JP3309647B2 - Gas insulated switchgear - Google Patents

Gas insulated switchgear

Info

Publication number
JP3309647B2
JP3309647B2 JP15296695A JP15296695A JP3309647B2 JP 3309647 B2 JP3309647 B2 JP 3309647B2 JP 15296695 A JP15296695 A JP 15296695A JP 15296695 A JP15296695 A JP 15296695A JP 3309647 B2 JP3309647 B2 JP 3309647B2
Authority
JP
Japan
Prior art keywords
bus
main
insulated switchgear
line
gcb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15296695A
Other languages
Japanese (ja)
Other versions
JPH099433A (en
Inventor
正範 筑紫
陽一 大下
健一 夏井
譲 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15296695A priority Critical patent/JP3309647B2/en
Priority to TW085103889A priority patent/TW293196B/zh
Priority to US08/636,266 priority patent/US5777842A/en
Priority to KR1019960013050A priority patent/KR960039516A/en
Priority to CN96104482A priority patent/CN1084534C/en
Publication of JPH099433A publication Critical patent/JPH099433A/en
Priority to CN99102389A priority patent/CN1227436A/en
Priority to CN99102390A priority patent/CN1227437A/en
Application granted granted Critical
Publication of JP3309647B2 publication Critical patent/JP3309647B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B7/00Enclosed substations, e.g. compact substations
    • H02B7/06Distribution substations, e.g. for urban network
    • H02B7/08Underground substations

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はガス絶縁開閉装置に係
り、特にガス絶縁開閉装置の構成を細長い帯状構成とす
ることにより、省スペース化と共に、狭隘な細長い用地
や地下に建設可能にしたガス絶縁開閉装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas-insulated switchgear, and more particularly to a gas-insulated switchgear having a long and narrow strip structure to save space and to be constructed on a narrow and narrow site or underground. The present invention relates to an insulated switchgear.

【0002】[0002]

【従来の技術】電力需要の増大に対応するため超高圧送
電系統が都市部に導入されつつあり、又、高度情報化社
会を維持する電力供給信頼度の向上を図るため送電系統
の多重系統化が進んでいる。これらの送電系統は変電所
により制御されるため変電所の配置数も増大し、又、大
規模なものとなる。これらの変電所は都市部の厳しい用
地事情により、建築物の地下室に配置される地下変電所
の形態をとるが、地下変電所は地上の変電所に比べてそ
の建家床面積および占有空間に著しい制限を受け、建設
費も高価になる。かつ建築物の地下室は、他の用途にも
幅広く使用できるため変電所建設の優先順位が必ずしも
高くない。一方、変電所の小型化はガス絶縁開閉装置
(GIS)の小型化により進められてきたが、最近の技術
開発は550kVガス遮断器(GCB)まで1点切り化
し、ガス絶縁母線は500kVまで3相一括化するまで
進んでおり、GISの大幅な小型化は今後難しい局面に
ある。且つ供給信頼度の向上を図るため母線の多重化等
によりGISはむしろ大型化する傾向にある。
2. Description of the Related Art Ultra-high voltage power transmission systems are being introduced into urban areas in order to cope with an increase in power demand, and multiple power transmission systems are being used in order to improve the reliability of power supply to maintain an advanced information society. Is progressing. Since these transmission systems are controlled by substations, the number of substations to be installed increases, and the transmission system becomes large-scale. These substations take the form of underground substations located in the basement of buildings due to severe site conditions in urban areas.However, underground substations have a larger floor area and occupied space than substations on the ground. Significant restrictions and high construction costs. In addition, the basement of the building is not necessarily a high priority for substation construction because it can be widely used for other purposes. On the other hand, miniaturization of substations requires gas-insulated switchgear.
(GIS) has been pursued by miniaturization, but recent technological development has been cut to one point up to a 550 kV gas circuit breaker (GCB), and gas-insulated buses have been progressing to three-phase integration up to 500 kV. The miniaturization is in a difficult phase in the future. In addition, GIS tends to be rather large due to multiplexing of buses or the like in order to improve supply reliability.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術では、変
電所の建設用地の取得が困難となり、電力需要の増大と
電力供給信頼度の向上へ対応した変電所の建設が難しく
なり大きな問題が生じる。
In the above-mentioned prior art, it is difficult to obtain a substation construction site, and it is difficult to construct a substation in order to cope with an increase in power demand and an improvement in power supply reliability. .

【0004】これは変電所、GISの構成にも問題があ
る。図22は従来の構成を示す。図23は図22の平面
図である。送電線路1は引込み母線2に接続される。引
込み母線2は線路用GCB3と接続され、線路用GCB
3は連絡母線4を介して主母線5A,5Bと接続され
る。主母線5A,5Bは変圧器用GCB6と接続され、
変圧器用GCB6は引出母線7と接続され、引出母線7
は変圧器8と接続される。2重主母線5A,5Bは母線
連絡GCB9で連絡されている。
[0004] This also has a problem in the construction of the substation and GIS. FIG. 22 shows a conventional configuration. FIG. 23 is a plan view of FIG. The transmission line 1 is connected to the service bus 2. The drop-in bus 2 is connected to the line GCB 3 and the line GCB
Reference numeral 3 is connected to main buses 5A and 5B via a communication bus 4. The main buses 5A and 5B are connected to the transformer GCB6,
The transformer GCB 6 is connected to the extraction bus 7 and the extraction bus 7
Is connected to the transformer 8. The double main buses 5A and 5B are connected by a bus connection GCB9.

【0005】この例でも明らかなように従来のGISの
構成では建設用地は正方形に近い広い用地(2点鎖線)
が必要であり、変圧器も含めれば更に図21に示す長辺
(L)と横幅(W)の広い領域が必要である。都市部では
このようなまとまった広さの用地の確保が難しく、今後
更に困難となる。ここで、用地の形状をより判り易くす
るため回線単位アスペクト比を以下のように定義してみ
る。
As is apparent from this example, in the conventional GIS configuration, the construction site is a large site close to a square (two-dot chain line).
Is necessary, and if the transformer is included, the long side shown in FIG.
(L) and a wide area (W) are required. In urban areas, it is difficult to secure land of such a large size, and it will be even more difficult in the future. Here, the line unit aspect ratio is defined as follows in order to make the shape of the site easier to understand.

【0006】飛行機の翼の特性を表すアスペクト比を参
考にして、回線単位アスペクト比を「ガス絶縁開閉装置
(GIS)の床面への投影面積を主母線と直交する最大
幅の2乗で割った値を更にガス絶縁開閉装置に入る送電
線の回線数で割ったもの」と定義する。
Referring to the aspect ratio representing the characteristics of the wing of an airplane, the line unit aspect ratio is obtained by dividing the projected area of the gas insulated switchgear (GIS) on the floor surface by the square of the maximum width orthogonal to the main bus. Divided by the number of transmission lines entering the gas-insulated switchgear ".

【0007】例えば線路1回線で投影面が長方形である
なら回線単位アスペクト比は(長辺:主母線方向の長
さ)/(横幅:主母線と直交する長さ)である。図23
ではL/Wとなる。
For example, if the projection plane is rectangular in one line, the line unit aspect ratio is (long side: length in main bus direction) / (width: length orthogonal to main bus). FIG.
L / W.

【0008】なお単に(長辺)/(横幅)で定義しなか
ったのは床面への投影図形が長方形とは限らないからで
ある。例えば1回線で投影面が主母線方向を高さとする
三角形であるなら回線単位アスペクト比は、投影された
三角形の面積を三角形の底辺の2乗で割った値であるか
ら、 (三角形の高さ)/(2×三角形の底辺) となる。なお、回線数で割ったのは、回線数が増大すれ
ば見かけ上、全体として細長くなりGIS固有の形状
を、少数回線と同一に論じられないからである。
The reason why the definition is not simply defined by (long side) / (width) is that the figure projected on the floor is not necessarily a rectangle. For example, if the projection plane is a triangle whose height is in the direction of the main bus line in one line, the line unit aspect ratio is a value obtained by dividing the area of the projected triangle by the square of the base of the triangle. ) / (2 × base of triangle). The reason for dividing by the number of lines is that if the number of lines increases, the line becomes apparently slender as a whole, and the shape unique to the GIS cannot be discussed in the same manner as the minority line.

【0009】以上のように定義した回線単位アスペクト
比を図23に示すような従来の変電所にあてはめると2
未満となる。すなわち変電所の用地として単に面積のみ
でなくその用地形状も正方形に近い広い矩形が必要とさ
れ、この点が都市部に限らず急斜面の山地等に変電所を
建設する場合の問題点であった。本発明の目的は、ガス
絶縁開閉装置の形状を建設用地の点から考えることによ
り自由度のある装置構成を図ることにある。
When the line unit aspect ratio defined as described above is applied to a conventional substation as shown in FIG.
Less than. In other words, not only the area but also the shape of the site is required to be a wide rectangle close to a square as a site for the substation, which is a problem when substations are constructed not only in urban areas but also on steep slopes. . SUMMARY OF THE INVENTION An object of the present invention is to achieve a flexible device configuration by considering the shape of a gas insulated switchgear in terms of a construction site.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明のガス絶縁開閉装置では、二本の主母線を接
続する母線連絡用遮断器と、母線と変圧器を接続する変
圧器用遮断器と、母線と送電線路を接続する線路用遮断
器とを備え、母線連絡用遮断器,変圧器用遮断器及び線
路用遮断器は主母線と並行な同一線上に配置され、かつ
母線連絡用遮断器が線路用遮断器と変圧器用遮断器の間
に配置したものである。
In order to achieve the above object, in a gas insulated switchgear of the present invention, two main buses are connected.
The breaker for connecting the bus and the transformer connecting the bus and the transformer
Circuit breakers for pressure transformers and circuit breakers connecting busbars and transmission lines
Circuit breaker, transformer circuit breaker and wire
Road circuit breakers are arranged on the same line parallel to the main bus, and
The busbar breaker is between the line breaker and the transformer breaker.
It is arranged in.

【0011】[0011]

【作用】都市部において、正方形に近い広い矩形の用地
を確保するのは今後益々困難になる。しかしながら、同
一面積でも、細長い帯状の形状であれば都市部において
も今後とも用地が確保できる点に着目し、このような形
状の用地に適するよう送電線路と遮断器を連絡する引込
み母線と、二本の主母線を備えたガス絶縁開閉装置にお
いて、二本の主母線を接続する母線連絡用遮断器,母線
と変圧器を接続する変圧器用遮断器,母線と送電線路を
接続する線路用遮断器をそれぞれ主母線と平行な同一線
上に配置し、母線連絡用遮断器を線路用遮断器と変圧器
用遮断器の間に配置することで、細長い帯状の形状の用
地に適したガス絶縁開閉装置の構成を実現することによ
り、装置を収める用地の自由度を確保したものである。
[Operation] In a city area, it will become increasingly difficult to secure a wide rectangular land close to a square. However, focusing on the fact that land can be secured in urban areas as long as it is an elongated strip shape even in the same area, it is necessary to connect the transmission line and the circuit breaker so that it is suitable for land of such a shape.
And a gas-insulated switchgear with two main buses.
Bus breaker for connecting two main buses
Circuit breaker, bus and transmission line connecting
Connect the line breakers to be connected in the same line parallel to the main bus
Placed above, the circuit breaker for busbar connection and the circuit breaker and transformer
By placing it between circuit breakers,
By realizing the configuration of gas insulated switchgear suitable for the ground
In this way, the degree of freedom of the site for storing the equipment is secured.

【0012】このような形状の用地の例としては公共道
路の地下,公共高架橋の下,河川の堤防沿い,公共隧道
(トンネル)に並行した地中等多くの帯状用地がある。
専用地下室を建設する場合においても広大な正方形に近
い矩形の部屋を建設するのに比べれば細長い隧道を建設
する方がはるかに容易である。
Examples of sites having such a shape include many belt-like sites such as underground of public roads, under public viaducts, along river embankments, and underground parallel to public tunnels.
It is much easier to build a long and narrow tunnel than to build a rectangular room close to a vast square, even when building a dedicated basement.

【0013】[0013]

【実施例】以下実施例を図面により説明する。図1は2
重主母線方式のGISの本発明の一実施例を示す。図2
は図1の平面図である。図1において主母線5A,5B
は3相一括母線であり、主母線5A,5Bの間に縦型の
GCBが一線上に配置されており、その配置は床面への
投影形状において主母線方向の長さが主母線と直交する
長さより長くなるように配置されている。GCBは線路
用GCB3,母線連絡用GCB9,変圧器用GCB6の
順に配置されており、その接続部10A,10Bは主母
線5A,5Bと並行となる方向に取付けられいる。送電
線路1は引込み母線2に接続され、引込み母線2は図2
からも明らかなように主母線5Bの上部に並行に配置さ
れており線路用GCB3の上部接続部10Aと接続され
ている。線路用GCB3と変圧器用GCB6の下部接続
部10Bと接続した連絡母線4は二つに分岐され、各々
主母線5A,5Bと接続されている。なお、連絡母線4
の分岐部4A,4Bには断路器(DS)11A,11Bが
各母線5に対応して主母線5に直交する方向に取付けら
れている。図2でも示すように引込み母線2の端部には
DS11Cが取付けられている。変圧器用GCB6の上
部接続部10Aと接続された引出母線7が引込み母線2
と同様に主母線5Bの上部に並行に配置されており変圧
器8へ接続されている。母線連絡用GCB9は上部接続
部10Aで主母線5Bと接続され下部接続部10Bで主
母線5Aと接続されている。このような構成にすること
により、図22,図23に示すようなGIS構成では実
現できなかった細長い帯状形状の用地にガス絶縁変電所
及びGISの構成することが可能となる。更に図1では
主母線が直線である場合を示したが、折線、又は部分的
に曲線形状であってもなんら問題なく、用地形状に適し
た構成が可能である。更に主母線と引込み母線が並行に
配置されているため接続のためこれらに直交する連絡母
線が必要であるが、接続の一部をGCBが分担している
ので連絡母線の長さを短くできる。更に、図1の構成で
は変圧器8をGISの端部の延長方向に配置することに
より、変圧器を含めたガス絶縁変電所を細長い帯状形状
の用地に配置できる。
Embodiments will be described below with reference to the drawings. Figure 1 shows 2
1 shows an embodiment of the present invention of a GIS of a double main bus system. FIG.
FIG. 2 is a plan view of FIG. In FIG. 1, main buses 5A and 5B
Is a three-phase collective bus, in which vertical GCBs are arranged on a line between the main buses 5A and 5B, and the arrangement thereof is such that the length in the main bus direction is orthogonal to the main bus in the shape of projection on the floor surface. It is arranged so that it may become longer than the length which does. The GCBs are arranged in the order of the line GCB3, the busbar connecting GCB9, and the transformer GCB6, and the connecting portions 10A and 10B are mounted in a direction parallel to the main buses 5A and 5B. Transmission line 1 is connected to service bus 2, and service bus 2 is
As can be seen from FIG. 2, they are arranged in parallel above the main bus 5B and are connected to the upper connecting portion 10A of the line GCB3. The connecting bus 4 connected to the lower connecting portion 10B of the line GCB 3 and the transformer GCB 6 is branched into two and connected to the main buses 5A and 5B, respectively. In addition, contact bus 4
Disconnectors (DS) 11A, 11B are attached to the branch portions 4A, 4B in a direction orthogonal to the main bus 5 corresponding to each bus 5. As shown in FIG. 2, DS11C is attached to the end of the lead-in bus 2. The lead-out bus 7 connected to the upper connection portion 10A of the transformer GCB 6 is a drop-in bus 2
Similarly to the above, they are arranged in parallel above the main bus 5B and connected to the transformer 8. The busbar connecting GCB 9 is connected to the main busbar 5B at the upper connecting portion 10A and connected to the main busbar 5A at the lower connecting portion 10B. With such a configuration, it is possible to configure the gas insulated substation and the GIS on an elongated strip-shaped site that could not be realized by the GIS configuration as shown in FIGS. Further, FIG. 1 shows a case where the main generating line is a straight line. However, a configuration suitable for the land shape is possible without any problem even if the main generating line is a broken line or a partially curved shape. Further, since the main bus and the drop-in bus are arranged in parallel, connecting buses orthogonal to these are required for connection. However, since a part of the connection is shared by the GCB, the length of the connecting bus can be shortened. Further, in the configuration shown in FIG. 1, the gas-insulated substation including the transformer can be arranged on the elongated strip-shaped land by disposing the transformer 8 in the extension direction of the end of the GIS.

【0014】この実施例の相分離型GCBでの構成では
回線単位アスペクト比は4.6 となる。相分離型GCB
では、構成機器によって変わるが一般的な構成ではほぼ
4以上である。GCBが3相一括形GCBの場合、GC
Bの主母線方向の1回線あたりの長さが短くなるので回
線単位アスペクト比は相分離型より小さくなり2以上と
なる。いずれにしても、従来のような回線単位アスペク
ト比2未満に比べると細長い帯状構成が可能となる。
In the configuration of the phase separation type GCB of this embodiment, the line unit aspect ratio is 4.6. Phase separated GCB
Then, although it depends on the constituent devices, it is almost 4 or more in a general configuration. If the GCB is a three-phase batch type GCB, the GC
Since the length per line in the main bus direction of B becomes shorter, the line unit aspect ratio becomes smaller than that of the phase separation type and becomes 2 or more. In any case, an elongated belt-like configuration is possible as compared with a conventional line unit aspect ratio of less than 2.

【0015】図3は図1の線路側GCB3での横断面図
である。図3に示した2点鎖線の仮想円で示すように図
1のGIS構成では横断面形状がGCBの高さの1.5
倍以内の管状領域内に構成機器を納めることができる。
地下,山中の隧道へ配置する場合、シールド工法により
対応できるのできわめて経済的である。なお円形断面の
隧道は地平面に対して必ずしも水平である必要はなく、
地平面に対して傾斜していてもなんら問題ない。一端が
地表面に出ており、傾斜坑として、他の一端を地中の多
目的用途の地下室と接続することにより搬入路と兼用し
た構成も可能である。
FIG. 3 is a cross-sectional view of the line side GCB 3 in FIG. As shown by the two-dot chain line virtual circle in FIG. 3, in the GIS configuration of FIG. 1, the cross-sectional shape is 1.5 times the height of the GCB.
The component can be housed within a tubular area within a factor of two.
It is very economical to place it in tunnels underground or in the mountains because it can be handled by the shield method. Note that the tunnel with a circular section does not necessarily have to be horizontal to the ground plane.
There is no problem even if it is inclined with respect to the ground plane. One end protrudes from the ground surface, and as an inclined shaft, the other end is connected to an underground multi-purpose basement room, so that it can also be used as a carry-in path.

【0016】図4は主母線5A,5BをGCBの一方の
側に縦に配置した例である。引込み母線2を主母線5の
上方に配置することにより、図1より更に横幅Wを短縮
できる。図5に線路用GCB3,図6に主母線連絡用G
CB9の引込み母線2及び主母線5への接続法を示す。
このような配置とすることによりGCBを取付け,取外
すとき、吊りあげる必要がなく横方向の移動により取付
け取外しができるので容易に作業可能となる。また主母
線5A,5Bの支持機構を共通とすることができ、2重
主母線を工場で組立て一体化した後、搬入据付け作業が
可能となるので作業時間の短縮が可能となる。
FIG. 4 shows an example in which main buses 5A and 5B are vertically arranged on one side of the GCB. By arranging the pull-in bus 2 above the main bus 5, the width W can be further reduced than in FIG. Fig. 5 shows the GCB for the track, and Fig. 6 shows the G for connecting the main bus.
The method of connecting the CB 9 to the drop-in bus 2 and the main bus 5 will be described.
With this arrangement, it is not necessary to lift the GCB when attaching and detaching the GCB, and the GCB can be attached and detached by moving in the lateral direction, so that the work can be easily performed. In addition, the support mechanism of the main buses 5A and 5B can be made common, and after assembling and integrating the double main buses at the factory, the carrying-in installation work becomes possible, so that the work time can be reduced.

【0017】図7の実施例はGCB3の断路器11(D
S)を取付けた場合の異なる構成の一例である。連絡母
線4の技管部4A,4Bを主母線の長手方向と同一方向
に伸ばしこの中にDS11を収納する。DS11の動作
方向は図7に示すGCBを含んだこの部分の断面図から
も明らかなように主母線軸方向と同一とすることにより
GISの横幅Wの横幅の増大が不要である。図1の実施
例では、主母線の大きさとGCBの大きさによってはD
S11を設置する縦方向の寸法が取れない場合もありう
る。このような場合図7の配置は効果的である。
The embodiment shown in FIG. 7 shows the disconnector 11 (D
It is an example of a different configuration when S) is attached. The technical pipe sections 4A and 4B of the connecting bus 4 are extended in the same direction as the longitudinal direction of the main bus, and the DS11 is stored therein. As is apparent from the sectional view of this part including the GCB shown in FIG. 7, the DS11 has the same operating direction as the main bus axis direction, so that the lateral width W of the GIS does not need to be increased. In the embodiment of FIG. 1, depending on the size of the main bus and the size of the GCB, D
There may be cases where the vertical dimension for installing S11 cannot be obtained. In such a case, the arrangement of FIG. 7 is effective.

【0018】図10の実施例は図9の4重主母線方式の
結線図で示す母線中央連絡GCB12の構成に関する。4
重主母線方式は、主母線を5AA,5AB,5BA,5
BBの4つに分割し、5A系統と5B系統の母線連絡用
GCB9A,9Bのみならず、5AAと5AB,5BA
と5BBを各々を中央で連絡する母線中央連絡GCB12Aと
12Bを配置する方式であり、現在最も進んだ母線保護
方式の例である。母線連絡用GCB9A,9Bは図1な
どで示した方法で、合理的に配置可能であるが、母線中
央連絡GCB12Aと12Bについては接続する両母線を同一
平面上に配置するとこの部分でGISの横幅が3倍程度
まで拡がってしまう、又連絡母線が長尺化する。そこで
図10の実施例では連絡する位置で一方の主母線5AA
を他方の主母線5ABの上部にくるように配置し、縦型
GCB12Aで両主母線を連絡した構成とする。かつ主
母線5BAと主母線5BBの連絡する位置は主母線5A
Aと主母線5ABの連絡する位置とずらす。このような
構成により、図11の平面図で示すように、この部分で
の横幅Wの増大なしで4重主母線方式GISを構成でき
る。
The embodiment of FIG. 10 relates to the configuration of the bus center connection GCB12 shown in the connection diagram of the quadruple main bus system of FIG. 4
In the double main bus method, the main bus is set to 5AA, 5AB, 5BA, 5
BB divided into 4 parts, 5A system and 5B system, as well as GCB 9A, 9B for bus connection, 5AA, 5AB, 5BA
And 5BB, which are connected at the center of each other. A bus center connection GCB 12A and 12B are arranged in this way, and this is an example of the most advanced bus protection method at present. The busbar connecting GCBs 9A and 9B can be rationally arranged by the method shown in FIG. 1 and the like. However, when the busbars to be connected are arranged on the same plane with respect to the busbar center connecting GCB12A and 12B, the width of the GIS at this part Is spread to about three times, and the connecting bus becomes longer. Therefore, in the embodiment of FIG. 10, one main bus 5AA
Are arranged above the other main bus 5AB, and the two main buses are connected by a vertical GCB 12A. The position where the main bus 5BA and the main bus 5BB are connected is the main bus 5A.
A is shifted from the position where A and the main bus 5AB communicate. With such a configuration, as shown in the plan view of FIG. 11, a quadruple main bus system GIS can be configured without increasing the width W at this portion.

【0019】図13は図12の結線図で示す二つの主母
線5A,5Bを直列の3台のGCBで接続する1−1/
2CB方式GISの実施例である。図12の結線図で点
線で示す1回線分について示したものである。両主母線
5A,5Bの間にGCB3A,3B,3Cを主母線の長
手方向に沿って配置する。引込み母線2A,2Bを主母
線5Bの上方に配置し、連絡母線4A,4Bと接続す
る。このような配置とすることにより横幅Wを最小限に
できる。且つ、連絡母線4の長さも短くできる。図14
は1−1/2CB方式GISの異なる実施例である。主
母線5A,5Bを縦に配列し、3台のGCB3A,3
B,3Cを三角形配置とし、図15の平面図に示すよう
三角形の底辺を主母線と並行にすることにより、図13
と横幅はほぼ同じで長手方向のGCBの配置の長さをほ
ぼ2/3に短縮できる。図13でGCBが相分離型であ
る場合、図13は1相分であり、1回線分では図13の
長さの3倍が必要となるので長さを短縮したい場合、図
14のような構成が適している。
FIG. 13 shows two main buses 5A and 5B shown in the connection diagram of FIG. 12 connected by three GCBs in series.
It is an embodiment of the 2CB system GIS. FIG. 13 illustrates one circuit indicated by a dotted line in the connection diagram of FIG. GCBs 3A, 3B, 3C are arranged between the main buses 5A, 5B along the longitudinal direction of the main buses. The drop-in buses 2A, 2B are arranged above the main bus 5B and connected to the connecting buses 4A, 4B. With such an arrangement, the width W can be minimized. In addition, the length of the communication bus 4 can be reduced. FIG.
Is a different embodiment of the 1-1 / 2CB system GIS. The main buses 5A and 5B are arranged vertically, and three GCBs 3A and 3
B and 3C are arranged in a triangle, and the bottom of the triangle is made parallel to the main bus as shown in the plan view of FIG.
And the width is almost the same, and the length of the arrangement of the GCBs in the longitudinal direction can be reduced to about 2/3. When the GCB is of the phase separation type in FIG. 13, FIG. 13 shows one phase, and one line requires three times the length of FIG. 13. Therefore, if it is desired to reduce the length, as shown in FIG. The configuration is suitable.

【0020】図16は本発明の地下変電所の実施例であ
る。シールド工法で穿孔された円形の断面の地下隧道内
に配置した例である。主母線5A,5Bは相分離母線と
し、円形断面の両側に縦に配置し、ケーブル22A,2
2Bからの引込み母線2は上下に配置し、GCB3を中
央に配置している。変圧器8A,8B,8Cは、各相分
離型で縦列配置することにより、同一円形断面内に収納
するようにしている。変圧器を挟んで反対側に低圧側の
GIS機器13を配列し、隧道の両端からケーブルを引
き出している。
FIG. 16 shows an embodiment of an underground substation according to the present invention. This is an example in which it is placed in an underground tunnel with a circular cross section that is perforated by the shield method. The main buses 5A and 5B are phase-separated buses, and are vertically arranged on both sides of the circular cross section.
The lead-in bus 2 from 2B is arranged up and down, and GCB3 is arranged at the center. The transformers 8A, 8B and 8C are arranged in tandem in each phase separation type so that they are housed in the same circular cross section. GIS devices 13 on the low voltage side are arranged on the opposite side of the transformer, and cables are drawn from both ends of the tunnel.

【0021】図17は4回線構成地下変電所の実施例で
ある。図16の構成でも円形断面の直径又は長さを増大
することにより多回線を収納することができるが、図1
7では2回線毎に上下又は水平に各々円形地下隧道を穿
孔し、GISを配置し主母線5を連絡母線4で連絡する
ことにより円形断面の直径又は長さを増大すること無し
に多回線の収納が可能である。この場合、二つの地下隧
道は必ずしも並行である必要はない。ケーブル22A,
22B,22C,22Dの敷設状況,用地の状況により
任意の配置が可能である。連絡母線4での連絡さえでき
るならば離れた場所での建設も可能である。
FIG. 17 shows an embodiment of a four-line underground substation. Although the configuration of FIG. 16 can accommodate multiple lines by increasing the diameter or length of the circular cross section, FIG.
In 7, a circular underground tunnel is pierced vertically or horizontally for every two lines, GIS is arranged, and the main bus 5 is connected by the connecting bus 4, thereby increasing the diameter or the length of the circular cross section without increasing the number of multi-circuits. Storage is possible. In this case, the two underground tunnels need not necessarily be parallel. Cable 22A,
Arbitrary arrangement is possible depending on the laying conditions of 22B, 22C and 22D and the condition of the site. Construction at a distant place is also possible as long as the connection can be made by the connection bus 4.

【0022】連絡母線4の位置にGCBを入れれば図9
で示した4重主母線方式となる。そしてこのような構成
では、万一、一方の地下隧道で火災などの災害が生じて
も、他の地下隧道への波及を防止できるのでより防災効
果の優れた地下変電所となる。
If GCB is inserted at the position of the connecting bus 4, FIG.
The quadruple main bus method shown in FIG. In such a configuration, even if a disaster such as a fire occurs in one of the underground tunnels, it is possible to prevent the spread to the other underground tunnels, so that the underground substation has a more excellent disaster prevention effect.

【0023】図18は高速道路や高架鉄道等の高架橋1
4の下部空間での実施例である。この実施例ではGCB
3も3相一括型であり、2重主母線5A,5Bを縦配置
している。この2重主母線5A,5Bの軸線は高架橋の
軸線と並行にし、高架橋の形状に沿った配置としてい
る。母線連絡GCB9を主母線5A,5Bの端部に配置
している。横幅の寸法に自由度があるとき(この実施例
では橋脚15のあるところとないところでGISに使用
できる横幅が異なる)このような配置も可能となる。す
なわち、建設可能な用地に応じて構成を変えることが可
能である。このような構成では送電線路のケーブル22
を高架橋14に沿って配置することができるので送電ル
ートを新たに構成する必要はない。又、ケーブル22を
ガス絶縁線路で構成しても良い。
FIG. 18 shows a viaduct 1 for an expressway or an elevated railway.
4 is an embodiment in the lower space. In this embodiment, GCB
Reference numeral 3 also denotes a three-phase collective type, in which double main buses 5A and 5B are vertically arranged. The axes of the double main buses 5A and 5B are parallel to the axis of the viaduct, and are arranged along the shape of the viaduct. The busbar connection GCB9 is arranged at the end of the main busbars 5A and 5B. When there is a degree of freedom in the dimension of the width (in this embodiment, the width that can be used for the GIS differs depending on whether the pier 15 is present or not), such an arrangement is also possible. That is, the configuration can be changed according to the site where construction is possible. In such a configuration, the transmission line cable 22
Can be arranged along the viaduct 14, and there is no need to newly configure a power transmission route. Further, the cable 22 may be constituted by a gas insulated line.

【0024】図19は橋脚15間に半円形の建家16を
構築しGISをこの中に収納した例である。図1以下で
説明してきたように本発明のGISはこのような半円形
の建家16に収納しやすい構成である。かつこのような
建家は強度が強いので橋脚15と共に高架橋の支持も行
うようにする。高架橋の支持を強化することもできるの
で地震対策ともなり、GISを外部の汚損と隔離でき
る。
FIG. 19 shows an example in which a semicircular building 16 is constructed between the piers 15 and the GIS is stored therein. As described in FIG. 1 and subsequent figures, the GIS of the present invention has such a configuration that it can be easily stored in such a semicircular building 16. In addition, since such a building has high strength, the bridge pier 15 and the viaduct are supported. The support of viaducts can also be strengthened, which can be used as an earthquake countermeasure, and can isolate GIS from external pollution.

【0025】図20は河川17の近傍での実施例であ
る。変電所では電力流通で構成機器が発熱する。特に変
圧器8での発熱が大きい。本実施例では河川17の水流
を分流し冷却流路18を造り地下変電所の外周部と接触
させ冷却させると共に、冷却流路の中に熱交換器19を
配置し、変圧器8の冷却を行う。地下に建設されるため
図19に示すように河川敷に建設することも可能であ
る。河川敷に建設する場合、地上部の冠水を考慮する必
要がある。対策として一つは海底トンネルと同様な防水
構造の採用であり、もう一つは浸水を別に設けた地下変
電所より下方に設置した排水路20に流し込みポンプ
(図示せず)で排水する。この排水路20は常時は点検
通路とし、防災型扉で地下変電所と要所で連絡してい
る。これにより、万一変電所で火災事故など発生した場
合の避難路としても使用できる。
FIG. 20 shows an embodiment in the vicinity of a river 17. At substations, component devices generate heat due to power distribution. In particular, heat generation in the transformer 8 is large. In this embodiment, the water flow of the river 17 is diverted to form a cooling flow channel 18 to be brought into contact with the outer periphery of the underground substation for cooling, and a heat exchanger 19 is arranged in the cooling flow channel to cool the transformer 8. Do. Since it is constructed underground, it can be constructed on a riverbed as shown in FIG. When constructing on a riverbed, it is necessary to consider the flooding above the ground. As a countermeasure, one is to adopt a waterproof structure similar to a submarine tunnel, and the other is to drain the water by a pump (not shown) into a drainage channel 20 installed below an underground substation provided separately. This drainage channel 20 is always an inspection passage, and communicates with the underground substation at important points with a disaster prevention type door. As a result, it can be used as an evacuation route in the event of a fire accident at a substation.

【0026】図21は異なる隧道21を並行して配置し
た例である。この隧道21は公共利用の一般隧道でも良
い。この場合、この一般隧道を利用して機器の搬出,搬
入に利用することが可能である。一般隧道が鉄道の場
合、線路を利用した搬出搬入が可能である。専用隧道の
場合、上記用途以外に、変電所の冷却用流体通路として
も使用可能である。
FIG. 21 shows an example in which different tunnels 21 are arranged in parallel. This tunnel 21 may be a general tunnel for public use. In this case, it is possible to use the general tunnel to carry out and carry out the equipment. If the general tunnel is a railway, it is possible to carry it in and out using the tracks. In the case of a dedicated tunnel, in addition to the above applications, it can be used as a cooling fluid passage for a substation.

【0027】[0027]

【発明の効果】本発明によれば、ガス絶縁開閉装置の構
成を細長い帯状に構成できるので、用地取得の困難な都
市部における変電所の立地が容易にできるようになり、
公共道路,鉄道の下部に建設可能となる。地下に建設す
る場合も大規模な地下室を建設する必要はなく隧道でよ
いので建設立地の自由度が高くなり経済的になる。又、
山間地でも急斜面に建設する場合、帯状構成とすれば、
切削する部分も最小となり環境調和の点からも好ましい
装置を提供できる。
According to the present invention, the configuration of the gas insulated switchgear can be formed in a slender belt shape, so that the location of a substation in an urban area where land acquisition is difficult can be facilitated,
Construction is possible under public roads and railways. In the case of underground construction, it is not necessary to construct a large-scale basement, and a tunnel can be used. or,
When building on steep slopes even in mountainous areas, if you adopt a belt-like configuration,
The portion to be cut is minimized, and a preferable device can be provided from the viewpoint of environmental harmony.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例のGISと変圧器の構成を示す
図。
FIG. 1 is a diagram showing a configuration of a GIS and a transformer according to an embodiment of the present invention.

【図2】図1に係る実施例の平面図。FIG. 2 is a plan view of the embodiment according to FIG. 1;

【図3】図1に係る実施例の横断面を示す図。FIG. 3 shows a cross section of the embodiment according to FIG.

【図4】本発明の異なる実施例を示し、2重主母線を縦
列配置したガス絶縁開閉装置の構成図。
FIG. 4 is a block diagram of a gas-insulated switchgear according to another embodiment of the present invention, in which double main buses are arranged in tandem.

【図5】図4の線路用GCBと母線の接続法を示した
図。
FIG. 5 is a diagram showing a connection method between the line GCB of FIG. 4 and a bus.

【図6】図4の母線連絡用GCBと母線の接続法を示し
た図。
FIG. 6 is a diagram showing a connection method between the bus bar connecting GCB of FIG. 4 and a bus bar.

【図7】本発明の異なる実施例を示し、断路器が主母線
軸方向に動作するようにしたガス絶縁開閉装置の構成
図。
FIG. 7 is a configuration diagram of a gas insulated switchgear according to a different embodiment of the present invention, in which a disconnector operates in an axial direction of a main bus.

【図8】図7に示すGISのGCBと断路器の内部構造
を示す図。
FIG. 8 is a diagram showing an internal structure of a GCB of the GIS shown in FIG. 7 and a disconnector.

【図9】4重主母線方式の母線連絡用GCBの結線関係
を示した図。
FIG. 9 is a diagram showing a connection relationship of a bus connecting GCB of a quadruple main bus method.

【図10】本発明の異なる実施例を示し、4重主母線方
式の母線連絡用GCBの構成を示す図。
FIG. 10 is a diagram showing a different embodiment of the present invention and showing a configuration of a quadruple main bus system bus connecting GCB.

【図11】図10に示した母線連絡用GCBの平面図。FIG. 11 is a plan view of the bus bar connection GCB shown in FIG. 10;

【図12】1−1/2CB方式の母線結線方式を示す
図。
FIG. 12 is a diagram showing a bus connection system of the 1-1 / 2 CB system.

【図13】本発明の異なる実施例を示し、1−1/2C
B方式に適用したときのGISの構成図。
FIG. 13 illustrates a different embodiment of the present invention,
FIG. 2 is a configuration diagram of a GIS when applied to the B system.

【図14】本発明の異なる実施例を示し、1−1/2C
B方式に適用したときのGISの別実施例の構成図。
FIG. 14 illustrates a different embodiment of the present invention,
The block diagram of another Example of GIS when applied to the B system.

【図15】図14に示すGISの平面図。FIG. 15 is a plan view of the GIS shown in FIG. 14;

【図16】本発明の異なる実施例を示し、地下隧道に本
発明に係るGISを配置したときの構成図。
FIG. 16 is a configuration diagram showing a different embodiment of the present invention, wherein a GIS according to the present invention is arranged in an underground tunnel.

【図17】本発明の異なる実施例を示し、本発明に係る
GISを多回線に対応した地下隧道に適用したときの構
成図。
FIG. 17 shows a different embodiment of the present invention, and is a configuration diagram when the GIS according to the present invention is applied to an underground tunnel compatible with multiple lines.

【図18】本発明の異なる実施例を示し、高架橋下に本
発明に係るGISを配置したときの構成図。
FIG. 18 shows a different embodiment of the present invention, and is a configuration diagram when a GIS according to the present invention is arranged under a viaduct.

【図19】本発明の異なる実施例を示し、高架橋下の建
家に本発明に係るGISを配置したときの構成図。
FIG. 19 shows a different embodiment of the present invention, and is a configuration diagram when a GIS according to the present invention is arranged in a building under a viaduct.

【図20】本発明の異なる実施例を示し、河川の水を本
発明に係る変電所の冷却に使用したときの構成図。
FIG. 20 shows a different embodiment of the present invention, and is a configuration diagram when river water is used for cooling the substation according to the present invention.

【図21】本発明の異なる実施例を示し、並行した隧道
に本発明に係る変電機器を設けたときの構成図。
FIG. 21 is a diagram showing a different embodiment of the present invention, wherein a substation equipment according to the present invention is provided in a parallel tunnel.

【図22】従来のガス絶縁変電所の配置構成図である。FIG. 22 is a diagram showing the arrangement of a conventional gas-insulated substation.

【図23】図22の平面図である。FIG. 23 is a plan view of FIG. 22;

【符号の説明】[Explanation of symbols]

1…送電線路、2…引込み母線、3…線路用GCB、4
…連絡母線、5…主母線、6…変圧器用GCB、7…引
出母線、8…変圧器、9…母線連絡用GCB、10…G
CB接続部、11…断路器、12…母線中央連絡GC
B、13…低圧側GIS、14…高架橋、15…橋脚、
16…建家、17…河川、18…冷却流路、19…熱交
換器、20…排水路、21…公共隧道、22…ケーブ
ル。
DESCRIPTION OF SYMBOLS 1 ... Transmission line, 2 ... Pull-in bus, 3 ... Track GCB, 4
... Connection bus, 5 ... Main bus, 6 ... GCB for transformer, 7 ... Extraction bus, 8 ... Transformer, 9 ... GCB for bus connection, 10 ... G
CB connection part, 11: disconnector, 12: GC connecting the center of the bus
B, 13: Low pressure side GIS, 14: Viaduct, 15: Bridge pier,
16: Building, 17: River, 18: Cooling channel, 19: Heat exchanger, 20: Drainage channel, 21: Public tunnel, 22: Cable.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 夏井 健一 茨城県日立市大みか町七丁目2番1号 株式会社 日立製作所 電力・電機開発 本部内 (72)発明者 鎌田 譲 茨城県日立市大みか町七丁目2番1号 株式会社 日立製作所 電力・電機開発 本部内 (56)参考文献 特開 昭59−194607(JP,A) 特開 平4−304104(JP,A) 特開 昭63−18908(JP,A) 特開 昭58−116006(JP,A) 特開 昭59−106808(JP,A) 実開 平3−11309(JP,U) 実開 昭57−93018(JP,U) (58)調査した分野(Int.Cl.7,DB名) H02B 13/02 H02B 7/08 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kenichi Natsui 7-2-1, Omika-cho, Hitachi City, Ibaraki Prefecture Hitachi, Ltd. Power and Electricity Development Division (72) Inventor Joe Kamata Omikamachi, Hitachi City, Ibaraki Prefecture No. 2-1 Hitachi Power Systems Co., Ltd. (56) References JP-A-59-194607 (JP, A) JP-A-4-304104 (JP, A) JP-A-63-18908 (JP) JP-A-58-116006 (JP, A) JP-A-59-106808 (JP, A) JP-A-3-11309 (JP, U) JP-A-57-93018 (JP, U) (58) Field surveyed (Int.Cl. 7 , DB name) H02B 13/02 H02B 7/08

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】複数の遮断器と、送電線路と前記遮断器を
連絡する引込み母線と、及び二本の主母線を備えたガス
絶縁開閉装置において、 前記二本の主母線を接続する母線連絡用遮断器と、 前記母線と変圧器を接続する変圧器用遮断器と、 前記母線と前記送電線路を接続する線路用遮断器とを備
え、 前記母線連絡用遮断器、前記変圧器用遮断器及び前記線
路用遮断器は前記主母線と並行な同一線上に配置され、 かつ前記母線連絡用遮断器が前記線路用遮断器と前記変
圧器用遮断器の間に配置されたことを特徴とするガス絶
縁開閉装置。
1. A gas-insulated switchgear having a plurality of circuit breakers, a drop-in bus connecting a power line and the circuit breaker, and two main buses, wherein a bus connection connecting the two main buses is provided. A circuit breaker for connecting the bus bar and a transformer, and a circuit breaker for connecting the bus and the power transmission line, the circuit breaker for bus connection, the circuit breaker for the transformer, and A gas insulated switchgear, wherein the line breaker is arranged on the same line parallel to the main bus, and the bus breaker is arranged between the line breaker and the transformer breaker. apparatus.
【請求項2】請求項1のガス絶縁開閉装置において、 前記引込み母線は前記主母線に対して並行に設置されて
いることを特徴とするガス絶縁開閉装置。
2. The gas insulated switchgear according to claim 1, wherein said lead-in bus is installed in parallel with said main bus.
【請求項3】請求項1又は請求項2のガス絶縁開閉装置
において、 前記遮断器は縦型に設置されていることを特徴とするガ
ス絶縁開閉装置。
3. The gas insulated switchgear according to claim 1, wherein the circuit breaker is installed vertically.
【請求項4】請求項1又は請求項2のガス絶縁開閉装置
において、 前記二本の主母線に囲まれた場所に前記各遮断器が設置
されていることを特徴とするガス絶縁開閉装置。
4. The gas insulated switchgear according to claim 1, wherein each of the circuit breakers is installed at a location surrounded by the two main buses.
【請求項5】請求項4のガス絶縁開閉装置において、 前記二本の主母線は一方の主母線の上方に他方の主母線
が設置されていることを特徴とするガス絶縁開閉装置。
5. The gas insulated switchgear according to claim 4, wherein the two main buses are provided with one main bus above the other main bus.
【請求項6】請求項5のガス絶縁開閉装置において、 前記主母線の上部に引込み母線が設置されていることを
特徴とするガス絶縁開閉装置。
6. The gas insulated switchgear according to claim 5, wherein a lead-in bus is provided above the main bus.
【請求項7】請求項1から請求項6のうちの一つのガス
絶縁開閉装置において、 前記一つの遮断器の両端に配置された断路器を備え、 該断路器の動作方向が前記主母線と並行であることを特
徴とするガス絶縁開閉装置。
7. The gas insulated switchgear according to claim 1, further comprising disconnectors disposed at both ends of the one circuit breaker, wherein the operating direction of the disconnector is the same as that of the main bus. Gas insulated switchgear characterized by being parallel.
JP15296695A 1995-04-26 1995-06-20 Gas insulated switchgear Expired - Fee Related JP3309647B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP15296695A JP3309647B2 (en) 1995-06-20 1995-06-20 Gas insulated switchgear
TW085103889A TW293196B (en) 1995-04-26 1996-04-02
US08/636,266 US5777842A (en) 1995-04-26 1996-04-24 Transformer station and breaker apparatus
CN96104482A CN1084534C (en) 1995-04-26 1996-04-26 Transformer station and breaker apparatus
KR1019960013050A KR960039516A (en) 1995-04-26 1996-04-26 Gas Insulated Switchgear and Gas Insulated Substation
CN99102389A CN1227436A (en) 1995-04-26 1999-02-25 Breaker apparatus
CN99102390A CN1227437A (en) 1995-04-26 1999-02-25 Breaker apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15296695A JP3309647B2 (en) 1995-06-20 1995-06-20 Gas insulated switchgear

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2001322945A Division JP2002165318A (en) 2001-10-22 2001-10-22 Gas-insulation switching device and gas-insulation substation using the device

Publications (2)

Publication Number Publication Date
JPH099433A JPH099433A (en) 1997-01-10
JP3309647B2 true JP3309647B2 (en) 2002-07-29

Family

ID=15552057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15296695A Expired - Fee Related JP3309647B2 (en) 1995-04-26 1995-06-20 Gas insulated switchgear

Country Status (1)

Country Link
JP (1) JP3309647B2 (en)

Also Published As

Publication number Publication date
JPH099433A (en) 1997-01-10

Similar Documents

Publication Publication Date Title
US5754382A (en) Gas insulated switchgear and power transmission system using the switchgear
US4200899A (en) Outdoor high-voltage switchgear
CN104821490A (en) 500 kV HGIS power distribution device arrangement structure
US5777842A (en) Transformer station and breaker apparatus
Koch et al. Second generation gas-insulated line
CN107317226A (en) A kind of transformer station's general electric arrangement structure
JP3309647B2 (en) Gas insulated switchgear
JP2002165318A (en) Gas-insulation switching device and gas-insulation substation using the device
CN210779513U (en) Power distribution device of transformer substation
Rebbapragada et al. Design modification and layout of utility substations for six phase transmission
JP3357750B2 (en) Gas insulated switchgear
JPS5816009B2 (en) gas insulated switchgear
JPS6162304A (en) Gas insulated switching device
JP3335239B2 (en) Gas insulated switchgear
JP2000050436A (en) Gas-insulated switchgear
JP3763988B2 (en) How to update switchgear
JPH08298707A (en) Gas insulated substation
JP3180520B2 (en) Gas insulated switchgear
JPH10108327A (en) Gas-insulated switch
JPH08308042A (en) Gas insulated switchgear
JP2002044814A (en) Gas-insulated switchgear
JP2001157332A (en) Gas-insulated switchgear
JPH0793774B2 (en) Gas insulated switchgear
KR19980702320A (en) Indoor Gas Insulation Substation
Koch Applications of Gas Insulated Transmission Lines (GIL)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees