JP3312061B2 - Microscope objective lens - Google Patents

Microscope objective lens

Info

Publication number
JP3312061B2
JP3312061B2 JP16002893A JP16002893A JP3312061B2 JP 3312061 B2 JP3312061 B2 JP 3312061B2 JP 16002893 A JP16002893 A JP 16002893A JP 16002893 A JP16002893 A JP 16002893A JP 3312061 B2 JP3312061 B2 JP 3312061B2
Authority
JP
Japan
Prior art keywords
lens
optical element
diffractive optical
group
quartz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16002893A
Other languages
Japanese (ja)
Other versions
JPH06347700A (en
Inventor
伸悟 鹿島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optic Co Ltd filed Critical Olympus Optic Co Ltd
Priority to JP16002893A priority Critical patent/JP3312061B2/en
Publication of JPH06347700A publication Critical patent/JPH06347700A/en
Priority to US08/704,237 priority patent/US5631779A/en
Application granted granted Critical
Publication of JP3312061B2 publication Critical patent/JP3312061B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、顕微鏡等の光学系に用
いられる対物レンズで、特に紫外光を用いた顕微鏡等の
光学系に用いられる対物レンズに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an objective lens used in an optical system such as a microscope, and more particularly to an objective lens used in an optical system such as a microscope using ultraviolet light.

【0002】[0002]

【従来の技術】従来の紫外線顕微鏡用の対物レンズは、
その波長が330nmより短くなるとレンズとして使用
し得る硝材が螢石と石英に限定されるために、これら硝
材を用いたレンズを接合した接合レンズを多用して色補
正を行なっていた。しかし2種類の硝材では色補正の能
力に乏しく狭い範囲での色補正しか出来なかった。更に
螢石は加工性が悪くまた波長が300nm以下では適当
な接合剤がなく、深紫外域では結局石英だけが適切な硝
材である。しかし石英のみで構成された対物レンズで
は、色補正が不可能であるため、光源としては、狭帯域
発振する1種類のレーザーしか用いることが出来ない。
2. Description of the Related Art A conventional objective lens for an ultraviolet microscope is:
When the wavelength is shorter than 330 nm, glass materials usable as lenses are limited to fluorite and quartz. Therefore, color correction is performed by frequently using a cemented lens in which lenses using these glass materials are cemented. However, the two types of glass materials had poor color correction ability and could only perform color correction in a narrow range. Further, fluorite has poor workability, and there is no suitable bonding agent at a wavelength of 300 nm or less, and only quartz is a suitable glass material in the deep ultraviolet region. However, since color correction cannot be performed with an objective lens made of only quartz, only one kind of laser that oscillates in a narrow band can be used as a light source.

【0003】最近光学素子として回折型光学素子(DO
E)を用いた光学系が注目されている。この回折型光学
素子を用いた対物レンズで、本発明の対物レンズと類似
する従来例として、特開平2−1109号、特開平4−
361201号および特開平4−214516号の各公
報に記載されたもの等がある。
Recently, a diffractive optical element (DO) has been used as an optical element.
An optical system using E) has attracted attention. An objective lens using the diffractive optical element, which is similar to the objective lens of the present invention, is disclosed in Japanese Patent Application Laid-Open Nos.
Japanese Patent Application Laid-Open No. 361201 and JP-A-4-214516.

【0004】又前記の回折現象を利用した回折型光学素
子即ちディフラクティブ オプティカル エレメント
[Diffractive Optical Elem
ents(DOE)]は、オプトロニクス社発行の「光
学デザイナーのための小型光学エレメント」第6,第7
章、「SPIE」 第126巻 46〜53頁(197
7年)等に詳細に記載されているが、その原理を簡単に
述べると下記の通りである。
A diffractive optical element utilizing the above-mentioned diffraction phenomenon, that is, a diffractive optical element
[Diffractive Optical Elem
ents (DOE)] is a small optical element for optical designers Nos . 6 and 7 published by Optronics.
Chapter, "SPIE" Vol. 126, pp. 46-53 (197
7 years), and the principle is briefly described as follows.

【0005】通常の光学ガラスは、図13において次の
式で表わされるスネルの法則に従って屈折する。
[0005] Ordinary optical glass is refracted according to Snell's law represented by the following equation in FIG.

【0006】 nsin θ=n’sin θ’ (1) ただし、nは入射側媒質の屈折率、n’は出射側媒質の
屈折率、θは光線の入射角、θ’は光線の射出角であ
る。
N sin θ = n ′ sin θ ′ (1) where n is the refractive index of the incident side medium, n ′ is the refractive index of the exit side medium, θ is the incident angle of the light beam, and θ ′ is the exit angle of the light beam. is there.

【0007】一方、回折現象では、図14のように光は
次の式(2)で表わされる回折の法則にしたがって曲げ
られる。
On the other hand, in the diffraction phenomenon, light is bent according to the law of diffraction represented by the following equation (2) as shown in FIG.

【0008】 nsin θ−n’sin θ’=mλ/d (2) ただしmは回折光の次数、λは波長、dは格子間隔であ
る。
N sin θ−n ′ sin θ ′ = mλ / d (2) where m is the order of the diffracted light, λ is the wavelength, and d is the lattice spacing.

【0009】上記の式(2)に従って光線を曲げるよう
にした光学素子が回折型光学素子である。尚、図14で
は遮蔽部と透過部が間隔dで並設されたものを示した
が、図15のように透明体の表面に断面鋸歯状の回折面
を設けてブレーズ化するか、図16のようにそのバイナ
リー近似を行なうと高い回折効率を得ることが出来る。
An optical element that bends a light beam according to the above equation (2) is a diffractive optical element. Although FIG. 14 shows that the shielding part and the transmitting part are arranged side by side at a distance d, as shown in FIG. 15, a transparent surface is provided with a diffraction surface having a sawtooth cross section, or is blazed. A high diffraction efficiency can be obtained by performing the binary approximation.

【0010】次に上記のような回折型光学素子を使用す
ることによる利点について説明する。
Next, advantages of using the above-described diffractive optical element will be described.

【0011】屈折系の薄肉レンズの場合、次の式(3)
に示す関係が成立つ。
In the case of a dioptric thin lens, the following equation (3) is used.
Is established.

【0012】 1/f=(n−1)(1/r1 −1/r2 ) (3) ただし、fは焦点距離、r1 ,r2 は夫々入射面と射出
面の曲率半径、nはレンズの屈折率である。
1 / f = (n−1) (1 / r 1 −1 / r 2 ) (3) where f is the focal length, r 1 and r 2 are the radii of curvature of the entrance surface and the exit surface, respectively, and n Is the refractive index of the lens.

【0013】上記式(3)の両辺を波長λにて微分する
と下記のように式(4)が求まる。
When both sides of the above equation (3) are differentiated by the wavelength λ, the following equation (4) is obtained.

【0014】 df/dλ=−f(dn/dλ)/(n−1) ∴ Δf=−f{Δn/(n−1)} (4) ここで係数倍的効果を除くと、Δn/(n−1)が分散
特性を表わすことになるので、分散値νを次のように定
義出来る。
Df / dλ = −f (dn / dλ) / (n−1) ∴Δf = −f {Δn / (n−1)} (4) Excluding the coefficient doubling effect, Δn / ( Since n-1) represents the dispersion characteristic, the dispersion value ν can be defined as follows.

【0015】 ν≡(n−1)/Δn (5) したがって可視域における分散特性(アッベ数νd )は
次のようになる。
Ν≡ (n−1) / Δn (5) Accordingly, the dispersion characteristic (Abbe number ν d ) in the visible region is as follows.

【0016】 νd =(nd −1)/(nF −nc ) (6) 一方回折型光学素子の場合は、回折型光学素子の焦点距
離をf、入射する平行光の光線高hのところでの格子間
隔をdh とすると下記の式(7)のようになる。
Ν d = ( nd −1) / (n F −n c ) (6) On the other hand, in the case of a diffractive optical element, the focal length of the diffractive optical element is f, and the ray height h of the incident parallel light is h. Assuming that the lattice spacing at the point is d h , the following equation (7) is obtained.

【0017】 f=h/(n’sin θ’)=(dh h)/(mλ) (7) 無収差の回折型光学素子の場合、dh hは一定であるの
で、f=C/λ(Cは定数)である。このf=C/λの
両辺をλで微分すると次のようにして式(8)が得られ
る。
[0017] f = h / (n'sin θ ' ) = (d h h) / (mλ) (7) If the diffractive optical element aplanatic, since d h h is constant, f = C / λ (C is a constant). When both sides of f = C / λ are differentiated by λ, Expression (8) is obtained as follows.

【0018】 df/dλ=−C/λ2 =−f/λ ∴ Δf=−f(Δλ/λ) (8) Δn/(n−1)=νであるので、式(4)と(8)と
からν=λ/Δλである。したがって、回折型光学素子
の可視域でのアッベ数νd は下記の通りである。
Df / dλ = −C / λ 2 = −f / λ∴Δf = −f (Δλ / λ) (8) Since Δn / (n−1) = ν, equations (4) and (8) ), Ν = λ / Δλ. Therefore, the Abbe number ν d of the diffractive optical element in the visible region is as follows.

【0019】 νd =λd /(λF −λC )=−3.453 (9) このように回折型光学素子は、非常に大きな負の分散特
性を持つ。通常のガラスの分散特性は、約20〜95で
あるので、回折型光学素子は非常に大きな逆分散特性を
持つことがわかる。また同様の計算により、回折型光学
素子は異常分散性を持つことがわかる。
Ν d = λ d / (λ F −λ C ) = − 3.453 (9) As described above, the diffractive optical element has a very large negative dispersion characteristic. Since the dispersion characteristic of ordinary glass is about 20 to 95, it can be seen that the diffractive optical element has a very large inverse dispersion characteristic. Further, it can be seen from the same calculation that the diffractive optical element has anomalous dispersion.

【0020】前記の従来例は、いずれも基本的にステッ
パー用レンズに関するものであり、石英のみで構成され
ている光学系で、色収差の補正等を行なったものであ
る。これらのうち特開平2−1109号公報の光学系
は、瞳位置に回折型光学素子を配置したことを特徴とし
ている。又特開平4−361201号の光学系は、回折
型光学素子の周辺部では中心部よりも高次の回折光を用
いることを特徴としている。更に特開平4−21451
6号の光学系は、光線高の高いところに回折型光学素子
を配置したことを特徴としている。これら従来例は、低
倍率の顕微鏡対物レンズには応用できる面もあるが、は
るかに高い倍率で高NAの顕微鏡対物レンズに応用する
ことは出来ない。
Each of the above-mentioned conventional examples basically relates to a lens for a stepper, and is an optical system composed only of quartz, which corrects chromatic aberration and the like. Of these, the optical system disclosed in Japanese Patent Application Laid-Open No. 2-1109 is characterized in that a diffractive optical element is arranged at a pupil position. The optical system disclosed in Japanese Patent Application Laid-Open No. 4-361201 is characterized in that diffracted light having a higher order is used in the periphery of the diffractive optical element than in the center. Further, JP-A-4-21451
The optical system of No. 6 is characterized in that a diffractive optical element is arranged at a place where the light beam height is high. These conventional examples can be applied to a low-magnification microscope objective lens, but cannot be applied to a much higher magnification and high-NA microscope objective lens.

【0021】[0021]

【発明が解決しようとする課題】本発明は、以上の点に
鑑み、高倍率、高NAに対応出来るレンズ系で、石英一
種類のみであっても回折型光学素子を用いることによっ
て効果的に諸収差特に色収差を補正した顕微鏡対物レン
ズを提供することを目的としている。
SUMMARY OF THE INVENTION In view of the above, the present invention is a lens system capable of coping with a high magnification and a high NA. Even if only one kind of quartz is used, it is effective by using a diffractive optical element. An object of the present invention is to provide a microscope objective lens in which various aberrations, particularly chromatic aberration, are corrected.

【0022】[0022]

【課題を解決するための手段】本発明の顕微鏡対物レン
ズは、物体側から順に、物体側が平面の平凸レンズ又は
物体側に凹面を向けたメニスカスレンズを含み全体とし
て正の屈折力の第1群と、少なくとも1枚の回折型光学
素子を含んだ第2群とを備え、下記の条件(1)を満足
し、且つ少なくとも1枚の回折型光学素子が条件(2)
および(3)のうちの少なくとも一方を満足することを
特徴としている。 (1) 0.5<|R|/t<5 (2) D1 /D>0.8 (3) (h×f)/(L×I)>0.07 ただしRは前記メニスカスレンズの像側の面の曲率半
径、tは前記メニスカスレンズの肉厚、D1前記回折
型光学素子の面でのマージナル光束径、Dは前記顕微鏡
対物レンズ中の最大マージナル光束径、hは前記回折型
光学素子の面での主光線高、fは前記顕微鏡対物レンズ
全系の焦点距離、Lは前記顕微鏡対物レンズの同焦距
離、Iは標本面での最大像高である。そして、上記条件
(1)および(2)を満足する構成では、物体側が平面
の平凸レンズ又は物体側に凹面を向けたメニスカスレン
ズは、最も物体側に配置されているまた、前記第1群
と前記第2群を構成する屈折型レンズは、いずれも単レ
ンズである。 また、前記第1群と前記第2群を構成する
屈折型レンズは、いずれも同一の硝材である。
A microscope objective lens according to the present invention comprises, in order from the object side, a plano-convex lens having a flat object side or a meniscus lens having a concave surface facing the object side. And a second group including at least one diffractive optical element, wherein the following condition (1) is satisfied, and at least one diffractive optical element satisfies condition (2).
And (3) are satisfied. (1) 0.5 <| R | / t <5 (2) D 1 /D>0.8 (3) (h × f) / (L × I)> 0.07 wherein, R is the meniscus lens marginal beam diameter, D is the maximum marginal light flux diameter in the microscope <br/> objective lens image side surface radius of curvature of, t is the thickness of the meniscus lens, D 1 is in terms of the diffractive optical element , h is the principal ray height at the surface of the diffractive optical element, f is the microscope objective
Focal length of the, L is parfocal distance of the microscope objective lens, I is the maximum image height on the sample surface. And the above conditions
In a configuration satisfying (1) and (2), the object side is a flat surface.
Plano-convex lens or meniscus lens with concave surface facing the object side
Is located closest to the object . In addition, the first group
And each of the refractive lenses constituting the second group is a single lens.
It is. In addition, the first group and the second group are configured.
Refractive lenses are all made of the same glass material.

【0023】高NA、高倍率の対物レンズは、物体
ら出た高NAの発散光を収斂光にするために先玉に強い
パワーの面を設ける必要がある。この強いパワーの面を
物体側に凸面を向けたレンズに用いるとその面で発生す
る諸収差が非常に大になる。そのために必然的に先玉は
物体側に平面または凹面を向けたメニスカスレンズにな
る。このメニスカスレンズの像側の面のパワーを強くし
なければならずこの面の曲率半径は非常に小さくなり、
縁肉を確保するために先玉はほぼ半球状になる。この先
玉のメニスカスレンズを規定したのが条件(1)であ
る。この条件(1)の下限の0.5を越えるとこのメニ
スカスレンズの縁肉を確保出来ず、逆に上限の5を越え
ると面のパワーが弱くなりすぎて物体からの光を効果的
に収斂光にすることが出来ない。
In a high NA, high magnification objective lens, it is necessary to provide a high power surface on the front lens in order to convert the high NA divergent light emitted from the object side into convergent light. If this high power surface is used for a lens having a convex surface facing the object side, various aberrations generated on the surface will be very large. Therefore, the front lens necessarily becomes a meniscus lens having a flat or concave surface facing the object side. The power of the image side surface of the meniscus lens must be increased, and the radius of curvature of this surface becomes very small.
The front ball is almost hemispherical to secure the rim . The condition (1) defines the meniscus lens of the first lens. If the lower limit of 0.5 of the condition (1) is exceeded, the rim of the meniscus lens cannot be secured. Conversely, if the upper limit of 5 is exceeded, the power of the surface becomes too weak and light from the object is effectively converged. I can't turn it into light.

【0024】本発明の対物レンズは、前記のメニスカス
レンズで収斂ぎみになった光線を更に第1群中の数枚の
正レンズにて収斂させて回折型光学素子を含む第2群へ
導くようにし、この第2群にて色収差等を補正するよう
にしている。
In the objective lens according to the present invention, the light beam converged by the meniscus lens is further converged by several positive lenses in the first group and guided to the second group including the diffractive optical element. The second group corrects chromatic aberration and the like.

【0025】色収差は、大きく分けて軸上色収差と倍率
の色収差の2種類あり、前者は焦点位置の波長によるず
れで、後者は焦点距離(倍率)の波長によるずれであ
る。
Chromatic aberration is roughly classified into two types, axial chromatic aberration and magnification chromatic aberration. The former is a shift of the focal position by wavelength, and the latter is a shift of the focal length (magnification) by wavelength.

【0026】これら色収差のうち、軸上色収差の補正を
行なう上で最も効果的な位置は、対物レンズにおいて
は、瞳位置であるが、正確に瞳位置である必要はなく、
この瞳の近傍で光束径(軸上マージナル光束径)の大き
な所が、軸上色収差を補正する上で効果的である。これ
を考慮して定めたのが前記条件(2)である。この条件
(2)において、下限の0.8以下になると他の屈折型
光学素子(レンズ)で発生する軸上色収差を回折型光学
素子で補正しきれなくなり、屈折型光学素子に多くの接
合レンズを用いなければならず又異常分散ガラスを必要
とし、回折型光学素子を用いたことによる効果が十分で
はなくなる。
Of these chromatic aberrations, the most effective position for correcting the axial chromatic aberration is the pupil position in the objective lens, but it is not necessary to accurately set the pupil position.
A large light beam diameter (axial marginal light beam diameter) near the pupil is effective in correcting axial chromatic aberration. The condition (2) is determined in consideration of this. Under the condition (2), if the lower limit is 0.8 or less, the axial chromatic aberration generated in another refractive optical element (lens) cannot be corrected by the diffractive optical element, and many cemented lenses are used in the refractive optical element. Must be used, and extraordinary dispersion glass is required, and the effect of using the diffractive optical element is not sufficient.

【0027】一方倍率の色収差を補正するのに最も効果
的な位置は、瞳位置ではなくそこから少し離れた主光線
がある程度の光線高を有する位置である。この倍率の色
収差を効果的に補正するための回折型光学素子の配置位
置を定めたのが条件(3)である。この条件(3)にお
いて下限の0.07を越えると倍率の色収差を十分補正
出来ず、屈折型光学素子に接合レンズを多く用いたり、
異常分散ガラスを用いる必要が生じ、回折型光学素子を
用いたことによる効果が十分得られない。
On the other hand, the most effective position for correcting the chromatic aberration of magnification is not the pupil position but the position where the principal ray slightly away from the pupil has a certain ray height. The condition (3) determines the arrangement position of the diffractive optical element for effectively correcting the chromatic aberration of this magnification. If the lower limit of 0.07 in the condition (3) is exceeded, chromatic aberration of magnification cannot be sufficiently corrected, and a large number of cemented lenses may be used for the refractive optical element,
It is necessary to use anomalous dispersion glass, and the effect of using the diffractive optical element cannot be sufficiently obtained.

【0028】以上の説明からわかるように、色収差を効
果的に補正するためには、その用途に応じた適切な位置
に回折型光学素子を配置する必要がある。
As can be seen from the above description, in order to effectively correct chromatic aberration, it is necessary to arrange a diffractive optical element at an appropriate position according to its use.

【0029】尚条件(3)においてf,L,Iはこの条
件を正規化するためのもので、f/Iは主光線角のパラ
メーター、Lは光学系全体の大きさのスケーリングのた
めのパラメーターである。
In the condition (3), f, L, and I are for normalizing this condition, f / I is a parameter for the principal ray angle, and L is a parameter for scaling the size of the entire optical system. It is.

【0030】更に回折型光学素子は、その格子間隔を任
意に設定し得ると云う製作上の特徴を有している。した
がって、回折型光学素子は、格子間隔を種々に変えるこ
とにより任意の非球面レンズと等価の作用を得ることが
でき、しかも変曲点が多数あってもよい等通常の非球面
レンズよりも設計の自由度が大であり、製作精度も良
い。その上非球面レンズでは補正出来ない色収差の補正
が可能である。又屈折率分布型レンズは、色収差の補正
が可能であるが、実際に製作可能な屈折率分布型レンズ
は限られており、又紫外線や赤外線には十分対応し得な
い。このように、回折型光学素子は、非球面レンズや屈
折率分布型レンズよりも優れた収差補正能力を有すると
共に製作上も有利である。したがって、本発明のよう
に、これを対物レンズに用いることによって、対物レン
ズの高性能化、コストの低減が可能であり、更に従来不
可能であった新しい対物レンズの設計等が可能になる。
Further, the diffractive optical element has a manufacturing feature that the grating interval can be set arbitrarily. Therefore, the diffractive optical element can obtain an effect equivalent to an arbitrary aspherical lens by changing the lattice spacing variously, and is designed more than a normal aspherical lens such that there may be many inflection points. The degree of freedom is high and the manufacturing accuracy is good. Moreover, it is possible to correct chromatic aberration that cannot be corrected by an aspheric lens. Further, the gradient index lens can correct chromatic aberration, but the refractive index gradient lens that can be actually manufactured is limited, and it cannot sufficiently cope with ultraviolet rays or infrared rays. As described above, the diffractive optical element has more excellent aberration correcting ability than the aspherical lens and the gradient index lens, and is advantageous in manufacturing. Therefore, by using this as an objective lens as in the present invention, it is possible to improve the performance of the objective lens and reduce the cost, and it is also possible to design a new objective lens which has been impossible in the past.

【0031】[0031]

【実施例】次に本発明の実施例について説明する。まず
本発明の実施例で用いる回折型光学素子について更に詳
細に述べる。後に示す実施例で用いられている回折型光
学素子(DOE)は既に述べた通りのものであるが、こ
のような回折型光学素子を含む光学系の設計法として、
ウルトラ−ハイ インデックス法(ultrahigh
Index methods)と呼ばれものが知られ
ている。これは、回折型光学素子を屈折率のきわめて大
きい仮想的なレンズ(ウルトラ−ハイインデックス レ
ンズ)に置き換えて設計する方法である。このことにつ
いては、「SPIE」 126巻46−53頁(197
7年)に記載されているが、図17を用いて簡単に説明
する。図17において1はウルトラ−ハイ インデック
ス レンズ、2は法線である。このウルトラ−ハイ イ
ンデックス レンズにおいては、次の式(11)で表わ
される関係が成立つ。
Next, an embodiment of the present invention will be described. First, the diffractive optical element used in the embodiment of the present invention will be described in more detail. The diffractive optical element (DOE) used in the embodiments described later is as described above, but as a design method of an optical system including such a diffractive optical element,
Ultra-high index method
What is known as Index methods) is known. This is a method in which a diffractive optical element is designed by replacing it with a virtual lens (ultra-high index lens) having an extremely large refractive index. Regarding this, "SPIE" Vol. 126, pp. 46-53 (197
7), but will be briefly described with reference to FIG. In FIG. 17, 1 is an ultra-high index lens, and 2 is a normal line. In this ultra-high index lens, the relationship represented by the following equation (11) is established.

【0032】 (nU −1)dz /dh=nsin θ−n’sin θ’ (10) ただし、nU はウルトラ−ハイ インデックス レンズ
の屈折率、zはウルトラ−ハイ インデックス レンズ
の光軸方向の座標、hは光軸からの距離、n,n’はそ
れぞれ入射側媒質および射出側媒質の屈折率、θ,θ’
は光線の入射角および射出角である。
(N U −1) dz / dh = nsin θ−n′sin θ ′ (10) where n U is the refractive index of the ultra-high index lens, and z is the optical axis direction of the ultra-high index lens. Coordinates, h is the distance from the optical axis, n and n 'are the refractive indices of the incident side medium and the exit side medium, and θ and θ', respectively.
Is the incident angle and the exit angle of the light beam.

【0033】式(2)および(10)から次の式(1
1)が求まる。
From equations (2) and (10), the following equation (1)
1) is obtained.

【0034】 (nU −1)dz /dh=mλ/d (11) 即ち、ウルトラ−ハイ インデックス レンズ(屈折率
が極めて大きい屈折型レンズ)の面形状と回折型光学素
子のピッチとの間には式(11)で与えらえる等価関係
が成立し、この式を通じてウルトラ−ハイ インデック
ス法で設計したデータから回折型光学素子のピッチを定
めることができるのである。
(N U −1) dz / dh = mλ / d (11) That is, between the surface shape of the ultra-high index lens (a refractive lens having an extremely large refractive index) and the pitch of the diffractive optical element. Satisfies the equivalent relation given by equation (11), and through this equation, the pitch of the diffractive optical element can be determined from the data designed by the ultra-high index method.

【0035】一般的な軸対称非球面は、下記のように表
わされる。 z=ch2 /[1+{1−c2 (k+1)h21/2 ]+Ah4 +Bh6 +Ch8 +Dh10+・・・・ (12) ただし、zは光軸(像の方向を正)、hは面とz軸との
交点を原点としz軸に直交した座標軸のうちメリジオナ
ル方向の座標軸、cは基準面の曲率、kは円錐定数で
A,B,C,D,・・・は夫々、4次,6次,8次,1
0次,・・・の非球面係数である。
A general axisymmetric aspherical surface is expressed as follows. z = ch 2 / [1+ { 1-c 2 (k + 1) h 2} 1/2] + Ah 4 + Bh 6 + Ch 8 + Dh 10 + ···· (12) However, z is a positive direction of the optical axis (image ), H is the coordinate axis in the meridional direction among the coordinate axes orthogonal to the z-axis with the intersection point of the plane and the z-axis as the origin, c is the curvature of the reference plane, and k is the conic constant A, B, C, D,. Are 4th, 6th, 8th, 1
.. Are aspheric coefficients of order 0,.

【0036】式(11),(12)よりある光線高にお
ける上記非球面と等価の回折型光学素子のピッチdは、
次の式(13)で表わされる。 d=mλ/[(n−1){ch/{1+(1−c2 (1+k)h21/2} +4 Ah3 +6Bh5 +8Ch7 +10Dh9 +・・・・}] ( 13) 尚以下の実施例では、非球面項として10次までである
が、12次,14次,・・・の非球面項を使用してもよ
い。
From formulas (11) and (12), the pitch d of the diffractive optical element equivalent to the aspheric surface at a certain ray height is:
It is represented by the following equation (13). d = mλ / [(n−1) {ch / {1+ (1-c 2 (1 + k) h 2 ) 1/2 } +4 Ah 3 + 6Bh 5 + 8Ch 7 + 10Dh 9 +... In the following embodiments, the order of the aspherical terms is up to 10th, but the 12th, 14th,... Aspherical terms may be used.

【0037】次に各実施例のデーターを示す。 実施例1 焦点距離=3.6mm ,NA=0.70,倍率=50,同焦距離=
45mm 標本面最大像高=0.20mm r0 =∞ d0 =0.8660 r1 =-1.9996 d1 =3.8538 石英 r2 =-3.0051 d2 =0.2 r3 =-18.9946 d3 =2.8804 石英 r4 =-7.3945 d4 =0.2 r5 =65.8028 d5 =2.7977 石英 r6 =-16.8378 d6 =0.2 r7 =∞ d7 =1.0 石英 r8 =∞ d8 =0 r9 =-3.2859×105(DOE1) d9 =0.2 r10=16.2471 d10=2.6929 石英 r11=3946.0273 d11=2.0025 r12=∞ d12=1.0 石英 r13=∞ d13=0 r14=0.4222×106(DOE2)d14=2.3926 r15=9.3997 d15=5.0 石英 r16=4.6739 DOE1 K=-1,A=−0.355512×10-8, B=0.255580 ×10-10 C=−0.276940×10-12 ,D=−0.492542×10-15 DOE2 K=-1,A=0.944679×10-8, B=−0.372543×10-10 C=−0.135587×10-12 ,D=0.627142 ×10-13 |R| /t=0.78 DOE1 D1 /D=1.00,(h×f)/(L×I)=0.106 DOE2 D1 /D=0.80,(h×f)/(L×I)=0.027
Next, data of each embodiment will be shown. Example 1 Focal length = 3.6 mm, NA = 0.70, magnification = 50, parfocal distance =
45 mm sample surface maximum image height = 0.20 mm r 0 = ∞ d 0 = 0.8660 r 1 = -1.9996 d 1 = 3.8538 quartz r 2 = -3.0051 d 2 = 0.2 r 3 = -18.9946 d 3 = 2.8804 quartz r 4 =- 7.3945 d 4 = 0.2 r 5 = 65.8028 d 5 = 2.7977 quartz r 6 = -16.8378 d 6 = 0.2 r 7 = ∞ d 7 = 1.0 quartz r 8 = ∞ d 8 = 0 r 9 = -3.2859 × 10 5 (DOE1 ) d 9 = 0.2 r 10 = 16.2471 d 10 = 2.6929 Quartz r 11 = 3946.0273 d 11 = 2.0025 r 12 = ∞ d 12 = 1.0 Quartz r 13 = ∞ d 13 = 0 r 14 = 0.4222 × 10 6 (DOE2) d 14 = 2.3926 r 15 = 9.3997 d 15 = 5.0 quartz r 16 = 4.6739 DOE1 K = -1, A = −0.355512 × 10 −8 , B = 0.255580 × 10 −10 C = −0.276940 × 10 −12 , D = − 0.492542 × 10 −15 DOE2 K = -1, A = 0.944679 × 10 −8 , B = −0.372543 × 10 −10 C = −0.135587 × 10 −12 , D = 0.627142 × 10 −13 | R | /t=0.78 DOE1 D 1 /D=1.00,(h×f)/(L×I)=0.106 DOE2 D 1 / D = 0.80, (h × f) / (L × I) = 0.027

【0038】実施例2 焦点距離=1.8mm ,NA=0.90,倍率=100 ,同焦距離
=45mm 標本面最大像高=0.10mm r0 =∞ d0 =0.5202 r1 =-3.5097 d1 =3.9565 石英 r2 =-3.1721 d2 =0.2 r3 =-25.5673 d3 =3.6571 石英 r4 =-7.7297 d4 =0.2 r5 =∞ d5 =1.0 石英 r6 =∞ d6 =0 r7 =1.6281×106(DOE1) d7 =0.2 r8 =15.4510 d8 =5.0 石英 r9 =-16.2334 d9 =0.2 r10=∞ d10=1.0 石英 r11=∞ d11=0 r12=-3.8924×105(DOE2) d12=0.2 r13=28.6396 d13=2.8321 石英 r14=-91.0899 d14=3.6190 r15=-6.8166 d15=2.0 石英 r16=-10.6927 d16=0.2003 r17=8.4376 d17=2.5850 石英 r18=4.9177 d18=3.5485 r19=∞ d19=1.0 石英 r20=∞ d20=0 r21=0.5853×106(DOE3) d21=0.2 r22=5.2022 d22=3.5626 石英 r23=48.6437 d23=3.9752 r24=-3.5803 d24=5.0 石英 r25=23.3843 DOE1 K=-1,A=−0.586575×10-8, B=0.105584×10-10 C=−0.114914×10-11 ,D=0.438189×10-13 DOE2 K=-1,A=0.315284 ×10-8, B=−0.139031×10-10 C=0.111483 × 10-11,D=−0.324566×10-13 DOE3 K=-1,A=−0.157706×10-8, B=−0.411489×10-9 C=0.764800 × 10-11,D=−0.118926×10-11 |R| /t=0.80 DOE1 D1 /D=0.90,(h×f)/(L×I)=0.045 DOE2 D1 /D=0.95,(h×f)/(L×I)=0.019 DOE3 D1 /D=0.52,(h×f)/(L×I)=0.086
[0038] Example 2 a focal length = 1.8 mm, NA = 0.90, magnification = 100, parfocal distance = 45 mm specimen surface maximum image height = 0.10mm r 0 = ∞ d 0 = 0.5202 r 1 = -3.5097 d 1 = 3.9565 Quartz r 2 = -3.1721 d 2 = 0.2 r 3 = -25.5673 d 3 = 3.6571 Quartz r 4 = -7.7297 d 4 = 0.2 r 5 = ∞ d 5 = 1.0 Quartz r 6 = ∞ d 6 = 0 r 7 = 1.6281 × 10 6 (DOE1) d 7 = 0.2 r 8 = 15.4510 d 8 = 5.0 quartz r 9 = -16.2334 d 9 = 0.2 r 10 = ∞ d 10 = 1.0 quartz r 11 = ∞ d 11 = 0 r 12 = -3.8924 × 10 5 (DOE2) d 12 = 0.2 r 13 = 28.6396 d 13 = 2.8321 Quartz r 14 = -91.0899 d 14 = 3.6190 r 15 = -6.8166 d 15 = 2.0 Quartz r 16 = -10.6927 d 16 = 0.2003 r 17 = 8.4376 d 17 = 2.5850 quartz r 18 = 4.9177 d 18 = 3.5485 r 19 = ∞ d 19 = 1.0 quartz r 20 = ∞ d 20 = 0 r 21 = 0.5853 × 10 6 (DOE3) d 21 = 0.2 r 22 = 5.2022 d 22 = 3.5626 quartz r 23 = 48.6437 d 23 = 3.9752 r 24 = -3.5803 d 24 = 5.0 quartz r 25 = 23.3843 DOE1 K = -1, A = -0.586575 × 10 -8 , B = 0.105584 × 10 -10 C = -0.114914 × 10 -11 , D = 0.438189 × 10 -13 DOE2 K = -1, A = 0.315284 × 10 -8, B = -0.139031 × 10 -10 C = 0.111483 × 10 -11, D = -0.324566 × 10 -13 DOE3 K = -1, A = -0.157706 × 10 - 8 , B = −0.411489 × 10 −9 C = 0.647800 × 10 −11 , D = −0.118926 × 10 −11 | R | /t=0.80 DOE1 D 1 /D=0.90, ( h × f) / (L × I) = 0.045 DOE2 D 1 /D=0.95,(h×f)/(L×I)=0.019 DOE3 D 1 /D=0.52,(h×f)/(L×I)=0.086

【0039】実施例3 焦点距離=3.6mm ,NA=0.90,倍率=100 ,同焦距離
=100mm 標本面最大像高=0.10mm r0 =∞ d0 =0.8232 r1 =-4.5891 d1 =4.2051 石英 r2 =-3.5905 d2 =0.15 r3 =-18.1769 d3 =3.4758 石英 r4 =-8.6006 d4 =0.15 r5 =-42.4203 d5 =2.8290 石英 r6 =-18.3477 d6 =0.15 r7 =∞ d7 =1.0 石英 r8 =∞ d8 =0 r9 =-4.6500×105(DOE1) d9 =2.3380 r10=18.6150 d10=6.8566 石英 r11=-70.6680 d11=0.4264 r12=-684.8949 d12=2.0 石英 r13=31.2416 d13=4.6278 r14=-9.5514 d14=2.0 石英 r15=-14.7720 d15=0.15 r16=∞ d16=1.0 石英 r17=∞ d17=0 r18=2.3143×107(DOE2) d18=0.15 r19=118.9395 d19=3.0545 石英 r20=-24.0674 d20=6.0351 r21=18.8858 d21=5.9248 石英 r22=∞ d22=0 r23=-3.6009 ×106(DOE3) d23=0.15 r24=16.4878 d24=3.3455 石英 r25=151.2259 d25=2.0635 r26=-9.6929 d26=3.2223 石英 r27=8.6410 d27=6.0496 r28=-9.5754 d28=6.2379 石英 r29=-136.3117 d29=25.9711 r30=-22.5706 d30=7.00 石英 r31=-18.2056 DOE1 K=-1,A=−0.978136×10-9, B=−0.552784×10-11 C=-0.151562×10-12 ,D=0.142616× 10-14 DOE2 K=-1,A=0.405846 ×10-9, B=0.125266 ×10-10 C=0.161396 × 10-12, D=-0.142574×10-15 DOE3 K=-1,A=0.232811 ×10-8, B=0.742643 ×10-11 C=−0.309069× 10-13, D=0.731189×10-14 |R| /t=0.85 DOE1 D1 /D=0.98,(h×f)/(L×I)=0.033 DOE2 D1 /D=0.81,(h×f)/(L×I)=0.042 DOE3 D1 /D=0.64,(h×f)/(L×I)=0.106
[0039] Example 3 a focal length = 3.6 mm, NA = 0.90, magnification = 100, parfocal distance = 100 mm sample surface the maximum image height = 0.10mm r 0 = ∞ d 0 = 0.8232 r 1 = -4.5891 d 1 = 4.2051 quartz r 2 = -3.5905 d 2 = 0.15 r 3 = -18.1769 d 3 = 3.4758 quartz r 4 = -8.6006 d 4 = 0.15 r 5 = -42.4203 d 5 = 2.8290 quartz r 6 = -18.3477 d 6 = 0.15 r 7 = ∞ d 7 = 1.0 quartz r 8 = ∞ d 8 = 0 r 9 = -4.6500 × 10 5 (DOE1) d 9 = 2.3380 r 10 = 18.6150 d 10 = 6.8566 quartz r 11 = -70.6680 d 11 = 0.4264 r 12 = -684.8949 d 12 = 2.0 quartz r 13 = 31.2416 d 13 = 4.6278 r 14 = -9.5514 d 14 = 2.0 quartz r 15 = -14.7720 d 15 = 0.15 r 16 = ∞ d 16 = 1.0 quartz r 17 = ∞ d 17 = 0 r 18 = 2.3143 × 10 7 (DOE2) d 18 = 0.15 r 19 = 118.9395 d 19 = 3.0545 quartz r 20 = -24.0674 d 20 = 6.0351 r 21 = 18.8858 d 21 = 5.9248 quartz r 22 = ∞ d 22 = 0 r 23 = -3.6009 × 10 6 (DOE3) 23 = 0.15 r 24 = 16.4878 d 24 = 3.3455 quartz r 25 = 151.2259 d 25 = 2.0635 r 26 = -9.6929 d 26 = 3.2223 quartz r 27 = 8.6410 d 27 = 6.0496 r 28 = -9.5754 d 28 = 6.2379 quartz r 29 = -136.3117 d 29 = 25.9711 r 30 = -22.5706 d 30 = 7.00 Quartz r 31 = -18.2056 DOE1 K = -1, A = -0.978136 × 10 -9 , B = -0.552784 × 10 -11 C = -0.151562 × 10 -12 , D = 0.142616 × 10 -14 DOE2 K = -1, A = 0.405846 × 10 -9 , B = 0.125266 × 10 -10 C = 0.161396 × 10 -12 , D = -0.142574 × 10 -15 DOE3 K = -1, A = 0.232811 × 10 −8 , B = 0.742643 × 10 −11 C = −0.309069 × 10 −13 , D = 0.731189 × 10 −14 | R | /t=0.85 DOE1 D 1 /D=0.98, (h × f) / (L × I) = 0.033 DOE2 D 1 /D=0.81,(h×f)/(L×I)=0.042 DOE3 D 1 /D=0.64,(h×f)/(L × I) = 0.106

【0040】実施例4 焦点距離=3.6mm ,NA=0.90,倍率=100 ,同焦距離
=100mm 標本面最大像高=0.10mm r0 =∞ d0 =0.8755 r1 =-4.8102 d1 =5.3204 石英 r2 =-4.3657 d2 =0.1573 r3 =-11.9270 d3 =3.8504 石英 r4 =-8.2848 d4 =0.15 r5 =-24.8350 d5 =3.6041 石英 r6 =-24.6366 d6 =0.15 r7 =∞ d7 =1.0 石英 r8 =∞ d8 =0 r9 =-4.8658×105(DOE) d9 =1.4144 r10=24.4149 d10=6.9009 石英 r11=-27.4833 d11=1.2232 r12=-106.5697 d12=2.0 石英 r13=27.2764 d13=6.6174 r14=-10.4558 d14=2.8083 石英 r15=-16.1963 d15=0.8542 r16=168.5767 d16=4.1096 石英 r17=-22.5842 d17=0.15 r18=17.4537 d18=4.0673 石英 r19= 344.2078 d19=0.15 r20=16.7564 d20=3.7221 石英 r21=71.3470 d21=2.7494 r22=-17.0797 d22=2.4919 石英 r23=8.7006 d23=8.1241 r24=253.5226 d24=4.9548 石英 r25=7.7408 d25=29.8340 r26=-13.6864 d26=4.102532 石英 r27=-13.1893 DOE K=-1,A=−0.136158×10-9 ,B=−0.377494×10-14 C=−0.369325× 10-14,D=0.323198×10-16 |R| /t=0.82 DOE D1 /D=0.96,(h×f)/(L×I)=0.042 ただしr0 ,r1 ,r2 ,・・・ は各面の曲率半径、d
0 ,d1 ,d2 ,・・・は各面間隔で、r0 は物体面、d0
は作動距離である。
[0040] Example 4 a focal length = 3.6 mm, NA = 0.90, magnification = 100, parfocal distance = 100 mm sample surface the maximum image height = 0.10mm r 0 = ∞ d 0 = 0.8755 r 1 = -4.8102 d 1 = 5.3204 Quartz r 2 = -4.3657 d 2 = 0.1573 r 3 = -11.9270 d 3 = 3.8504 Quartz r 4 = -8.2848 d 4 = 0.15 r 5 = -24.8350 d 5 = 3.6041 Quartz r 6 = -24.6366 d 6 = 0.15 r 7 = ∞ d 7 = 1.0 quartz r 8 = ∞ d 8 = 0 r 9 = -4.8658 × 10 5 (DOE) d 9 = 1.4144 r 10 = 24.4149 d 10 = 6.9009 quartz r 11 = -27.4833 d 11 = 1.2232 r 12 = -106.5697 d 12 = 2.0 quartz r 13 = 27.2764 d 13 = 6.6174 r 14 = -10.4558 d 14 = 2.8083 quartz r 15 = -16.1963 d 15 = 0.8542 r 16 = 168.5767 d 16 = 4.1096 quartz r 17 = -22.5842 d 17 = 0.15 r 18 = 17.4537 d 18 = 4.0673 quartz r 19 = 344.2078 d 19 = 0.15 r 20 = 16.7564 d 20 = 3.7221 quartz r 21 = 71.3470 d 21 = 2.7494 r 22 = -17.0797 d 22 = 2.4919 quartz r 2 3 = 8.7006 d 23 = 8.1241 r 24 = 253.5226 d 24 = 4.9548 quartz r 25 = 7.7408 d 25 = 29.8340 r 26 = -13.6864 d 26 = 4.102532 quartz r 27 = -13.1893 DOE K = -1 , A = -0.136158 × 10 -9, B = -0.377494 × 10 -14 C = -0.369325 × 10 -14, D = 0.323198 × 10 -16 | R | /t=0.82 DOE D 1 /D=0.96,(h×f) / ( L × I) = 0.042 where r 0 , r 1 , r 2 ,... Are the radii of curvature of the respective surfaces, d
0, d 1, d 2, ··· in the face distances, r 0 is the object surface, d 0
Is the working distance.

【0041】実施例1,2は、夫々図1,4に示す構成
で、He−Cdレーザーを用いた走査型レーザー顕微鏡
(LSM)用対物レンズであり、硝材は石英のみでλ=
441nm、325nmの2波長で色収差補正してあ
る。これらのうち実施例1は、2枚の回折型光学素子
(DOE)を用いてあり、DOE1で主として軸上・倍
率色収差を補正し、DOE2で更に軸上残存色収差を補
正している。この実施例1はr16より像側に19.71
43mmが胴付位置である。、実施例2は、3枚の回折
型光学素子を用い、DOE1,DOE2により主として
軸上色収差を補正し、DOE3により倍率色収差を補正
している。この実施例2の胴付位置は、面r25より像側
に0.3434mmである。
Embodiments 1 and 2 are objective lenses for a scanning laser microscope (LSM) using a He-Cd laser with the structure shown in FIGS. 1 and 4, respectively.
Chromatic aberration is corrected at two wavelengths of 441 nm and 325 nm. In the first embodiment, two diffractive optical elements (DOEs) are used. The DOE 1 mainly corrects longitudinal and chromatic aberration of magnification, and the DOE 2 further corrects residual axial chromatic aberration. In the first embodiment, 19.71 is located on the image side of r 16.
43 mm is the body attachment position. In Example 2, three diffractive optical elements are used, DOE1 and DOE2 mainly correct axial chromatic aberration, and DOE3 corrects lateral chromatic aberration. Cylinder with the position of this second embodiment is 0.3434mm on the image side of the surface r 25.

【0042】実施例3,4は、夫々図7,図10に示す
構成で、DUV(DEEP ULTRA VIOLE
T)レーザーを用いた走査型レーザー顕微鏡(LSM)
用対物レンズで、同様に硝材は石英のみである。実施例
3はλ=266±2nmでの色収差補正を行なってい
る。この実施例は3枚の回折型光学素子を用い、DOE
1にて軸上色収差を、DOE3にて倍率色収差を、又D
OE2にて両残存収差を補正している。更に実施例4
は、1板の回折型光学素子を用いており、これにより主
として軸上色収差を補正している。これら実施例の胴付
位置は、断面図に符号Bにて示してあり、実施例3がr
31より物体側に1.386133mm、実施例4がr27
より物体側に1.3819mmである。
Embodiments 3 and 4 have the configurations shown in FIGS. 7 and 10, respectively, and have a DUV (DEEP ULTRA VIOLET).
T) Scanning laser microscope using laser (LSM)
Similarly, the glass material is only quartz. The third embodiment performs chromatic aberration correction at λ = 266 ± 2 nm. This embodiment uses three diffractive optical elements and a DOE
1 indicates axial chromatic aberration, DOE3 indicates lateral chromatic aberration, and D
OE2 corrects both residual aberrations. Example 4
Uses a single-plate diffractive optical element, which mainly corrects axial chromatic aberration. The body-attached positions in these examples are indicated by reference symbols B in the cross-sectional views, and
31 from 1.386133mm the object side, the fourth embodiment is r 27
1.3819 mm closer to the object side.

【0043】尚実施例すべて回折型光学素子の非球面効
果により、球面収差、コマ収差等も補正している。また
u =10001で設計してある。また、各実施例の断
面図は、右側(r0側)が物体側で、各収差図は逆追跡
により物体面に結像させた時のものを示してある。
In all the embodiments, spherical aberration, coma and the like are corrected by the aspherical effect of the diffractive optical element. It is designed with n u = 10001. The sectional view of each embodiment, the right side (r 0 side) the object side, each aberration diagram is shown those when an image is formed on the object surface by tracing back.

【0044】[0044]

【発明の効果】本発明の対物レンズは、単一の硝材のみ
で高NA、高倍率であってしかも諸収差特に色収差が良
好に補正されている。
The objective lens of the present invention has a high NA and a high magnification with only a single glass material, and various aberrations, especially chromatic aberration, are corrected well.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1の断面図FIG. 1 is a sectional view of a first embodiment of the present invention.

【図2】本発明の実施例1の球面収差,非点収差,歪曲
収差曲線図
FIG. 2 is a diagram showing a spherical aberration, astigmatism, and distortion curve of Example 1 of the present invention.

【図3】本発明の実施例1のコマ収差曲線図FIG. 3 is a diagram showing a coma aberration curve according to the first embodiment of the present invention.

【図4】本発明の実施例2の断面図FIG. 4 is a sectional view of a second embodiment of the present invention.

【図5】本発明の実施例2の球面収差,非点収差,歪曲
収差曲線図
FIG. 5 is a diagram showing spherical aberration, astigmatism, and distortion curves of Example 2 of the present invention.

【図6】本発明の実施例2のコマ収差曲線図FIG. 6 is a diagram illustrating a coma aberration curve according to the second embodiment of the present invention.

【図7】本発明の実施例3の断面図FIG. 7 is a sectional view of a third embodiment of the present invention.

【図8】本発明の実施例3の球面収差,非点収差,歪曲
収差曲線図
FIG. 8 is a spherical aberration, astigmatism, and distortion curve diagram of Example 3 of the present invention.

【図9】本発明の実施例3のコマ収差曲線図FIG. 9 is a diagram showing a coma aberration curve according to Example 3 of the present invention.

【図10】本発明の実施例4の断面図FIG. 10 is a sectional view of a fourth embodiment of the present invention.

【図11】本発明の実施例4の球面収差,非点収差,歪
曲収差曲線図
FIG. 11 is a spherical aberration, astigmatism, and distortion curve diagram of Example 4 of the present invention.

【図12】本発明の実施例3のコマ収差曲線図FIG. 12 is a diagram showing a coma aberration curve according to the third embodiment of the present invention.

【図13】通常のガラスでの屈折状況を示す図FIG. 13 is a diagram showing a state of refraction in normal glass.

【図14】回折現象による光の屈折状況を示す図FIG. 14 is a diagram showing a state of refraction of light due to a diffraction phenomenon.

【図15】回折型光学素子のブレーズ化した状態での断
面図
FIG. 15 is a cross-sectional view of the diffractive optical element in a blazed state.

【図16】回折型光学素子のバイナリー近似を行なった
ものの断面図
FIG. 16 is a sectional view of a diffraction-type optical element obtained by performing binary approximation.

【図17】ウルトラ−ハイ インデックス レンズにお
ける光の屈折状況を示す図。
FIG. 17 is a diagram showing a state of refraction of light in an ultra-high index lens.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G02B 21/02 G02B 13/00 G02B 9/00 ──────────────────────────────────────────────────続 き Continued on the front page (58) Fields surveyed (Int. Cl. 7 , DB name) G02B 21/02 G02B 13/00 G02B 9/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】物体側から順に、物体側が平面の平凸レン
ズ又は物体側に凹面を向けたメニスカスレンズを最も物
体側に含み全体として正の屈折力の第1群と、少なくと
も1枚の回折型光学素子を含んだ第2群とを備え、下記
の条件(1)を満足し、且つ少なくとも1枚の回折型光
学素子が条件(2)を満足する顕微鏡対物レンズ。 (1) 0.5<|R|/t<5 (2) D1 /D>0.8 ただしRは前記メニスカスレンズの像側の面の曲率半
径、tは前記メニスカスレンズの肉厚、D1前記回折
型光学素子の面でのマージナル光束径、Dは前記顕微鏡
対物レンズ中の最大マージナル光束径である。
1. A plano-convex lens having a flat object side or a meniscus lens having a concave surface facing the object side is the most suitable object in order from the object side .
A first group which has a positive refractive power as a whole and is included on the body side, and a second group which includes at least one diffractive optical element, satisfies the following condition (1), and has at least one diffractive optical element A microscope objective lens whose optical element satisfies the condition (2) . (1) 0.5 <| R | / t <5 (2) D 1 /D>0.8 Here, R is the radius of curvature of the image side surface of the meniscus lens, t is the thickness of the meniscus lens, D 1 is marginal beam diameter in terms of the diffractive optical element, D is the maximum marginal light flux diameter in the microscope <br/> objective lens.
【請求項2】物体側から順に、物体側が平面の平凸レン
ズ又は物体側に凹面を向けたメニスカスレンズを含み全
体として正の屈折力の第1群と、少なくとも1枚の回折
型光学素子を含んだ第2群とを備え、下記の条件(1)
を満足し、且つ少なくとも1枚の回折型光学素子が条件
(3)を満足する顕微鏡対物レンズ。 (1) 0.5<|R|/t<5 (3) (h×f)/(L×I)>0.07 ただし、Rは前記メニスカスレンズの像側の面の曲率半
径、tは前記メニスカスレンズの肉厚、hは回折型光学
素子の面での主光線高、fは全系の焦点距離、Lは同焦
距離、Iは標本面での最大像高である。
2. A plano-convex lens having a flat object side in order from the object side.
Lens or a meniscus lens with a concave surface facing the object side.
A first group of positive refractive power as a body and at least one diffraction
A second group including a mold optical element, and the following condition (1):
Is satisfied, and at least one diffractive optical element is a condition.
A microscope objective lens that satisfies (3). (1) 0.5 <| R | / t <5 (3) (h × f) / (L × I)> 0.07 where R is the half curvature of the image-side surface of the meniscus lens.
Diameter, t is the thickness of the meniscus lens, h is diffractive optical
Principal ray height at element surface, f is focal length of whole system, L is confocal
The distance, I, is the maximum image height on the specimen surface.
【請求項3】前記第1群と前記第2群を構成する屈折型
レンズは、いずれも単レンズである請求項1又は2の顕
微鏡対物レンズ。
3. A refraction type lens forming the first group and the second group.
3. The microscope according to claim 1, wherein each of the lenses is a single lens.
Microscope objective lens.
【請求項4】前記第1群と前記第2群を構成する屈折型
レンズは、いずれも同一の硝材である請求項1又は2の
顕微鏡対物レンズ。
4. A refraction type lens forming the first group and the second group.
3. The lens according to claim 1, wherein the lenses are made of the same glass material.
Microscope objective.
JP16002893A 1993-05-24 1993-06-07 Microscope objective lens Expired - Fee Related JP3312061B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP16002893A JP3312061B2 (en) 1993-06-07 1993-06-07 Microscope objective lens
US08/704,237 US5631779A (en) 1993-05-24 1996-08-28 Objective lens system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16002893A JP3312061B2 (en) 1993-06-07 1993-06-07 Microscope objective lens

Publications (2)

Publication Number Publication Date
JPH06347700A JPH06347700A (en) 1994-12-22
JP3312061B2 true JP3312061B2 (en) 2002-08-05

Family

ID=15706401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16002893A Expired - Fee Related JP3312061B2 (en) 1993-05-24 1993-06-07 Microscope objective lens

Country Status (1)

Country Link
JP (1) JP3312061B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08286113A (en) * 1995-04-17 1996-11-01 Olympus Optical Co Ltd Objective lens
US6473232B2 (en) 2000-03-08 2002-10-29 Canon Kabushiki Kaisha Optical system having a diffractive optical element, and optical apparatus
JP3467018B2 (en) * 2000-03-08 2003-11-17 キヤノン株式会社 Optical system and optical equipment
JP3619145B2 (en) 2000-11-17 2005-02-09 キヤノン株式会社 Optical system and optical instrument using the same
CN101802676B (en) * 2007-09-25 2011-11-09 株式会社尼康 Objective lens

Also Published As

Publication number Publication date
JPH06347700A (en) 1994-12-22

Similar Documents

Publication Publication Date Title
US5978159A (en) Hybrid photographic objective
JP3299808B2 (en) Immersion microscope objective lens
US5748372A (en) High numerical aperture and long working distance objective system using diffraction-type optical elements
JPH11295598A (en) Zoom lens using diffraction optical element
US5631779A (en) Objective lens system
US5982544A (en) Zoom lens system having a diffractive surface
JP3312057B2 (en) Objective lens
JPH11311743A (en) Zoom lens using diffraction optical element and image pickup device using the zoom lens
JP2641514B2 (en) Single group objective lens
JPH11119096A (en) Front converter lens using diffraction surface
JP4043619B2 (en) Lighting device
JP3833754B2 (en) Electronic camera with diffractive optical element
JP3312061B2 (en) Microscope objective lens
US4701032A (en) Graded refractive index lens system
JP5206085B2 (en) Microscope objective lens
US4729645A (en) Non-spherical single lens
JP4097781B2 (en) Objective lens
JP3825817B2 (en) Objective lens
JPH09197283A (en) Objective lens
JP3242451B2 (en) Microscope objective lens
JPH1073706A (en) Diffraction type optical element having both surfaces consisting of diffraction surface
JP5434130B2 (en) Microscope objective lens
JP2011017978A (en) Eye-piece zoom optical system
JP4059644B2 (en) Observation optical system
JPH1138330A (en) Eyepiece

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020514

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080524

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110524

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees