon occurs is not clear,
It is considered as follows. That is, when an insertion seed layer, which is a heteroatom layer, is inserted between the graphite layers, phonon scattering in the layer direction is amplified. This amplification effect is further increased with the increase in the insertion seed layer.
It is maximum when inserted every other layer or every other layer,
Kph becomes almost 0.
【0029】また、異種原子層が黒鉛の層間へ挿入され
ると、通常挿入種層と黒鉛層の最近接間で電荷の移動が
生じる。このとき黒鉛の層間へ挿入された挿入種層は挿
入前と類似のイオン状態に保たれることにより安定化す
る。一方、黒鉛層も、電荷移動に伴い、キャリア−数に
変化が生じる。この際、キャリア−数の変化に伴い黒鉛
層の熱電能αは変化する。然し、元々黒鉛の熱電能α1
- 3μV程度で非常に小さく、その変化量も極く微小で
ある。結局、電荷移動に伴いキャリア−濃度が変化して
も、黒鉛母体の熱電能αの変化量は無視できる程小さい
ので、熱電能αに関しては、黒鉛母体は単に挿入種を配
列させるだけのマトリックスと見なせ何の影響も与えな
い。一方、黒鉛層の層間に挿入された挿入種層の熱電能
は、挿入種層自体が挿入前と類似の状態を取っているの
で、挿入前の熱電能αと同程度の熱電能値を示す。Further, when a heteroatom layer is inserted between graphite layers, charge transfer usually occurs between the nearest insertion seed layer and the graphite layer. At this time, the insertion seed layer inserted between the graphite layers is stabilized by being kept in the same ionic state as before insertion. On the other hand, the number of carriers also changes in the graphite layer due to charge transfer. At this time, the thermoelectric power α of the graphite layer changes with a change in the number of carriers. However, originally the thermoelectric power of graphite α1
- very small at about 3MyuV, the amount of change is also very small. After all, even if the carrier-concentration changes due to charge transfer, the amount of change in the thermoelectric power α of the graphite matrix is so small that it can be neglected. Seemingly has no effect. On the other hand, the thermoelectric power of the insertion seed layer inserted between the layers of the graphite layer shows the same thermoelectric power value as the thermoelectric power α before the insertion because the insertion seed layer itself is in a state similar to that before the insertion. .
【0030】この結果、層間化合物の熱電能αは、挿入
種のαのみを反映し挿入種のαとほぼ同じ値になる。次
の実施例において堆積物の組成、構造は電子顕微鏡によ
る挿入種のX線像撮影並びにX線回折による回折ピーク
の解析で評価した。又、導電率は直流4端子法、熱伝導
率は市販の装置を用いた光交流法、又熱電能は図4に示
した方法により測定した。As a result, the thermoelectric power α of the intercalation compound reflects only the α of the intercalated species and becomes almost the same value as the α of the intercalated species. In the following examples, the composition and structure of the deposit were evaluated by X-ray imaging of the inserted species with an electron microscope and analysis of diffraction peaks by X-ray diffraction. The electrical conductivity was measured by a DC four-terminal method, the thermal conductivity was measured by an optical AC method using a commercially available device, and the thermoelectric power was measured by the method shown in FIG.
【0031】[0031]
【実施例】実施例1および比較例1(参考例) 図1に示した装置を用いて、原料ガスとしてプロパン、
基板としてNi基板を用いて黒鉛構造炭素を形成した。
形成の際の条件は表1に示す。得られた生成物の面間隔
と基板温度依存性を実施例1は図5に、比較例1は図6
に示す。EXAMPLES Example 1 and Comparative Example 1 (Reference Example) Using the apparatus shown in FIG.
Graphite structure carbon was formed using a Ni substrate as a substrate.
Table 1 shows the conditions for the formation. FIG. 5 shows the interplanar spacing and the substrate temperature dependency of the obtained product, and FIG.
Shown in
【0032】本実施例の方が同じ温度の基板上に堆積さ
れる炭素膜の結晶性が良いことがわかる。特に基板温度
500〜700℃程度の領域での差が顕著であり、従来
の約3.85〜4.0Åに対し、本実施例では高温室1
000℃で3.6〜3.65Å、1200℃で3.5〜
3.6ÅというC軸方向の面間隔が得られている。It can be seen that this embodiment has better crystallinity of the carbon film deposited on the substrate at the same temperature. In particular, the difference is remarkable in the region of the substrate temperature of about 500 to 700 ° C., which is higher than the conventional temperature of about 3.85 to 4.0 ° in this embodiment.
3.6 to 3.65 at 000 ° C, 3.5 to 1200 ° C
A surface spacing in the C-axis direction of 3.6 ° is obtained.
【0033】[0033]
【表1】 [Table 1]
【0034】実施例2〜3および比較例2〜3(参考
例) 図1に示した装置を用いて、原料ガスとしてベンゼンま
たはプロパン、基板としてNi基板を用いて黒鉛構造炭
素を形成した。形成の際の条件は表2に示す。得られた
生成物の面間隔と基板温度依存性を表3に示す。表3に
おいて従来法と比べると、本実施例の方が同じ温度の基
板上に堆積される炭素膜の結晶性が良いことがわかる。
特に基板温度500〜700℃程度の領域での差が顕著
であることがわかる。Examples 2-3 and Comparative Examples 2-3 (Reference
Example) Using the apparatus shown in FIG. 1, graphite-structured carbon was formed using benzene or propane as a source gas and a Ni substrate as a substrate. Table 2 shows the conditions for the formation. Table 3 shows the interplanar spacing and substrate temperature dependence of the obtained product. Compared with the conventional method in Table 3, it can be seen that towards the present embodiment is good crystallinity of the carbon film deposited on the substrate at the same temperature.
In particular, the difference is remarkable in a region where the substrate temperature is about 500 to 700 ° C.
【0035】また表3からベンゼンよりプロパンの法が
結晶性をより向上させることが示されている。Table 3 shows that the propane method improves the crystallinity more than benzene.
【0036】[0036]
【表2】 [Table 2]
【0037】[0037]
【表3】 [Table 3]
【0038】実施例4 黒鉛原料の炭化水素化合物としてベンゼンを、挿入種原
料としてテルルを用い、テルル原子を黒鉛の層間に挿入
する工程を、図1の概略図を更に詳しく示した図2を用
いて説明する。黒鉛原料として真空蒸留による精製操作
を行ったベンゼンが収容されたバブル容器11の内部に
アルゴンガス制御系20からアルゴンガスを供給し、ベ
ンゼンをバブルさせ、移送管18を介して石英反応管1
3へベンゼン分子を給送する。この際、バブル容器11
内の液体ベンゼンの温度を一定に保ち、アルゴンガスの
流量を第1バルブ21で調節して、ベンゼン分子の石英
反応管13内への供給量を制御した。移送管18の途中
でテルル収容された容器12よりテルルが混合されて反
応管13へベンゼン分子とテルル原子が同時に供給され
る。この際、容器12及び移送管18はヒーティングテ
ープで被覆され、これを一定温度に加熱することにより
容器12内部のテルルを蒸発させ、第2バルブ22を調
節することにより一定速度でテルル蒸気を反応管13へ
移送する。一方、希釈ライン23よりアルゴンガスを流
し、石英反応管13へ給送されるアルゴンガス中のベン
ゼン分子とテルル原子の数密度及び流速を最適化する。
反応管13は加熱炉内へ挿入されて、高温側加熱炉1
4、低温側加熱炉15はそれぞれの反応温度に加熱さ
れ、反応管13の低温側加熱炉部の低温室には黒鉛層間
化合物を成長させる堆積生成用基板16を載置した保持
台17が配置されている。反応管13内へ導入されたベ
ンゼン分子は高温側加熱炉14で熱分解されて低温室内
の基板上で黒鉛又は炭素堆積物が成長形成される。この
時、同時に導入されたテルル原子は、黒鉛の成長過程で
黒鉛の層間にテルル原子として挿入された結果、得られ
る黒鉛堆積物は、テルル原子が黒鉛層の層間に挿入され
た黒鉛層間化合物となる。反応管13へ導入された蒸気
の残余分は排気管19を介して外部へ排出される。Example 4 The process of inserting tellurium atoms between layers of graphite using benzene as a hydrocarbon compound as a graphite raw material and tellurium as an insertion seed raw material is described with reference to FIG. Will be explained. Argon gas is supplied from an argon gas control system 20 into a bubble container 11 containing benzene that has been purified by vacuum distillation as a graphite raw material, and benzene is bubbled.
Feed benzene molecules to 3. At this time, the bubble container 11
The temperature of the liquid benzene therein was kept constant, and the flow rate of the argon gas was adjusted by the first valve 21 to control the supply amount of benzene molecules into the quartz reaction tube 13. Tellurium is mixed from the container 12 containing tellurium in the middle of the transfer tube 18, and benzene molecules and tellurium atoms are simultaneously supplied to the reaction tube 13. At this time, the container 12 and the transfer pipe 18 are covered with a heating tape, and by heating this to a constant temperature, tellurium inside the container 12 is evaporated, and by adjusting the second valve 22, tellurium vapor is generated at a constant speed. Transfer to reaction tube 13. On the other hand, an argon gas is supplied from the dilution line 23 to optimize the number density and the flow rate of benzene molecules and tellurium atoms in the argon gas supplied to the quartz reaction tube 13.
The reaction tube 13 is inserted into the heating furnace,
4. The low-temperature side heating furnace 15 is heated to each reaction temperature, and a holding table 17 on which a deposition generating substrate 16 for growing a graphite intercalation compound is placed is arranged in a low-temperature room of the low-temperature side heating furnace part of the reaction tube 13. Have been. The benzene molecules introduced into the reaction tube 13 are thermally decomposed in the high-temperature side heating furnace 14, and graphite or carbon deposits grow on the substrate in the low-temperature chamber. At this time, the tellurium atoms introduced at the same time are inserted as tellurium atoms between the layers of graphite during the growth process of graphite, and the resulting graphite deposit becomes a graphite intercalation compound in which tellurium atoms are inserted between the layers of the graphite layer. Become. The remainder of the steam introduced into the reaction tube 13 is discharged to the outside via the exhaust pipe 19.
【0039】上記工程において、堆積生成用基板16に
はニッケル基材を用い、また高温側加熱炉14の温度を
1000℃、低温側加熱炉15の温度を750℃、テル
ルの蒸発温度を500℃、ベンゼンとテルルの供給速度
をそれぞれ0.50mol/hr、0.38mol/h
rとして黒鉛の層間にテルルの挿入された黒鉛層間化合
物が得られた。In the above process, a nickel base is used for the substrate 16 for deposition generation, the temperature of the high-temperature heating furnace 14 is 1000 ° C., the temperature of the low-temperature heating furnace 15 is 750 ° C., and the tellurium evaporation temperature is 500 ° C. , Benzene and tellurium feed rates of 0.50 mol / hr and 0.38 mol / h, respectively.
As r, a graphite intercalation compound having tellurium inserted between graphite layers was obtained.
【0040】黒鉛の層間に1層おきにテルルの挿入され
た黒鉛層間化合物を合成するのに適したテルルと炭化水
素化合物との供給速度比は、原料として用いられた炭化
水素化合物の種類により異なるが、炭化水素化合物とし
てベンゼンを用いた場合には、高温側加熱炉温度100
0℃では、テルル1に対して、ベンゼンを0.6〜2.
5倍モルにするのが効果的である。また、反応管13内
に導入されるテルルの量を変化させると、テルル原子の
数密度も変化するので、テルル原子層を黒鉛層の何層お
きに挿入するかの制御も可能である。黒鉛の層間に2層
おきにテルルの挿入された黒鉛層間化合物を合成するの
に適したテルルとベンゼンの供給速度比は、テルル1に
対して、ベンゼンを2.5〜5.0倍モルにするのが効
果的である。ベンゼンの比率をこれより多くすることに
より、テルル層が黒鉛層の3層又は4層おきに以上の希
薄に挿入することも可能である。しかし、これより少な
くすると、テルルの過剰挿入により、経時変化に伴いテ
ルルの析出が生じる。The feed rate ratio between tellurium and a hydrocarbon compound suitable for synthesizing a graphite intercalation compound in which tellurium is inserted every other layer between graphite layers varies depending on the type of hydrocarbon compound used as a raw material. However, when benzene is used as the hydrocarbon compound, the high-temperature side heating furnace temperature 100
At 0 ° C., benzene is added in an amount of 0.6 to 2.
It is effective to make the molar ratio 5 times. Further, when the amount of tellurium introduced into the reaction tube 13 is changed, the number density of tellurium atoms also changes, so that it is possible to control how many layers of the tellurium atom layer are inserted in the graphite layer. The feed rate ratio between tellurium and benzene suitable for synthesizing a graphite intercalation compound in which tellurium is inserted between every two layers of graphite is 2.5 to 5.0 times the molar ratio of benzene to tellurium 1. It is effective to do. By increasing the ratio of benzene, it is possible to insert the tellurium layer more dilutely than every third or fourth graphite layer. However, if the amount is less than this, tellurium is precipitated with time due to excessive insertion of tellurium.
【0041】層間内のテルル原子の存在は、電子顕微鏡
で黒鉛膜中のテルル原子のX線像を撮影することによ
り、層間に均一に存在することが確かめられた。さらに
X線回折によると、テルルの原子半径と黒鉛の層間距離
の和に相当する反射を観測することができた。また、こ
のようにして得られた層間化合物は、そのステージ構造
が空気中高温に放置されたままでも変化しないことが同
様の方法で確認された。The presence of tellurium atoms between the layers was confirmed by taking an X-ray image of the tellurium atoms in the graphite film with an electron microscope, whereby the tellurium atoms were uniformly present between the layers. Further, according to X-ray diffraction, reflection corresponding to the sum of the atomic radius of tellurium and the interlayer distance of graphite could be observed. In addition, it was confirmed by the same method that the interlayer compound thus obtained did not change even when its stage structure was left at a high temperature in the air.
【0042】得られた、テルル原子が黒鉛層の層間に挿
入された黒鉛層間化合物の積層方向(層に垂直方向)の
熱電能はα=800μVK-1であった。この値は、従来
の黒鉛層間化合物の最高値である、5塩化アンチモン
(SbCl5 )分子そのものを挿入して得られる黒鉛層
間化合物のα=40μVK-1より遙かに大きく、又Bi
2 Te3 等の従来熱電材料のα=250μVK-1以上で
ある。また、導電率σ、熱伝導率κは夫々σ=1200
Ω-1cm-1、κ=6.0×10-3Wcm-1K-1であり、
導電率と熱伝導率の比σ/κはBi2 Te3 等の従来熱
電材料の4倍以上になった。尚、熱電能αは、図4に示
した装置を用い、温度差ΔTを0.2℃〜0.6℃に変
化させ、それぞれの温度差に対応する熱起電力ΔEMF
を測定し、各温度差に対して熱電能をα=ΔEMF/Δ
Tとして算出しこれらの平均値を取った。The obtained tellurium atoms are inserted between the graphite layers.
In the direction of lamination (perpendicular to the layer) of the graphite intercalation compound
Thermoelectric power is α = 800μVK-1Met. This value is
Antimony pentachloride, the highest value of graphite intercalation compounds
(SbClFive) Graphite layer obtained by inserting molecule itself
Α of inter-compound = 40 μVK-1Much bigger and Bi
TwoTeThreeΑ = 250μVK of conventional thermoelectric materials such as-1Above
is there. The conductivity σ and the thermal conductivity κ are respectively σ = 1200
Ω-1cm-1, Κ = 6.0 × 10-3Wcm-1K-1And
The ratio of electrical conductivity to thermal conductivity σ / κ is BiTwoTeThreeConventional heat such as
More than four times that of electrical materials. The thermoelectric power α is shown in FIG.
The temperature difference ΔT was changed from 0.2 ° C to 0.6 ° C
And the thermoelectromotive force ΔEMF corresponding to each temperature difference
And the thermoelectric power for each temperature difference is α = ΔEMF / Δ
T was calculated and the average of these values was taken.
【0043】上記工程において、黒鉛原料として、プロ
パン等他の炭化水素化合物を用いても同様の結果が得ら
れた。分子量100以下の炭化水素化合物を用いた場
合、下記の加熱炉条件: ・高温側加熱炉温度900℃〜1600℃(好ましくは
1000℃〜1500℃) ・低温側加熱炉温度550℃〜900℃(好ましくは8
00℃〜900℃) では、黒鉛の層間に1層おきにテルルの挿入された黒鉛
層間化合物を合成するのに適したテルルと炭化水素化合
物との供給速度比は、テルル1に対して炭化水素化合物
を約0.4〜8倍モルとするのが好ましい。より好まし
くは0.5〜6倍モルであった。黒鉛の層間に2層おき
にテルルの挿入された黒鉛層間化合物を合成するのに適
したテルルと炭化水素化合物の供給速度比は、テルル1
に対して、炭化水素化合物を6.0〜12.0倍モルに
するのが効果的である。In the above process, similar results were obtained when other hydrocarbon compounds such as propane were used as the graphite raw material. When a hydrocarbon compound having a molecular weight of 100 or less is used, the following heating furnace conditions are used:-a high-temperature heating furnace temperature of 900C to 1600C (preferably 1000C to 1500C)-a low-temperature heating furnace temperature of 550C to 900C ( Preferably 8
(00 ° C. to 900 ° C.), the feed rate ratio between tellurium and hydrocarbon compound suitable for synthesizing a graphite intercalation compound in which tellurium is inserted every other layer between graphite layers is as follows. Preferably, the compound is about 0.4-8 moles. More preferably, it was 0.5 to 6 moles. The feed rate ratio between tellurium and a hydrocarbon compound suitable for synthesizing a graphite intercalation compound in which tellurium is inserted every two layers between graphite layers is 1% tellurium.
It is effective to make the molar ratio of the hydrocarbon compound 6.0 to 12.0 times.
【0044】なお、本工程において、アルゴンガスに代
えて他の不活性ガス例えば、窒素、ヘリウム等を使用で
きる。又、テルルを輸送するのにHClガスを用いるこ
とも可能である。In this step, another inert gas such as nitrogen or helium can be used instead of the argon gas. It is also possible to use HCl gas to transport tellurium.
【0045】実施例5 上記実施例4の製造方法で挿入種原料として用いたテル
ルに代えて、テルルの有機金属あるいはハロゲン化物を
挿入種原料としてベンゼンと同時に反応管に導入し、熱
分解により得られるテルル原子挿入種を、低温室に移送
する方法でも同様の結果が得られた。以下、挿入種原料
としてジエチルテルル(Te(C2 H5 )2 )を用い、
図1の概略図を更に詳しく示した、図3の製造工程に従
って説明する。即ち、真空蒸留による精製操作を行った
ベンゼンが収納された第1バルブ容器31と、同じく精
製操作を行ったジエチルテルルが収納された第2バルブ
容器32のそれぞれの内部に、アルゴンガス制御系40
からアルゴンガスを供給し、ベンゼン及びジエチルテル
ルをバブルさせ、移送管38を介して石英反応管33へ
ベンゼン分子及びジエチルテルルを給送する。この際、
第1バルブ容器31内の液体ベンゼン及び第2バブル容
器32内のジエチルテルルの温度を一定に保ち、アルゴ
ンガスの流量を第1バルブ41と第2バルブ42で調節
して、ベンゼン分子及びジエチルテルル分子の石英反応
管33内への供給量を独立に制御する。一方、希釈ライ
ン43よりアルゴンガスを流し、石英反応管33へ給送
されるアルゴンガス中のベンゼンとジエチルテルルの分
子数密度及び流速を最適化する。Example 5 Instead of tellurium used as an insertion seed material in the production method of Example 4 above, an organic metal or halide of tellurium was introduced into a reaction tube simultaneously with benzene as an insertion seed material, and obtained by thermal decomposition. Similar results were obtained by transferring the tellurium atom-inserted species to a low-temperature chamber. Hereinafter, diethyl tellurium (Te (C 2 H 5 ) 2 ) was used as an insertion seed material,
A description will be given in accordance with the manufacturing process of FIG. 3 which shows the schematic diagram of FIG. 1 in more detail. That is, the argon gas control system 40 is provided in each of the first valve container 31 containing benzene subjected to the purification operation by vacuum distillation and the second valve container 32 containing diethyl tellurium subjected to the purification operation.
To supply benzene molecules and diethyl tellurium to the quartz reaction tube 33 via the transfer tube 38. On this occasion,
The temperature of the liquid benzene in the first valve container 31 and the temperature of diethyl tellurium in the second bubble container 32 are kept constant, and the flow rate of the argon gas is adjusted by the first valve 41 and the second valve 42 so that the benzene molecule and the diethyl tellurium are adjusted. The supply amount of the molecules into the quartz reaction tube 33 is controlled independently. On the other hand, an argon gas is supplied from the dilution line 43 to optimize the molecular number density and the flow rate of benzene and diethyl tellurium in the argon gas supplied to the quartz reaction tube 33.
【0046】上記工程において、堆積生成用基板36に
はニッケル基材を用い、また高温側加熱炉温度34の温
度を1100℃、低温側加熱炉温度35の温度を800
℃、ベンゼンとジエチルテルルの供給速度をそれぞれ
0.30mol/hr,0.20mol/hrとしてテ
ルルの挿入された黒鉛層間化合物が得られた。黒鉛の層
間に1層おきにテルルの挿入された黒鉛層間化合物を合
成するのに適したジエチルテルルと炭化水素化合物との
供給速度比は、原料として用いられた炭化水素化合物の
種類により異なるが、炭化水素化合物としてベンゼンを
用いた場合には、高温側加熱炉温度1100℃では、ジ
エチルテルル1に対して、ベンゼンを0.5〜2.0倍
モルにするのが効果的である。また、反応管33に導入
されるジエチルテルルの量を変化させると、熱分解して
生成するテルル原子の数密度も変化するので、テルル原
子層を黒鉛層の何層おきに挿入するかの制御も可能であ
る。黒鉛の層間に2層おきにテルルの挿入された黒鉛層
間化合物を合成するのに適したジエチルテルルとベンゼ
ンの供給速度比は、ジエチルテルル1に対して、ベンゼ
ンを1.6〜3.2の倍モルにするのが効果的である。
ベンゼンの比率をこれより多くすることにより、テルル
層が黒鉛層の3層又は4層おき以上の希薄に挿入するこ
とも可能である。しかしこれより少なくすると、テルル
の過剰挿入により、経時変化に伴うテルルの析出が生じ
る。In the above process, a nickel base material is used for the substrate 36 for deposition generation, and the temperature of the high-temperature heating furnace temperature 34 is 1100 ° C. and the temperature of the low-temperature heating furnace temperature 35 is 800
The graphite intercalation compound into which tellurium was inserted was obtained at a temperature of 0.30 mol / hr and a supply rate of benzene and diethyl tellurium of 0.30 mol / hr and 0.20 mol / hr, respectively. The feed rate ratio between diethyl tellurium and a hydrocarbon compound suitable for synthesizing a graphite intercalation compound in which tellurium is inserted every other layer between graphite layers varies depending on the type of hydrocarbon compound used as a raw material, When benzene is used as the hydrocarbon compound, it is effective to make benzene 0.5 to 2.0 times the molar amount of diethyl telluride at a high-temperature side heating furnace temperature of 1100 ° C. Further, when the amount of diethyl tellurium introduced into the reaction tube 33 is changed, the number density of tellurium atoms generated by thermal decomposition also changes, so that the number of layers of the tellurium atom layer to be inserted into the graphite layer is controlled. Is also possible. The feed rate ratio between diethyl tellurium and benzene suitable for synthesizing a graphite intercalation compound in which tellurium is inserted between every two layers of graphite is between 1.6 and 3.2 with respect to 1 diethyl tellurium. It is effective to double the molar ratio.
By increasing the proportion of benzene, it is possible to insert the tellurium layer more dilutely than every three or four graphite layers. However, below this, tellurium precipitates over time due to excessive insertion of tellurium.
【0047】堆積物を実施例4と同じ方法で評価した結
果、実施例4と同じ特性が得られた。上記工程におい
て、黒鉛原料として、プロパン等他の炭化水素化合物を
用いても同様の結果が得られた。分子量100以下の炭
化水素化合物を用いた場合、下記の加熱炉条件: ・高温側加熱炉温度900℃〜1600℃(好ましくは
1000℃〜1500℃) ・低温側加熱炉温度550℃〜900℃(好ましくは8
00℃〜900℃) では黒鉛の層間に1層おきにテルルの挿入された黒鉛層
間化合物を合成するのに適したジエチルテルルと炭化水
素化合物との供給速度比は、ジエチルテルル1に対し
て、炭化水素化合物を0.5〜5.0倍モルにするのが
効果的である。黒鉛の層間に2層おきにテルルの挿入さ
れた黒鉛層間化合物を合成するのに適したジエチルテル
ルと炭化水素化合物の供給速度比は、ジエチルテルル1
に対して、炭化水素化合物を5.0〜12倍モルにする
のが効果的である。The deposit was evaluated by the same method as in Example 4, and as a result, the same characteristics as in Example 4 were obtained. In the above process, similar results were obtained even when other hydrocarbon compounds such as propane were used as a graphite raw material. When a hydrocarbon compound having a molecular weight of 100 or less is used, the following heating furnace conditions are used:-a high-temperature heating furnace temperature of 900C to 1600C (preferably 1000C to 1500C)-a low-temperature heating furnace temperature of 550C to 900C ( Preferably 8
(00 ° C. to 900 ° C.), the feed rate ratio between diethyl tellurium and a hydrocarbon compound suitable for synthesizing a graphite intercalation compound in which tellurium is inserted every other layer between graphite layers is as follows: It is effective to make the hydrocarbon compound 0.5 to 5.0 moles. The feed rate ratio between diethyl tellurium and a hydrocarbon compound suitable for synthesizing a graphite intercalation compound in which tellurium is inserted between every two layers between graphite layers is as follows.
It is effective to make the amount of the hydrocarbon compound 5.0 to 12 times mol.
【0048】また低温側の温度が850℃においてTe
の挿入量が最も多く、確実に挿入された。これは実施例
4でも同様であった。なお、本工程で挿入種原料として
用いたジエチルテルル(Te(C2 H5 )2 )に代え
て、水素化テルル(TeH)等を用いても同様の結果が
得られた。When the temperature on the low temperature side is 850 ° C.,
The insertion amount was the largest, and was surely inserted. This was the same in Example 4. Similar results were obtained by using tellurium hydride (TeH) instead of diethyl tellurium (Te (C 2 H 5 ) 2 ) used as the seed material for insertion in this step.
【0049】実施例6(参考例) 図2に示される装置を用い、又黒鉛原料の炭化水素化合
物としてベンゼン、挿入種原料としてセレン、堆積生成
用基板にはニッケル基材を用い実施例4と同様の方法で
セレン原子が黒鉛層の層間に挿入された黒鉛層間化合物
を作製した。Example 6 (Reference Example) Using the apparatus shown in FIG. 2, benzene was used as a hydrocarbon compound as a graphite raw material, selenium was used as an insertion seed raw material, and a nickel base was used as a substrate for deposit formation. In the same manner, a graphite intercalation compound having selenium atoms inserted between the graphite layers was produced.
【0050】本実施例において、また高温側加熱炉温度
を900℃、低温側加熱炉温度を550℃、セレンの蒸
発温度を400℃、ベンゼンとセレンの供給速度をそれ
ぞれ0.65mol/hr,0.70mol/hrとし
てセレンの挿入された黒鉛層間化合物が得られた。黒鉛
の層間に1層おきにセレンの挿入された黒鉛層間化合物
を合成するのに適したセレンと炭化水素化合物との供給
速度比は、原料として用いられた炭化水素化合物の種類
により異なるが、炭化水素化合物としてベンゼンを用い
た場合には、高温側加熱炉温度900℃では、セレン1
に対して、ベンゼンを1.2〜2.4倍モルにするのが
効果的である。又、黒鉛の層間に2層おきにセレンの挿
入された黒鉛層間化合物を合成するのに適したセレンと
ベンゼンの供給速度比は、セレン1に対して、ベンゼン
を2.4〜4.8倍モルにするのが効果的である。ベン
ゼンの比率をこれより多くすることにより、セレン層が
黒鉛層の3層又は4層おき以上の希薄に挿入することも
可能である。しかしこれより少なくすると、セレンの過
剰挿入により、経時変化に伴うセレンの析出が生じる。In this embodiment, the temperature of the high-temperature side heating furnace is 900 ° C., the temperature of the low-temperature side heating furnace is 550 ° C., the evaporation temperature of selenium is 400 ° C., and the supply rates of benzene and selenium are 0.65 mol / hr and 0, respectively. A graphite intercalation compound into which selenium was inserted at a concentration of .70 mol / hr was obtained. The feed rate ratio between selenium and a hydrocarbon compound suitable for synthesizing a graphite intercalation compound in which selenium is inserted every other layer between graphite layers varies depending on the type of hydrocarbon compound used as a raw material. When benzene is used as the hydrogen compound, selenium 1
It is effective to make benzene 1.2 to 2.4 times the mol. The feed rate ratio of selenium and benzene suitable for synthesizing a graphite intercalation compound in which selenium is inserted between every two layers of graphite is 2.4 to 4.8 times that of selenium. Molar is effective. By increasing the ratio of benzene, it is possible to insert the selenium layer more dilutely than every three or four graphite layers. However, if it is less than this, selenium is excessively inserted, so that selenium is precipitated with time.
【0051】上記工程において、黒鉛原料として、プロ
パン等他の炭化水素化合物を用いても同様の結果が得ら
れた。分子量100以下の炭化水素化合物を用いた場
合、下記の加熱炉条件: ・高温側加熱炉温度900℃〜1600℃(好ましくは
900℃〜1200℃) ・低温側加熱炉温度400℃〜700℃(好ましくは4
50℃〜550℃) では、黒鉛の層間に1層おきにセレンの挿入された黒鉛
層間化合物を合成するのに適したセレンと炭化水素化合
物との供給速度比は、セレン1に対して、炭化水素化合
物を0.6〜4.0倍モルにするのが効果的である。
又、黒鉛の層間に2層おきにセレンの挿入された黒鉛層
間化合物を合成するのに適したセレンと炭化水素化合物
の供給速度比は、セレン1に対して、炭化水素化合物を
4.0〜12倍モルにするのが効果的である。In the above process, similar results were obtained when other hydrocarbon compounds such as propane were used as the graphite raw material. When a hydrocarbon compound having a molecular weight of 100 or less is used, the following heating furnace conditions are used: ・ High-temperature heating furnace temperature 900 ° C to 1600 ° C (preferably 900 ° C to 1200 ° C) ・ Low-temperature heating furnace temperature 400 ° C to 700 ° C ( Preferably 4
(50 ° C. to 550 ° C.), the feed rate ratio between selenium and a hydrocarbon compound suitable for synthesizing a graphite intercalation compound in which selenium is inserted every other layer between graphite layers is as follows. It is effective to make the hydrogen compound 0.6 to 4.0 moles.
The feed rate ratio of selenium and hydrocarbon compound suitable for synthesizing a graphite intercalation compound in which selenium is inserted every two layers between graphite layers is such that the ratio of selenium to hydrocarbon compound to selenium is 4.0 to 4.0. It is effective to make it 12 times mol.
【0052】なお、本工程においては、アルゴンガスに
代えて他の不活性ガス例えば、窒素、ヘリウム等を使用
できる。層間内のセレン原子の存在は、電子顕微鏡で黒
鉛膜中のセレン原子のX線像を撮影することにより、層
間に均一に存在することが確かめられた。さらにX線回
折によると、セレンの原子半径と黒鉛の層間距離の和に
相当する反射を観測することができた。また、このよう
にして得られた層間化合物は、そのステージ構造が空気
中高温に放置されたままでも変化しないことが同様の方
法で確認された。In this step, another inert gas such as nitrogen or helium can be used in place of the argon gas. The presence of selenium atoms between the layers was confirmed to be uniformly present between the layers by taking an X-ray image of the selenium atoms in the graphite film with an electron microscope. Furthermore, according to X-ray diffraction, reflection corresponding to the sum of the atomic radius of selenium and the interlayer distance of graphite could be observed. In addition, it was confirmed by the same method that the interlayer compound thus obtained did not change even when its stage structure was left at a high temperature in the air.
【0053】得られた、セレン原子が黒鉛層の層間に挿
入された黒鉛層間化合物の積層方向(層に垂直方向)の
熱電能はα=900μVK-1であった。この値は、従来
の黒鉛層間化合物の最高値である、5塩化アンチモン
(SbCl5 )分子そのものを挿入して得られる黒鉛層
間化合物のα=40μVK-1より遙かに大きく、又Bi
2 Te3 等の従来熱電材料のα=250μVK-1以上で
ある。また、導電率σ、熱伝導率κは夫々σ=1100
Ω-1cm-1、κ=5.5×10-3Wcm-1K-1であり、
導電率と熱伝導率の比σ/κはBi2 Te3 等の従来熱
電材料の4倍以上になった。The obtained selenium atoms are inserted between the graphite layers.
In the direction of lamination (perpendicular to the layer) of the graphite intercalation compound
Thermoelectric power is α = 900μVK-1Met. This value is
Antimony pentachloride, the highest value of graphite intercalation compounds
(SbClFive) Graphite layer obtained by inserting molecule itself
Α of inter-compound = 40 μVK-1Much bigger and Bi
TwoTeThreeΑ = 250μVK of conventional thermoelectric materials such as-1Above
is there. The conductivity σ and the thermal conductivity κ are σ = 1100, respectively.
Ω-1cm-1, Κ = 5.5 × 10-3Wcm-1K-1And
The ratio of electrical conductivity to thermal conductivity σ / κ is BiTwoTeThreeConventional heat such as
More than four times that of electrical materials.
【0054】なお、上記実施例6の製造方法で挿入種原
料として用いたセレンに代えて、ジフェニル・ジセレナ
イド((C6 H5 )2Se2 )、フェニル・セレニル・
クロライド(((C6 H5 )SeCl)、メチル・ベン
ズ・セレナゾール(C8 H7 NSe)、セレノフェノー
ル(C6 H5 SeH)、セレノウレア(SeC(N
H 2 )2 )等のセレンの有機金属を挿入種原料として、
黒鉛原料のベンゼン、プロパン等の炭化水素化合物と同
時に反応管に導入し、高温側加熱炉で熱分解により得ら
れるセレン原子挿入種を、低温室に移送する製造方法で
も同様の結果が得られた。上記挿入種原料を用い、分子
量100以下の炭化水素化合物を用いた場合、下記の加
熱炉条件: ・高温側加熱炉温度900℃〜1600℃(好ましくは
900℃〜1200℃) ・低温側加熱炉温度400℃〜700℃(好ましくは4
50℃〜550℃) では、挿入種原料1に対して炭化水素化合物の供給モル
比は約0.6〜10倍モルとするのが好ましい。より好
ましくは0.9〜7倍モルであった。The inserted seed material was produced by the method of Example 6 described above.
Diphenyl diselena instead of selenium
Id ((C6HFive)TwoSeTwo), Phenyl / selenyl /
Chloride (((C6HFive) SeCl), methyl ben
Z Serenazole (C8H7NSe), selenopheno
Le (C6HFiveSeH), selenoureas (SeC (N
H Two)Two), Etc., as an insertion seed material,
Same as hydrocarbon compounds such as benzene and propane as graphite raw materials
Sometimes introduced into the reaction tube and obtained by thermal decomposition in a high-temperature heating furnace.
Selenium intercalated species to be transferred to a cold room
Also obtained similar results. Using the above inserted seed material,
When a hydrocarbon compound having an amount of 100 or less is used,
Heating furnace conditions: ・ High-temperature heating furnace temperature 900 ° C to 1600 ° C (preferably
900 ° C to 1200 ° C) ・ Low-temperature furnace temperature 400 ° C to 700 ° C (preferably 4 ° C)
(50 ° C. to 550 ° C.).
Preferably, the ratio is about 0.6 to 10 moles. Better
More preferably, it was 0.9 to 7 times mol.
【0055】実施例7 図2に示した装置を用い、実施例4、6と同様の方法
で、黒鉛原料の炭化水素化合物としてベンゼンを、又挿
入種原料には、フッ化ビスマス、酸化セレン又は2酸化
テルルを用い、これら挿入種原料を高温側加熱炉温度で
熱分解することなく、そのままの形で挿入種として黒鉛
の層間に挿入した。挿入種原料の蒸発温度、高温側加熱
炉温度、低温側加熱炉温度並びにガス供給条件等、上記
工程の1実施例を表4に示す。Example 7 Using the apparatus shown in FIG. 2, in the same manner as in Examples 4 and 6, benzene was used as a hydrocarbon compound as a graphite raw material, and bismuth fluoride, selenium oxide or Using tellurium dioxide, these insertion seed materials were inserted as they were between graphite layers without being thermally decomposed at the high-temperature side heating furnace temperature. Table 4 shows one embodiment of the above-described steps, such as the evaporation temperature of the inserted seed material, the high-temperature heating furnace temperature, the low-temperature heating furnace temperature, and the gas supply conditions.
【0056】[0056]
【表4】 上記工程において、黒鉛原料として、プロパン等他の炭
化水素化合物を用いても同様の結果が得られた。分子量
100以下の炭化水素化合物を用いた場合、下記の加熱
炉条件: ・高温側加熱炉温度750℃〜1400℃(好ましくは
750℃〜1100℃) ・低温側加熱炉温度400℃〜800℃(好ましくは5
50℃〜800℃) では、挿入種原料1に対して炭化水素化合物の供給モル
比は約0.6〜10倍モルとするのが好ましい。より好
ましくは0.7〜6倍モルであった。[Table 4] In the above process, similar results were obtained even when other hydrocarbon compounds such as propane were used as a graphite raw material. When a hydrocarbon compound having a molecular weight of 100 or less is used, the following heating furnace conditions are used: ・ High-temperature heating furnace temperature 750 ° C to 1400 ° C (preferably 750 ° C to 1100 ° C) ・ Low-temperature heating furnace temperature 400 ° C to 800 ° C ( Preferably 5
(50 ° C. to 800 ° C.), the supply molar ratio of the hydrocarbon compound to the insertion seed material 1 is preferably about 0.6 to 10 times mol. More preferably, it was 0.7 to 6 times mol.
【0057】実施例8 4塩化ゲルマニウム、4塩化シリコン、4塩化テルル、
3臭化ビスマス、臭化第2銅、臭化第1鉄、臭化第2
鉄、4臭化ゲルマニウム、4臭化セレン、4臭化シリコ
ン、3ヨウ化ビスマス、4ヨウ化ゲルマニウム、4ヨウ
化セレン等の低沸点で低分解温度の挿入種を黒鉛の層間
に挿入するため、実施例4、6、7の製造工程に供した
図2の装置において、反応管13の基板保持台17を加
熱する低温室の周りの低温側加熱炉15を取り外し、代
わりに基板保持台17自体を抵抗加熱により直接加熱し
て基板16の温度を制御するようにした。又挿入種原料
は反応管13の高温室を経ないで直接低温室基板に移送
されるようにした。上記装置を用いて、黒鉛原料の炭化
水素化合物として低温で熱分解し易いジクロロエチレ
ン、堆積生成用基材にはニッケル基材を用い、又挿入種
原料として、4塩化ゲルマニウム、4塩化シリコン、4
塩化テルル、3臭化ビスマス、4臭化ゲルマニウム、4
臭化セレン、4臭化シリコン、3ヨウ化ビスマス、4ヨ
ウ化ゲルマニウム4ヨウ化セレンを用いることにより、
これら蒸気を分解する事なくそのままの形で挿入種とし
て黒鉛の層間に挿入した。挿入種原料の蒸発温度、高温
側加熱炉温度、基板温度並びにガス供給条件等、上記挿
入種挿入のための工程の1実施例を表5に示す。Example 8 Germanium tetrachloride, silicon tetrachloride, tellurium chloride,
Bismuth tribromide, cupric bromide, ferrous bromide, ferric bromide
To insert low-boiling-point, low-decomposition-temperature insertion species such as iron, germanium bromide, selenium bromide, silicon bromide, bismuth iodide, germanium iodide, and selenium iodide between graphite layers 2, the low-temperature-side heating furnace 15 around the low-temperature chamber for heating the substrate holder 17 of the reaction tube 13 is removed, and the substrate holder 17 is used instead. The substrate itself is directly heated by resistance heating to control the temperature of the substrate 16. Further, the inserted seed material was directly transferred to the low-temperature chamber substrate without passing through the high-temperature chamber of the reaction tube 13. Using the above apparatus, dichloroethylene which is easily pyrolyzed at a low temperature as a hydrocarbon compound as a graphite raw material, a nickel base material as a base material for deposit formation, and germanium tetrachloride, silicon tetrachloride,
Tellurium chloride, bismuth bromide, germanium bromide, 4
By using selenium bromide, silicon bromide, bismuth iodide, germanium iodide and selenium iodide,
These vapors were inserted between layers of graphite as insertion seeds as they were without decomposition. Table 5 shows one embodiment of the steps for inserting the insertion seed, such as the evaporation temperature of the insertion seed material, the high-temperature side heating furnace temperature, the substrate temperature, and the gas supply conditions.
【0058】[0058]
【表5】 上記工程において、下記の加熱炉条件: ・高温側加熱炉温度300℃〜800℃(好ましくは4
00℃〜800℃) ・基板温度200℃〜600℃(好ましくは300℃〜
550℃) では、挿入種原料1に対してジクロロエチレンの供給量
は約1.2〜16倍モルとするのが好ましい。より好ま
しくは1.5〜12倍モルであった。[Table 5] In the above step, the following heating furnace conditions:-High-temperature side heating furnace temperature 300 ° C to 800 ° C (preferably 4 ° C)
(00 ° C to 800 ° C) ・ Substrate temperature 200 ° C to 600 ° C (preferably 300 ° C to 800 ° C)
(550 ° C.), it is preferable that the supply amount of dichloroethylene is about 1.2 to 16 times mol with respect to the insertion seed material 1. More preferably, the molar amount was 1.5 to 12 times.
【0059】尚、上記工程においても黒鉛原料として用
いたジクロロエチレンに代えてアセチレンを用いても同
様の結果が得られた。In the above process, similar results were obtained by using acetylene instead of dichloroethylene used as a graphite raw material.
【0060】実施例9 鉄、銅、ゲルマニウム、ビスマス、シリコン、酸化ビス
マス、酸化第1銅、酸化第2銅、酸化第1鉄、4酸化3
鉄、酸化第2鉄、酸化ゲルマニウム、2酸化ゲルマニウ
ム、酸化ケイ素等の高沸点で蒸気圧の高い温度では炭素
原子の存在下で炭化物を形成し易い挿入種を黒鉛の層間
に挿入するため、実施例4、6、7の製造工程に供した
図2の装置において、反応管13の基板保持台17を加
熱する低温室の周りの低温側加熱炉15を取り外し、代
わりに基板保持台17自体を抵抗加熱により直接加熱し
て基板16の温度を制御できるようにし、挿入種原料は
反応管13の高温側加熱炉部14の高温室を経ないで直
接低温室基板に移送されるようにした。又、挿入種原料
の蒸発のための加熱は2500℃までの加熱が可能な高
周波誘導加熱法を用いた。この方法により、反応管13
内の高温室で黒鉛原料の熱分解された分解ガスと、挿入
種が高温で反応して炭化物を形成する事なく、低温側基
板上で、鉄、銅、ゲルマニウム、ビスマス、シリコン、
酸化ビスマス、酸化第1銅、酸化第2銅、酸化第1鉄、
4酸化3鉄、酸化第2鉄、酸化ゲルマニウム、2酸化ゲ
ルマニウム、酸化ケイ素を挿入種として黒鉛の層間に挿
入することができた。挿入種原料の蒸発温度、高温側加
熱炉温度、基板温度並びにガス供給条件等、上記挿入種
挿入のための工程の1実施例を表6に示す。Example 9 Iron, copper, germanium, bismuth, silicon, bismuth oxide, cuprous oxide, cupric oxide, ferrous oxide, and tertiary oxide
Implemented to insert intercalation species such as iron, ferric oxide, germanium oxide, germanium dioxide, silicon oxide, etc., between graphite layers, which easily form carbides in the presence of carbon atoms at high boiling point and high vapor pressure at high temperatures. 2, the low-temperature side heating furnace 15 around the low-temperature chamber for heating the substrate holder 17 of the reaction tube 13 was removed, and the substrate holder 17 itself was replaced with the apparatus of FIG. The temperature of the substrate 16 was controlled by direct heating by resistance heating, and the inserted seed material was transferred directly to the low-temperature chamber substrate without passing through the high-temperature chamber of the high-temperature side heating furnace section 14 of the reaction tube 13. In addition, a high frequency induction heating method capable of heating up to 2500 ° C. was used for heating for evaporating the inserted seed material. By this method, the reaction tube 13
In the high-temperature chamber inside, the intercalated species reacts at high temperature with the pyrolysis gas of the graphite raw material to form carbides, and on the low-temperature side substrate, iron, copper, germanium, bismuth, silicon,
Bismuth oxide, cuprous oxide, cupric oxide, ferrous oxide,
Ferric oxide, ferric oxide, germanium oxide, germanium dioxide, and silicon oxide could be inserted between graphite layers as insertion species. Table 6 shows one embodiment of the steps for inserting the insertion seed, such as the evaporation temperature of the insertion seed material, the high-temperature side heating furnace temperature, the substrate temperature, and the gas supply conditions.
【0061】[0061]
【表6】 上記工程において、黒鉛原料として、プロパン等他の炭
化水素化合物を用いても同様の結果が得られた。分子量
100以下の炭化水素化合物を用いた場合、下記の加熱
炉条件: ・高温側加熱炉温度900℃〜1600℃(好ましくは
1000℃〜1500℃) ・基板温度700℃〜900℃(好ましくは800℃〜
900℃) では、挿入種原料1に対して炭化水素化合物の供給モル
比は約0.5〜6倍モルとするのが好ましい。より好ま
しくは0.5〜3倍モルであった。[Table 6] In the above process, similar results were obtained even when other hydrocarbon compounds such as propane were used as a graphite raw material. When a hydrocarbon compound having a molecular weight of 100 or less is used, the following heating furnace conditions are used: a high-temperature heating furnace temperature of 900 ° C to 1600 ° C (preferably 1000 ° C to 1500 ° C) a substrate temperature of 700 ° C to 900 ° C (preferably 800 ° C) ° C ~
(900 ° C.), the supply molar ratio of the hydrocarbon compound to the insertion seed material 1 is preferably about 0.5 to 6 moles. More preferably, it was 0.5 to 3 moles.
【0062】実施例10 上記実施例9の製造方法で用いた挿入種原料に代えて、
ゲルマニウム、ビスマス、シリコンの有機金属あるいは
ハロゲン化物を挿入種原料としてベンゼンと同時に反応
管に導入し、熱分解により得られるゲルマニウム、ビス
マス、シリコン原子を挿入種として低温室に移送する方
法でも上記実施例9と同様の結果が得られた。Example 10 In place of the inserted seed material used in the production method of Example 9 above,
The above-described example is also applicable to a method in which an organic metal or halide of germanium, bismuth, or silicon is introduced into a reaction tube at the same time as benzene as an insertion seed material, and germanium, bismuth, and silicon atoms obtained by thermal decomposition are transferred to a low temperature chamber as insertion seeds. The same results as in Example 9 were obtained.
【0063】以下に、黒鉛原料の炭化水素化合物として
ベンゼン、挿入種原料としてトリフェニルビスマス
((C6 H5 )3 Bi)を用い、ビスマスを黒鉛の層間
に挿入する工程を図2に従って説明する。黒鉛原料とし
て真空蒸留による精製操作を行ったベンゼンが収容され
たバブル容器11の内部にアルゴンガス制御系20から
アルゴンガスを供給し、ベンゼンをバブルさせ、移送管
18を介して石英反応管13へベンゼン分子を給送す
る。この際、バブル容器11内の液体ベンゼンの温度を
一定に保ち、アルゴンガスの流量を第1バルブ21で調
節して、ベンゼン分子の石英反応管13内への供給量を
制御した。移送管18の途中でトリフェニルビスマスの
収容された容器12よりトリフェニルビスマスが混合さ
れて反応管13へベンゼン分子とトリフェニルビスマス
分子が同時に供給される。この際、容器12及び移送管
18はヒーティングテープで被覆され、これを一定温度
に加熱することにより容器12内部のトリフェニルビス
マスを蒸発させ、更に第2バルブ22を調節することに
より一定速度で蒸気を移送する。一方、希釈ライン23
よりアルゴンガスを流し、石英反応管13へ給送される
アルゴンガス中のベンゼン分子とトリフェニルビスマス
分子の数密度及び流速を最適化する。反応管13は加熱
炉内へ挿入されて、高温側加熱炉14、低温側加熱炉1
5はそれぞれの反応温度に加熱され、反応管13の低温
室内には黒鉛層間化合物を成長させる堆積生成用基板1
6を載置した保持台17が配置されている。反応管13
内へ導入されたベンゼン分子は熱分解して低温炉内の基
板上で黒鉛堆積物が成長形成される。この時、同時に、
高温室でトリフェニルビスマスも熱分解し、その結果生
じるビスマス原子は低温室へ移送され、低温基板上黒鉛
堆積物の成長過程で黒鉛堆積物の層間にビスマス原子と
して挿入される結果、得られる黒鉛堆積物は、ビスマス
原子が黒鉛層の層間に挿入された黒鉛層間化合物とな
る。The process of inserting bismuth between graphite layers using benzene as a hydrocarbon compound as a graphite raw material and triphenylbismuth ((C 6 H 5 ) 3 Bi) as an insertion seed raw material will be described below with reference to FIG. . Argon gas is supplied from an argon gas control system 20 into a bubble container 11 containing benzene that has been purified by vacuum distillation as a graphite raw material, and benzene is bubbled. Feed benzene molecules. At this time, the temperature of the liquid benzene in the bubble container 11 was kept constant, and the flow rate of the argon gas was adjusted by the first valve 21 to control the supply amount of benzene molecules into the quartz reaction tube 13. Triphenylbismuth is mixed from the container 12 containing triphenylbismuth in the middle of the transfer tube 18, and benzene molecules and triphenylbismuth molecules are simultaneously supplied to the reaction tube 13. At this time, the container 12 and the transfer pipe 18 are covered with a heating tape, and by heating this to a constant temperature, the triphenylbismuth inside the container 12 is evaporated, and further by adjusting the second valve 22 at a constant speed. Transfer steam. On the other hand, the dilution line 23
Argon gas is further supplied to optimize the number density and flow rate of benzene molecules and triphenylbismuth molecules in the argon gas supplied to the quartz reaction tube 13. The reaction tube 13 is inserted into the heating furnace, and the high-temperature heating furnace 14 and the low-temperature heating furnace 1 are inserted.
Deposition substrates 5 are heated to the respective reaction temperatures, and in a low-temperature chamber of the reaction tube 13, a deposition generation substrate 1 for growing a graphite intercalation compound.
6 is placed. Reaction tube 13
The benzene molecules introduced therein are thermally decomposed and a graphite deposit grows and forms on the substrate in the low-temperature furnace. At this time,
The triphenylbismuth is also thermally decomposed in the high-temperature chamber, and the resulting bismuth atoms are transported to the low-temperature chamber, and the graphite obtained as a result of being inserted as a bismuth atom between the layers of the graphite deposit during the growth of the graphite deposit on the low-temperature substrate. The deposit becomes a graphite intercalation compound in which bismuth atoms are inserted between the layers of the graphite layer.
【0064】上記工程において、堆積生成用基板にはニ
ッケル基材を用い、また高温側加熱炉温度を1150
℃、低温側加熱炉温度を850℃、トリフェニルビスマ
スの蒸発温度を100℃、ベンゼンとトリフェニルビス
マスの供給速度をそれぞれ1.0mol/hr,0.9
mol/hrとしてビスマスの挿入された黒鉛層間化合
物が得られた。In the above process, a nickel base material was used as the substrate for deposition generation, and the temperature of the high-temperature side heating furnace was set to 1150
° C, the low-temperature side furnace temperature is 850 ° C, the evaporation temperature of triphenylbismuth is 100 ° C, and the supply rates of benzene and triphenylbismuth are 1.0 mol / hr and 0.9 mol, respectively.
A graphite intercalation compound into which bismuth was inserted was obtained as mol / hr.
【0065】層間内のビスマス原子の存在は、電子顕微
鏡で黒鉛膜中のビスマス原子のX線像を撮影することに
より、層間に均一に存在することが確かめられた。さら
にX線回折によるとビスマスの原子半径と黒鉛の層間距
離の和に相当する反射を観測することができた。黒鉛の
層間に1層おきにビスマスの挿入された黒鉛層間化合物
を合成するのに適したトリフェニルビスマスと炭化水素
化合物との供給速度比は、原料として用いられた炭化水
素化合物の種類により異なるが、炭化水素化合物として
ベンゼンを用いた場合には、高温側加熱炉温度1150
℃では、トリフェニルビスマス1に対して、ベンゼンを
0.5〜1.0倍モルにするのが効果的である。また、
反応管13内に導入されるトリフェニルビスマスの量を
変化させると、熱分解して生成するビスマス原子の数密
度も変化するので、ビスマス挿入種層を黒鉛層の何層お
きに挿入するかの制御も可能である。黒鉛の層間に2層
おきにビスマスの挿入された黒鉛層間化合物を合成する
のに適したトリフェニルビスマスとベンゼンの供給速度
比は、トリフェニルビスマス1に対して、ベンゼンを
1.0〜2.5倍モルにするのが効果的である。ベンゼ
ンの比率をこれより多くすることにより、ビスマス層が
黒鉛層の3層又は4層おき以上の希薄に挿入することも
可能である。しかしこれより少なくすると、ビスマスの
過剰挿入により、経時変化に伴うビスマスの析出が生じ
る。The existence of bismuth atoms between the layers was confirmed by taking an X-ray image of the bismuth atoms in the graphite film with an electron microscope, whereby the bismuth atoms were uniformly present between the layers. Further, according to X-ray diffraction, reflection corresponding to the sum of the atomic radius of bismuth and the interlayer distance of graphite could be observed. The feed rate ratio between triphenylbismuth and a hydrocarbon compound suitable for synthesizing a graphite intercalation compound in which bismuth is inserted every other layer between graphite layers varies depending on the type of hydrocarbon compound used as a raw material. When benzene is used as the hydrocarbon compound, the heating furnace temperature is 1150
At ℃, it is effective to make benzene 0.5 to 1.0 times mol per 1 of triphenylbismuth. Also,
When the amount of triphenylbismuth introduced into the reaction tube 13 is changed, the number density of bismuth atoms generated by thermal decomposition also changes. Control is also possible. The feed rate ratio of triphenylbismuth and benzene suitable for synthesizing a graphite intercalation compound in which bismuth is inserted between every two layers of graphite is 1.0 to 2.0. It is effective to make the molar ratio 5 times. By increasing the ratio of benzene, the bismuth layer can be inserted as thin as three or four graphite layers or more. However, when the amount is less than this, excessive insertion of bismuth causes precipitation of bismuth with time.
【0066】このように得られたビスマス原子が黒鉛層
の層間に挿入された黒鉛層間化合物の積層方向(層に垂
直方向)の熱電能はα=150μVK-1であった。この
値は、従来の最高値である、5塩化アンチモン(SbC
l5 )分子そのものを挿入して得られる黒鉛層間化合物
の熱電能α=40μVK-1以上である。また、導電率
σ、熱伝導率κは夫々σ=1900Ω-1cm-1、κ=
1.1×10-2Wcm-1K -1であり、導電率と熱伝導率
の比σ/κはBi2 Te3 等の従来熱電材料の4倍以上
になった。The bismuth atom obtained in this way is a graphite layer.
Direction of the graphite intercalation compound inserted between layers
Α) = 150μVK-1Met. this
The value is the conventional highest value, antimony pentachloride (SbC
lFive) Graphite intercalation compound obtained by inserting molecule itself
Thermoelectric power α = 40μVK-1That is all. Also the conductivity
σ and thermal conductivity κ are σ = 1900Ω respectively-1cm-1, Κ =
1.1 × 10-2Wcm-1K -1And electrical and thermal conductivity
Ratio σ / κ is BiTwoTeThree4 times or more of conventional thermoelectric materials such as
Became.
【0067】尚、ビスマスが黒鉛の層間に挿入された黒
鉛層間化合物を形成するための原料となるビスマスの化
合物としては、トリフェニルビスマス以外に3塩化ビス
マス等を使用しても同様の結果が得られた。上記工程に
おいて、黒鉛原料として、プロパン等他の炭化水素化合
物を用いても同様の結果が得られた。分子量100以下
の炭化水素化合物を用いた場合、下記の加熱炉条件: ・高温側加熱炉温度900℃〜1600℃(好ましくは
1000℃〜1200℃) ・低温側加熱炉温度600℃〜900℃(好ましくは7
00℃〜900℃) では、黒鉛の層間に1層おきにビスマスの挿入された黒
鉛層間化合物を合成するのに適したトリフェニルビスマ
スと炭化水素化合物との供給速度比は、トリフェニルビ
スマス1に対して炭化水素化合物を0.5〜2.0倍モ
ルにするのが効果的である。黒鉛の層間に2層おきにビ
スマスの挿入された黒鉛層間化合物を合成するのに適し
たトリフェニルビスマスと炭化水素化合物の供給速度比
は、トリフェニルビスマス1に対して、炭化水素化合物
を2.0〜5.0倍モルにするのが効果的である。The same result can be obtained by using bismuth trichloride or the like in addition to triphenylbismuth as a raw material for forming a graphite intercalation compound in which bismuth is inserted between graphite layers. Was done. In the above process, similar results were obtained even when other hydrocarbon compounds such as propane were used as a graphite raw material. When a hydrocarbon compound having a molecular weight of 100 or less is used, the following heating furnace conditions are used:-a high-temperature heating furnace temperature of 900C to 1600C (preferably 1000C to 1200C)-a low-temperature heating furnace temperature of 600C to 900C ( Preferably 7
(00 ° C. to 900 ° C.), the feed rate ratio between triphenylbismuth and hydrocarbon compound suitable for synthesizing a graphite intercalation compound in which bismuth is inserted every other layer between graphite layers is 1 It is effective to make the amount of the hydrocarbon compound 0.5 to 2.0 times mol. The feed rate ratio of triphenylbismuth and hydrocarbon compound suitable for synthesizing a graphite intercalation compound in which bismuth is inserted every other layer between graphite layers is as follows. It is effective to make it 0-5.0 times mol.
【0068】なお、本工程においては、アルゴンガスに
代えて他の不活性ガス例えば、窒素、ヘリウム等を使用
できる。尚、上記工程において、テトラメトキシ・シラ
ン(Si(OCH3 )4 )、テトラエトキシ・シラン
(Si(OC2 H5 )4 )、シラン(SiH4 )、トリ
フェニル・シラン((C6 H5 )3 SiH)、トリフェ
ニル・クロロシラン((C 6 H5 )3 SiCl)、トリ
メチルクロロシラン((CH3 )3 SiCl)、トリメ
チル・ブロモシラン((CH3 )3 SiBr)、トリエ
チル・シラン((C 2 H5 )3 SiH)、トリエチル・
クロロシラン((C2 H5 )3 SiCl)、テトラメチ
ルシラン((CH3 )4 Si)、ジシラン(Si
2 H6 )等のシラン類を挿入種原料として用いると、シ
リコン原子を黒鉛の層間に挿入することができた。ま
た、挿入種原料として、ゲルマン(GeH4 )、等の有
機金属化合物を用いて、ゲルマニウム元素の挿入種を夫
々黒鉛の層間に挿入することができた。In this step, argon gas was used.
Use other inert gas instead, such as nitrogen, helium, etc.
it can. In the above process, tetramethoxy sila
(Si (OCHThree)Four), Tetraethoxysilane
(Si (OCTwoHFive)Four), Silane (SiHFour),bird
Phenyl silane ((C6HFive)ThreeSiH), Trife
Nyl chlorosilane ((C 6HFive)ThreeSiCl), bird
Methylchlorosilane ((CHThree)ThreeSiCl), trim
Cyl bromosilane ((CHThree)ThreeSiBr), Trier
Chill silane ((C TwoHFive)ThreeSiH), triethyl
Chlorosilane ((CTwoHFive)ThreeSiCl), tetramethyl
Lusilane ((CHThree)FourSi), disilane (Si
TwoH6) Is used as an insertion seed material,
Recon atoms could be inserted between graphite layers. Ma
In addition, germane (GeHFour), Etc.
Using a metal compound to control the insertion of the germanium element
It could be inserted between graphite layers.
【0069】尚、上記工程において、黒鉛原料として、
プロパン等他の炭化水素化合物を用いても同様の結果が
得られた。分子量100以下の炭化水素化合物を用いた
場合、下記の加熱炉条件: ・高温側加熱炉温度900℃〜1600℃(好ましくは
1000℃〜1300℃) ・低温側加熱炉温度600℃〜900℃(好ましくは8
00℃〜900℃) では、挿入種原料1に対して炭化水素化合物の供給モル
比は約0.5〜7倍モルとするのが好ましい。より好ま
しくは0.5〜4倍モルであった。In the above process, as a graphite raw material,
Similar results were obtained using other hydrocarbon compounds such as propane. When a hydrocarbon compound having a molecular weight of 100 or less is used, the following heating furnace conditions are used:-a high-temperature heating furnace temperature of 900C to 1600C (preferably 1000C to 1300C)-a low-temperature heating furnace temperature of 600C to 900C ( Preferably 8
(00 ° C. to 900 ° C.), the supply molar ratio of the hydrocarbon compound to the insertion seed material 1 is preferably about 0.5 to 7 times mol. More preferably, it was 0.5 to 4 moles.
【0070】比較例4 従来、黒鉛層間化合物を形成するために、黒鉛の層間へ
挿入種を挿入する方法として種々の方法が開発され、ま
た、これらの方法により種々の挿入種が挿入された黒鉛
層間化合物が作成されている。挿入方法としては、例え
ば、炭素材料学会刊『炭素』第111巻、第171頁
(1982年)に記されているように、1)気相反応法
(two-bulb法)、2)溶媒法、3)電気化学的方法、
4)混合法、5)加圧法等がよく知られている。また、
今まで知られている挿入種は、1)Li,Na,K,R
b,Cs等のアルカリ金属、2)Mg,Ca,Sr等の
アルカリ土類金属、3)塩素、臭素等のハロゲンガス
類、4)ICl等のハロゲン化合物、5)SbCl5 、
SbF5 ,AlCl3 ,FeCl3 ,CuCl2 等の金
属ハロゲン化物、6)硝酸、硫酸、AsF5 等の酸類、
7)アルカリ金属−水銀、水銀−ビスマス等の金属間化
合物等約300種類にも及んでいる(Advances inPhysi
cs, 30, 139(1981))。所が、本発明に係るSe,T
e,Bi,Ge,Si、又はFe,Cuの酸化物を挿入
種とした例はない。又、本発明に係るこれら挿入種を上
記従来の方法で挿入する試みを行ったが挿入することが
出来なかった。Comparative Example 4 Conventionally, various methods have been developed as a method for inserting an insertion species between graphite layers in order to form a graphite intercalation compound, and graphite having various insertion species inserted by these methods has been developed. Interlayer compounds have been created. As the insertion method, for example, as described in “Carbon”, Vol. 111, p. 171 (1982) published by the Society of Carbon Materials, Japan, 1) gas phase reaction method (two-bulb method), 2) solvent method 3) electrochemical method,
4) Mixing method, 5) Pressurization method and the like are well known. Also,
The insertion species known so far are: 1) Li, Na, K, R
b, an alkali metal such as Cs, 2) Mg, Ca, Sr alkaline earth metals such as 3) chlorine, halogen gases such as bromine, 4) a halogen compound such as ICl, 5) SbCl 5,
Metal halides such as SbF 5 , AlCl 3 , FeCl 3 , CuCl 2 , 6) nitric acid, sulfuric acid, acids such as AsF 5 ,
7) About 300 kinds of intermetallic compounds such as alkali metal-mercury and mercury-bismuth (Advances in Physiology)
cs, 30, 139 (1981)). Is the Se, T according to the present invention.
There is no example in which an oxide of e, Bi, Ge, Si, or Fe, Cu is used as an insertion species. Attempts were made to insert these insertion species according to the present invention by the above-mentioned conventional method, but they could not be inserted.
【0071】比較例5 比較例4で記した上記1)の気相反応法(two-bulb法)
において種々の触媒の発見により、黒鉛の層間に挿入さ
れ得る挿入種の数は更に増えつつある。例えば、今まで
は挿入されないと報告されていたSiCl4 等の塩化物
が塩素ガスを触媒とすることにより挿入できたという報
告や、又、フッ素は従来炭素と共有結合性し黒鉛との反
応ではフッ化黒鉛しか得られなかったものがAgF,W
F6 ,SbF5 を触媒とすると、フッ素が挿入された黒
鉛層間化合物が得られたという報告がある。上記1)の
方法を用いて、塩素ガス、AgF,WF6 ,SbF5 等
を触媒にしても、本発明に係る挿入種は挿入できなかっ
た。Comparative Example 5 The gas phase reaction method (two-bulb method) of the above 1) described in Comparative Example 4
With the discovery of various catalysts, the number of insertion species that can be inserted between layers of graphite is increasing. For example, it has been reported that chlorides such as SiCl 4, which had been reported not to be inserted, could be inserted by using chlorine gas as a catalyst, or that fluorine has conventionally been covalently bonded to carbon and has been reacted with graphite. AgF, W, where only fluorinated graphite was obtained
It has been reported that when F 6 and SbF 5 were used as a catalyst, a graphite intercalation compound into which fluorine was inserted was obtained. Even if chlorine gas, AgF, WF 6 , SbF 5, or the like was used as a catalyst using the method 1), the insertion species according to the present invention could not be inserted.
【0072】比較例6 ごく特種な例として、その後の、多くの科学者の追試・
再検討では定着した結論となるには至っていないが、以
下のような挿入種を挿入した黒鉛層間化合物の生成につ
いて報告している例もある。テトラヒドロフラン(TH
F)中で、カリウムの黒鉛層間化合物と、遷移金属塩を
反応させることにより、Ti,Mn,Fe,Co,C
u,Znの挿入された黒鉛層間化合物を得たという報告
がある(Journal of Chemical Society, Dalton Transa
ction, 12, 2026-2028(1979))。ランタノイドの金属粉
末と黒鉛の混合物の成型体を加熱して固相反応によりS
m,Eu,Tm,Yb等のランタノイド類の挿入された
黒鉛層間化合物を得たという報告もある(Carbon, 18,
203-209(1980))。またJournal of the American Chem
ical Society, 97, 3366-3373(1975))には、Fe,C
o,Ni,Mn,Cu,Moの塩化物を還元することに
より、これら遷移金属の挿入された黒鉛層間化合物を得
たと報告している。これらの方法を用いても、本発明に
係る、Se,Te,Bi,Ge,Si又はFe,Cuの
酸化物を挿入することはできなかった。Comparative Example 6 As a very specific example, many scientists
Although reconsideration has not reached a firm conclusion, there have been reports of reports on the formation of graphite intercalation compounds into which the following insertion species have been inserted. Tetrahydrofuran (TH
In F), a graphite intercalation compound of potassium is reacted with a transition metal salt to obtain Ti, Mn, Fe, Co, C
It has been reported that a graphite intercalation compound having u and Zn inserted therein was obtained (Journal of Chemical Society, Dalton Transa
ction, 12, 2026-2028 (1979)). A molded body of a mixture of lanthanoid metal powder and graphite is heated and solid
There is also a report that a graphite intercalation compound into which lanthanoids such as m, Eu, Tm, and Yb were inserted was obtained (Carbon, 18,
203-209 (1980)). Also Journal of the American Chem
ical Society, 97, 3366-3373 (1975)) includes Fe, C
It is reported that a graphite intercalation compound having these transition metals inserted therein was obtained by reducing chlorides of o, Ni, Mn, Cu, and Mo. Even with these methods, it was not possible to insert the oxide of Se, Te, Bi, Ge, Si or Fe, Cu according to the present invention.
【0073】[0073]
【発明の効果】この発明の方法によれば、結晶性が高
く、高品質な黒鉛構造炭素を従来より低い基板温度で得
ることができ、従来法では得ることができなかった新し
い黒鉛層間化合物が提供される。また、本発明の黒鉛層
間化合物は大きな熱電能を有するため高性能の熱電変換
素子の製造が可能となる。According to the method of the present invention, high-quality graphite-structured carbon having high crystallinity can be obtained at a lower substrate temperature than before, and a new graphite intercalation compound which cannot be obtained by the conventional method can be obtained. Provided. Further, the graphite intercalation compound of the present invention has a large thermoelectric power, so that a high-performance thermoelectric conversion element can be manufactured.
【図1】本発明の実施例で用いた製造装置を示す概略図
である。FIG. 1 is a schematic diagram showing a manufacturing apparatus used in an embodiment of the present invention.
【図2】本発明の実施例で用いた製造装置の詳細を示す
図である。FIG. 2 is a diagram showing details of a manufacturing apparatus used in an embodiment of the present invention.
【図3】本発明の実施例で用いた製造装置の詳細を示す
図である。FIG. 3 is a diagram showing details of a manufacturing apparatus used in an embodiment of the present invention.
【図4】熱電能測定装置の概略図である。FIG. 4 is a schematic diagram of a thermoelectric power measuring device.
【図5】実施例1の黒鉛構造炭素の面間隔と基板温度と
の関係を示す図である。FIG. 5 is a view showing the relationship between the surface spacing of graphite structure carbon and the substrate temperature in Example 1.
【図6】比較例1の黒鉛構造炭素の面間隔と基板温度と
の関係を示す図である。FIG. 6 is a graph showing the relationship between the surface spacing of graphite structure carbon of Comparative Example 1 and the substrate temperature.
1 黒鉛原料容器 2 挿入種原料容器 3 反応管 4 高温側加熱炉 5 低温側加熱炉 6 基板 7 基板保持台 8 原料移送管 9 排気管 10 ヒーター 11 黒鉛原料バブル容器 12 挿入種原料容器 13 石英反応管 14 高温側加熱炉 15 低温側加熱炉 16 堆積生成用基板 17 基板保持台 18 原料移送管 19 排気管 20 アルゴンガス制御系 21 第1バルブ 22 第2バルブ 23 希釈ライン 31 第1バブル容器 32 第2バブル容器 33 石英反応管 34 高温側加熱炉 35 低温側加熱炉 36 堆積生成用基板 37 基板保持台 38 原料移送管 39 排気管 40 アルゴンガス制御系 41 第1バルブ 42 第2バルブ 43 希釈ライン 51 試料 52 銅製高温側熱溜 53 銅製低温側熱溜 54 ヒーター 55 ヒーター 56 PID制御系 57 温度差制御用熱電対 58 熱起電力測定用μVメーター 59 温度差測定用熱電対 60 温度差測定用μVメーター 61 温度測定用熱電対 62 排気系 DESCRIPTION OF SYMBOLS 1 Graphite raw material container 2 Insert seed raw material container 3 Reaction tube 4 High-temperature side heating furnace 5 Low-temperature side heating furnace 6 Substrate 7 Substrate holding stand 8 Raw material transfer pipe 9 Exhaust pipe 10 Heater 11 Graphite raw material bubble container 12 Insert seed raw material container 13 Quartz reaction Pipe 14 High-temperature heating furnace 15 Low-temperature heating furnace 16 Deposition substrate 17 Substrate holder 18 Raw material transfer pipe 19 Exhaust pipe 20 Argon gas control system 21 First valve 22 Second valve 23 Dilution line 31 First bubble container 32 First 2 bubble container 33 Quartz reaction tube 34 High-temperature side heating furnace 35 Low-temperature side heating furnace 36 Substrate for deposition generation 37 Substrate holder 38 Raw material transfer pipe 39 Exhaust pipe 40 Argon gas control system 41 First valve 42 Second valve 43 Dilution line 51 Sample 52 Copper high-temperature heat reservoir 53 Copper low-temperature heat reservoir 54 Heater 55 Heater 56 PID control system 5 Temperature difference control thermocouple 58 thermoelectromotive force measurement μV meter 59 temperature difference thermocouples 60 Temperature difference measurement μV meter 61 temperature measuring thermocouple 62 exhaust system for measurement
フロントページの続き (51)Int.Cl.7 識別記号 FI C01B 31/04 102 C01B 31/04 102 (72)発明者 中島 重夫 大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内 (56)参考文献 特開 昭63−206472(JP,A) 特開 昭62−226808(JP,A) 特開 昭61−223179(JP,A) 特開 昭61−222183(JP,A) 特公 昭46−43607(JP,B1) 特公 昭46−43606(JP,B1) (58)調査した分野(Int.Cl.7,DB名) C01B 31/00 C01B 31/04 101 C01B 31/04 102 C23C 16/26 H01L 35/22 H01L 35/34 Continuation of the front page (51) Int.Cl. 7 Identification symbol FI C01B 31/04 102 C01B 31/04 102 (72) Inventor Shigeo Nakajima 22-22 Nagaikecho, Abeno-ku, Osaka-shi, Osaka Sharp Corporation (56) References JP-A-63-206472 (JP, A) JP-A-62-226808 (JP, A) JP-A-61-223179 (JP, A) JP-A-61-222183 (JP, A) -43607 (JP, B1) JP 46-43606 (JP, B1) (58) Fields investigated (Int. Cl. 7 , DB name) C01B 31/00 C01B 31/04 101 C01B 31/04 102 C23C 16 / 26 H01L 35/22 H01L 35/34
Claims (7)
ルマニウム(Ge)、シリコン(Si)およびこれらの
酸化物、鉄(Fe)の酸化物および銅(Cu)の酸化物
から選択される挿入種が、黒鉛構造の1層おき、または
2層おきの周期で規則的に挿入されてなることを特徴と
する黒鉛構造炭素の層間化合物。(1) tellurium (Te), bismuth (Bi),
Rumanium (Ge), silicon (Si) and their
Oxides, oxides of iron (Fe) and oxides of copper (Cu)
And wherein the intercalating species to be selected, every other layer of the graphite structure, or to become inserted regularly with a period of 2 every other layer from
Intercalation compound of the graphite structure carbon.
ルマニウム(Ge)、シリコン(Si)およびこれらの
酸化物、鉄(Fe)の酸化物および銅(Cu)の酸化物
から選択される挿入種が、黒鉛構造の1層おき、または
2層おきの周期で規則的に挿入されてなる黒鉛構造炭素
の層間化合物を含む熱電変換素子。 2. Tellurium (Te), bismuth (Bi),
Rumanium (Ge), silicon (Si) and their
Oxides, oxides of iron (Fe) and oxides of copper (Cu)
Insertion species selected from every other layer of graphite structure, or
Graphite-structured carbon that is regularly inserted every two layers
Thermoelectric conversion element containing an intercalation compound.
合物の製造方法であって、炭化水素化合物ガスの分解領
域A、基板を設けた生成物堆積領域B、および挿入種ガ
スの発生領域Cを具備した装置で、領域Bの温度を領域
Aの温度より少なくとも50℃以上低い温度に設定しな
がら、黒鉛構造炭素の層間化合物の基板への堆積を行う
ことを特徴とする黒鉛構造炭素の層間化合物の製造方
法。3. Interlayer formation of the graphite structure carbon according to claim 1.
A method of manufacturing a compound, decomposition area A of a hydrocarbon compound gas, product deposition region B having a substrate, the apparatus provided with the generating region C of and inserted species gas, the temperature of the region B while set to at least 50 ° C. than the lower have a temperature above the temperature of the area a, a manufacturing method of intercalation compound of graphite structure-carbon which is characterized in that the deposition on the substrate of the intercalation compound of graphite structure-carbon.
で、領域Bの温度が300℃〜1100℃である請求項
3の製造方法。Wherein the temperature of the realm A is 300 ° C. to 1600 ° C.
Wherein the temperature of the region B is 300 ° C. to 1100 ° C.
3. The manufacturing method of 3 .
で、領域Bの温度が350℃〜1000℃である請求項
4の製造方法。5. The temperature of the realm A is 400 ° C. to 1500 ° C.
Wherein the temperature of the region B is 350 ° C. to 1000 ° C.
4. The manufacturing method of 4 .
e)、ビスマス(Bi)、ゲルマニウム(Ge)あるい
はシリコン(Si)、またはこれらのハロゲン化物ある
いは有機化合物である請求項3の製造方法。6. Insert species gas generating material Gath Lulu (T
e), bismuth (Bi), germanium (Ge) or silicon (Si), or method of claim 3 is these halides or organic compounds.
いは銅(Cu)、またはこれらの酸化物である請求項3
の製造方法。7. generating material is iron inserts species gas (Fe) or copper (Cu), or an oxide thereof according to claim 3
Manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03070292A JP3313129B2 (en) | 1991-02-22 | 1992-02-18 | Graphite structure carbon intercalation compound, its production method and thermoelectric conversion element |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2820491 | 1991-02-22 | ||
JP3-28204 | 1991-06-28 | ||
JP3-158358 | 1991-06-28 | ||
JP15835891 | 1991-06-28 | ||
JP03070292A JP3313129B2 (en) | 1991-02-22 | 1992-02-18 | Graphite structure carbon intercalation compound, its production method and thermoelectric conversion element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0558613A JPH0558613A (en) | 1993-03-09 |
JP3313129B2 true JP3313129B2 (en) | 2002-08-12 |
Family
ID=27286113
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03070292A Expired - Fee Related JP3313129B2 (en) | 1991-02-22 | 1992-02-18 | Graphite structure carbon intercalation compound, its production method and thermoelectric conversion element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3313129B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001163603A (en) * | 1999-12-08 | 2001-06-19 | Sanyo Electric Co Ltd | Metal hydride and manufacturing method thereof |
BRPI0402338B1 (en) * | 2004-06-16 | 2015-01-06 | Universidad De La República | PROCESS FOR PREPARING MAGNETIC GRAPHIC MATERIALS AND PREPARED MATERIALS |
JP2012517284A (en) * | 2009-02-09 | 2012-08-02 | セント ジュード メディカル インコーポレイテッド | Improving biocompatibility of medical devices |
-
1992
- 1992-02-18 JP JP03070292A patent/JP3313129B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0558613A (en) | 1993-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kaner et al. | Boron-carbon-nitrogen materials of graphite-like structure | |
JP3545459B2 (en) | Method of making crystalline silicon carbide coating at low temperature | |
US4946370A (en) | Method for the production of carbon films having an oriented graphite structure | |
Bendt et al. | Single‐S ource Precursor‐B ased Deposition of Sb2 T e3 Films by MOCVD | |
Zhang et al. | Synthesis of SiC nanorods using floating catalyst | |
JPH09503822A (en) | Method for forming silicon carbide film | |
JP3313129B2 (en) | Graphite structure carbon intercalation compound, its production method and thermoelectric conversion element | |
JPH11199395A (en) | Production of silicon carbide single crystal | |
US20050255245A1 (en) | Method and apparatus for the chemical vapor deposition of materials | |
JP2779188B2 (en) | High purity doping alloy | |
EP0500359B1 (en) | Graphite structure carbon or its intercalation compound and process for preparing the same | |
JPH02225317A (en) | Production of oxide superconductor by chemical gas phase deposition method | |
US5273778A (en) | Method for producing graphite intercalation compound | |
Wang et al. | Preparation and characterization of AlN powders in the AlCl3–NH3–N2 system | |
JPH07118457B2 (en) | Metal-organic vapor phase epitaxy growth method of II-VI semiconductor materials | |
JP3465848B2 (en) | Production method of thin film using organometallic complex | |
Wang et al. | Effect of heat treatment on phase transformation of aluminum nitride ultrafine powder prepared by chemical vapor deposition | |
JPS61223186A (en) | Production of thin carbon film | |
JPS60169563A (en) | Manufacture and device for telluride metal | |
JP3231835B2 (en) | Production method of thin film using organometallic complex | |
JPS63230507A (en) | Synthesis of highly crystalline hexagonal boron nitride | |
JP2003509868A (en) | Novel method for producing cadmium mercury telluride, devices and semiconductor layers containing mercury telluride and cadmium telluride | |
EP0196011B1 (en) | Method for thermoelectric conversion | |
JPS61295372A (en) | Production of article having silicon carbide film | |
Huang et al. | Experimental Realization of Monolayer 𝜶-Tellurene |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |