JP3309303B2 - Construction method of underground diaphragm wall in frozen soil - Google Patents

Construction method of underground diaphragm wall in frozen soil

Info

Publication number
JP3309303B2
JP3309303B2 JP09777394A JP9777394A JP3309303B2 JP 3309303 B2 JP3309303 B2 JP 3309303B2 JP 09777394 A JP09777394 A JP 09777394A JP 9777394 A JP9777394 A JP 9777394A JP 3309303 B2 JP3309303 B2 JP 3309303B2
Authority
JP
Japan
Prior art keywords
ground
shell
frozen
concrete
steel box
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09777394A
Other languages
Japanese (ja)
Other versions
JPH07305341A (en
Inventor
俊雄 渡辺
廣貴 川崎
實 今井
卓郎 小田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP09777394A priority Critical patent/JP3309303B2/en
Publication of JPH07305341A publication Critical patent/JPH07305341A/en
Application granted granted Critical
Publication of JP3309303B2 publication Critical patent/JP3309303B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Bulkheads Adapted To Foundation Construction (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、山留壁、止水壁、構造
物の基礎あるいは地下構造物等を構成する地中連続壁を
凍土部を有する地盤に適用した凍土内地中連続壁の施工
方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to an underground continuous wall in a frozen ground in which a ground continuous wall constituting a mountain retaining wall, a water blocking wall, a foundation of a structure or an underground structure is applied to a ground having a frozen soil portion. Concerning the construction method.

【0002】[0002]

【従来の技術】山留壁、止水壁、構造物の基礎あるいは
地下構造物等を構成する地中連続壁には、鋼製箱型矢板
を連設してなる補強用の殻体が建て込まれた構造のもの
があり、このような構造の地中連続壁は、例えば、以下
の手順で構築されている。まず、地中連続壁の先行構築
部分を構成する先行エレメントを構築するための先行掘
削溝を、互いに略一つのエレメント長さ分を隔てた状態
に、ベントナイト泥水等の安定液を満たして内壁面の安
定を図りながら掘削機により形成する。そして、先行掘
削溝に、必要に応じて根固めを行いつつ鋼製箱型矢板を
連設して殻体を形成し、この殻体内に、トレミー管で安
定液と置換しつつコンクリートを流し込んで先行エレメ
ントを築造する。そして、間隔をあけて築造された先行
エレメント間に後行エレメントを、上記と同様の手順で
施工し、地中連続壁を構築する。
2. Description of the Related Art Reinforcing shells formed by connecting steel box-type sheet piles are built on underground continuous walls which constitute mountain retaining walls, water blocking walls, foundations of structures or underground structures. The underground continuous wall having such a structure is constructed by, for example, the following procedure. First, the preparatory excavation groove for constructing the preparatory element that constitutes the preparatory construction part of the underground continuous wall is filled with a stable liquid such as bentonite muddy water, while being separated from each other by approximately one element length. It is formed by an excavator while stabilizing steel. Then, a steel box-type sheet pile is continuously connected to the preceding excavation trench while consolidating as necessary, forming a shell, and concrete is poured into this shell while replacing the stabilizing liquid with a tremy pipe. Build the preceding element. Then, the succeeding element is constructed between the preceding elements constructed with a space therebetween in the same procedure as described above, and the underground continuous wall is constructed.

【0003】[0003]

【発明が解決しようとする課題】ところで、超軟弱地盤
等で溝壁崩壊を防止するために地盤を凍結させて地中連
続壁を施工するということが考えられているが、以下の
問題があるため、実現には至っていない。すなわち、鋼
製箱型矢板の殻体内に流し込まれたコンクリートのう
ち、凍土部から離れた内部にあるものは、コンクリート
自体が硬化時に熱を発生させることからある程度硬化す
るものの、凍土部に近接する部分では該凍土部で熱が奪
われ完全に固化する前に水分が凍る等してその品質が低
下してしまうという問題である。また、この問題は、当
然のことながら、寒冷地等における凍土部を有する地盤
に地中連続壁を施工する場合にも同様に生じるものであ
る。
By the way, in order to prevent collapse of a trench wall in an extremely soft ground or the like, it has been considered to construct a continuous underground wall by freezing the ground, but has the following problems. Therefore, it has not been realized. In other words, of the concrete poured into the shell of the steel box-type sheet pile, the one located inside the frozen soil part is hardened to some extent because the concrete itself generates heat when hardened, but is close to the frozen soil part In some parts, the heat is deprived in the frozen soil part, and before the solidification is complete, the moisture is frozen and the quality is deteriorated. This problem naturally occurs in the case where the underground continuous wall is constructed on the ground having a frozen soil portion in a cold region or the like.

【0004】したがって、本発明の目的は、凍土部を有
する地盤に適用してもコンクリートの品質を良好に維持
することができる凍土内地中連続壁の施工方法を提供す
ることである。
[0004] Accordingly, an object of the present invention is to provide a method for constructing a continuous underground wall in frozen soil which can maintain good quality of concrete even when applied to the ground having a frozen soil portion.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、凍土部を有する地盤に掘削形成された溝
内に設けられるとともに、鋼製箱型矢板で殻体を形成し
その内部にコンクリートを打設してなる凍土内地中連続
壁の施工方法であって、少なくとも地表側から凍土部の
地中側までの範囲を前記殻体より幅広にして溝を掘削形
成するとともに、該掘削形成された溝内に、前記鋼製箱
型矢板を建て込んで殻体を形成し、前記溝の殻体より幅
広に形成された部分と、前記殻体との間を断熱性を有す
る埋戻し材で埋め戻し、前記殻体内にコンクリートを打
設し硬化させることを特徴としている。
In order to achieve the above object, the present invention is provided in a trench excavated and formed in a ground having a frozen soil portion, and a shell formed by a steel box type sheet pile. A method for constructing a frozen ground underground continuous wall by casting concrete therein, wherein at least a range from the ground surface side to the underground side of the frozen ground part is wider than the shell body, and a trench is excavated and formed. In the excavated groove, the steel box-type sheet pile is erected to form a shell, and a portion having a wider width than the shell of the groove and the shell having a heat insulating property are provided between the shell and the shell. It is characterized in that it is backfilled with a returning material, concrete is poured into the shell and hardened.

【0006】[0006]

【作用】本発明によれば、少なくとも地表側から凍土部
の地中側までの範囲を殻体より幅広にして溝を掘削形成
するとともに、該掘削形成された溝内に、鋼製箱型矢板
を建て込んで殻体を形成し、溝の殻体より幅広に形成さ
れた部分と、殻体との間を断熱性を有する埋戻し材で埋
め戻し、殻体内にコンクリートを打設し硬化させること
になるため、殻体の内部に打設されたコンクリートは、
硬化時に、断熱性を有する埋戻し材によって凍土部との
間の熱の伝達が断たれることになり、よって、それ自体
の硬化時の発生熱等の熱が凍土部に奪われてしまうこと
がなくなる。
According to the present invention, a groove is excavated by forming at least the area from the ground surface side to the underground side of the frozen soil part wider than the shell body, and a steel box-type sheet pile is formed in the excavated groove. To form a shell body, and backfill the space between the part of the groove wider than the shell body and the shell body with a heat-insulating backfill material, cast concrete in the shell body, and harden it Therefore, the concrete cast inside the shell,
At the time of hardening, the heat transfer between the frozen ground and the frozen ground is interrupted by the backfill material having heat insulation properties, so that the heat such as the heat generated during the hardening itself is taken away by the frozen ground. Disappears.

【0007】[0007]

【実施例】本発明の第1実施例による凍土内地中連続壁
の施工方法について図1〜図11を参照して以下に説明
する。なお、第1実施例においては、図1に示すよう
に、地表面側から所定深さの範囲が凍結した凍土部1と
なっており、それよりさらに地中側は凍結していない未
凍土部2となっている地盤3に、溝4を掘削形成し、こ
の溝4に地中連続壁を構築する場合を例にとり説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for constructing an underground frozen ground wall according to a first embodiment of the present invention will be described below with reference to FIGS. In the first embodiment, as shown in FIG. 1, a range of a predetermined depth from the ground surface side is a frozen frozen soil portion 1, and a non-frozen soil portion that is not frozen is further underground. An example will be described in which a groove 4 is excavated and formed in the ground 3 which is 2 and an underground continuous wall is constructed in the groove 4.

【0008】まず、第1実施例において採用される鋼製
箱型矢板について説明する。鋼製箱型矢板10Aは、図
3に示すように、略長方形状をなすウェブ11と該ウェ
ブ11の両側端縁部に相互に平行をなすようそれぞれ設
けられる、長方形状をなすとともに開口部をもたない一
対のフランジ12とを具備する断面略H字状をなしてい
る。そして、フランジ12の両端縁部には、隣り合うも
の同士を連結させるための円弧状部13がフランジ12
の長手方向に沿って連続して設けられている。この円弧
状部13は、フランジ12に対し外方側が開口した断面
略円弧状をなすものである。
First, a steel box type sheet pile employed in the first embodiment will be described. As shown in FIG. 3, the steel box-shaped sheet pile 10 </ b> A has a rectangular shape and an opening formed in a substantially rectangular web 11 and both side edges of the web 11 so as to be parallel to each other. It has a substantially H-shaped cross section including a pair of flanges 12 having no flange. An arc-shaped portion 13 for connecting adjacent ones is provided on both end edges of the flange 12.
Are provided continuously along the longitudinal direction. The arc-shaped portion 13 has a substantially arc-shaped cross section in which the outer side is opened with respect to the flange 12.

【0009】そして、鋼製箱型矢板の隣り合うものの一
方は、上記形状の鋼製箱型矢板10Aとされ、他方のも
のは、すべての円弧状部13に、図4に示すように、所
定長さの略長方形状をなす主板部15と、この主板部1
5の両側端縁部に主板部15に略直交してそれぞれ設け
られる略板状の係合部16とを有する連結継手部材17
を、一方の係合部16を係合させた状態で接合させた鋼
製箱型矢板10Bが用いられる。そして、図5に示すよ
うに、例えば、連結継手部材17が接合された鋼製箱型
矢板10Bを建て込んだ後、連結継手部材17が接合さ
れていない鋼製箱型矢板10Aを、その円弧状部13の
内側に、建て込んだ状態の鋼製箱型矢板10Bの連結継
手部材17の外側の係合部16を位置させるようこれら
を嵌合させつつ建て込み、このような作業を地中連続壁
の分割構築されるエレメントの大きさに応じ適宜繰り返
して殻体18を形成する。
One of the adjacent steel box-type sheet piles is a steel box-type sheet pile 10A having the above-mentioned shape, and the other one is provided on all the arc-shaped portions 13 as shown in FIG. A main plate portion 15 having a substantially rectangular shape and a length of the main plate portion 1;
5. A coupling joint member 17 having substantially plate-shaped engaging portions 16 provided substantially at right and left sides of the main plate portion 15 on both side edge portions of the connecting joint member 17, respectively.
Is used in a state in which one of the engaging portions 16 is engaged with the steel box type sheet pile 10B. Then, as shown in FIG. 5, for example, after the steel box-shaped sheet pile 10B to which the coupling joint member 17 is joined is erected, the steel box-shaped sheet pile 10A to which the coupling joint member 17 is not joined is cut into a circle. The work is carried out underground by fitting these inside the arc-shaped portion 13 while fitting them so that the engaging portion 16 of the connecting joint member 17 of the steel box-shaped sheet pile 10B in the built-in state is positioned. The shell 18 is formed by repeating as appropriate in accordance with the size of the element to be divided and constructed of the continuous wall.

【0010】次に、上記鋼製箱型矢板10A,10Bを
用いた第1実施例の凍土内地中連続壁の施工方法につい
てその主要工程を順に説明する。なお、以下の工程は、
従来技術で述べた先行エレメントおよび後行エレメント
いずれの施工にも共通する工程である。まず、図6に示
すように、地盤3の所定の構築位置に、地表側から凍土
部1の地中側までの範囲を殻体18より幅広の幅広溝部
4aとし凍土部1の地中側から未凍土部2の所定深さま
での範囲を殻体18と略同幅の幅狭溝部4bとした異形
断面形状の溝4を、ベントナイト泥水等の安定液5を満
たして内壁面の安定を図りながら、図示せぬ掘削機で掘
削形成する。ここで、ベントナイト泥水等の安定液5
は、凍結することがないよう、不凍液が混入されたり、
循環されたり、加熱されたりしている。
Next, the main steps of the method of constructing a continuous underground wall in frozen soil according to the first embodiment using the steel box type sheet piles 10A and 10B will be described in order. The following steps are:
This step is common to both the preceding element and the following element described in the related art. First, as shown in FIG. 6, at a predetermined construction position of the ground 3, the range from the ground surface side to the underground side of the frozen soil part 1 is set to be a wide groove 4 a wider than the shell 18, and from the underground side of the frozen soil part 1. A groove 4 having an irregular cross-sectional shape in which the range of the unfrozen soil portion 2 up to a predetermined depth is a narrow groove portion 4b having substantially the same width as the shell 18 is filled with a stable liquid 5 such as bentonite muddy water to stabilize the inner wall surface. And excavation with an excavator (not shown). Here, a stable liquid 5 such as bentonite muddy water is used.
May be mixed with antifreeze to prevent freezing,
Circulated or heated.

【0011】そして、溝4の幅狭溝部4bの底部から地
表面までの距離に相当する高さに略形成された、上記鋼
製箱型矢板10A,10Bを、図7に示すように、隣り
合うもの同士を連結させて建て込んで殻体18を形成す
る。次に、図8および図9に示すように、幅広溝部4a
と殻体18とで画成される空間部に、断熱性を有する埋
戻し材20を、図示せぬトレミー管で安定液5と置換し
つつ流し込んで、この部分を埋め戻す。ここで、上記断
熱性を有する埋戻し材20としては、例えば、発泡スチ
ロールビーズを混入した混入土、通常に比してセメント
を少なく配合した貧配合モルタル、泥水モルタル、通常
に比してセメントを少なく配合した貧配合コンクリート
等を採用することになる。なお、埋戻し材20として発
泡スチロールビーズ混入土を採用する場合、発泡スチロ
ールビーズと土とを袋詰めすなわちパッケージ化したも
のを併用することも可能であり、これにより発泡スチロ
ールビーズと土との分離を防止することができる。ま
た、埋戻し材20として貧配合コンクリートを採用する
場合、人工軽量骨材を用いれば、断熱性を増すことがで
きる。これは、人工軽量骨材は表面が一旦溶けて固まる
ことによりガラス質となり水を通さず内部に空隙を有す
ることになるため、断熱性が増すのである。
As shown in FIG. 7, the steel box-type sheet piles 10A and 10B, which are substantially formed at a height corresponding to the distance from the bottom of the narrow groove 4b of the groove 4 to the ground surface, are adjacent to each other. The fittings are connected and erected to form the shell 18. Next, as shown in FIG. 8 and FIG.
A backfill material 20 having heat insulating properties is poured into the space defined by the shell and the shell 18 while substituting the stabilizing liquid 5 with a tremy tube (not shown), and this portion is backfilled. Here, as the backing material 20 having the above-mentioned heat insulating properties, for example, mixed soil mixed with styrofoam beads, poorly mixed mortar containing less cement than usual, muddy mortar, less cement than usual Poorly-mixed concrete or the like will be used. In the case where the styrene foam beads mixed soil is used as the backfill material 20, it is also possible to use a package in which the styrofoam beads and the soil are packed in a bag, that is, to package the soil, thereby preventing the styrene foam beads from being separated from the soil. be able to. In addition, when poorly mixed concrete is used as the backfill material 20, the use of artificial lightweight aggregate can increase the heat insulation. This is because the artificial lightweight aggregate becomes vitreous once the surface is melted and hardened, and becomes void due to impermeability of water, thereby increasing heat insulation.

【0012】次に、図1および図2に示すように、上記
鋼製箱型矢板10A,10Bによる殻体18内に、図示
せぬトレミー管で安定液5と置換しつつコンクリート2
1を打設する。そして、この状態で、打設されたコンク
リート21を硬化させる。このような工程で、先行エレ
メントと、該先行エレメント間を連結させる後行エレメ
ントとを施工することにより、凍土部1を有する地盤3
内に地中連続壁22が構築される。そして、例えば地中
連続壁22の一側の地盤を掘削する場合等に、必要に応
じて、不要な埋戻し材20の層は除去される。
Next, as shown in FIGS. 1 and 2, a concrete 2 is placed in a shell 18 made of the steel box-shaped sheet piles 10A and 10B while replacing the stabilizer 5 with a tremy pipe (not shown).
1 is cast. Then, in this state, the cast concrete 21 is cured. In such a process, the ground 3 having the frozen soil part 1 is constructed by constructing the preceding element and the succeeding element connecting the preceding elements.
An underground continuous wall 22 is constructed therein. Then, for example, when excavating the ground on one side of the underground continuous wall 22, an unnecessary layer of the backfill material 20 is removed as necessary.

【0013】なお、先行エレメントを構築する際には、
幅広溝部4aが殻体18の水平方向における全周に対し
て幅広となるよう溝4を掘削することになり、これによ
り、幅広溝部4aと殻体18との間の埋戻し材20の層
が平面視環状をなすことになる。そして、先行エレメン
ト間に後行エレメントを構築する際には、先行エレメン
トの側部を剥き出させ且つ幅広溝部4aが殻体18の略
壁厚方向に幅広となるように、先行エレメント構築時の
埋戻し材20の層の後行エレメント構築側の一部を含ん
で溝4を掘削すれば、その後殻体18の壁厚方向におけ
る略両側に形成される埋戻し材20の層は先行エレメン
トの壁厚方向における両側に残された埋戻し材20の層
と連続することになる。これにより、先行エレメント構
築時は勿論、後行エレメント構築時においても、埋戻し
材20の層により全方向にわたって良好な断熱性が得ら
れることになる。
In constructing the preceding element,
The groove 4 is excavated so that the wide groove portion 4a becomes wide with respect to the entire circumference of the shell 18 in the horizontal direction, whereby the layer of the backfill material 20 between the wide groove portion 4a and the shell 18 is formed. It will form an annular shape in plan view. When the succeeding element is constructed between the preceding elements, the side elements of the preceding element are exposed, and the wide groove 4a is widened in the direction of the wall thickness of the shell 18 so that the width of the wide element 4a is increased. When the trench 4 is excavated including a part of the layer of the backfill material 20 on the side of the following element construction side, the layer of the backfill material 20 formed on both sides in the wall thickness direction of the shell 18 thereafter becomes the layer of the preceding element. It will be continuous with the layer of the backfill material 20 left on both sides in the wall thickness direction. As a result, a good heat insulating property can be obtained in all directions by the layer of the backfill material 20 not only when constructing the preceding element but also when constructing the succeeding element.

【0014】以上に述べたように、第1実施例によれ
ば、地表側から凍土部1の地中側までの範囲を殻体18
より幅広の幅広溝部4aにして溝4を掘削形成するとと
もに、該掘削形成された溝4内に、鋼製箱型矢板10
A,10Bを建て込んで殻体18を形成し、溝4の幅広
溝部4aと殻体18との間を断熱性を有する埋戻し材2
0で埋め戻し、殻体18内にコンクリート21を打設し
該コンクリート21を硬化させることになるため、殻体
18の内部に打設されたコンクリート21は、硬化時
に、断熱性を有する埋戻し材20によって凍土部1との
間の熱の伝達が断たれることになり、よって、それ自体
の硬化時の発生熱等の熱が凍土部1に奪われてしまうこ
とがなくなる。したがって、凍土部1を有する地盤3に
適用しても、鋼製箱型矢板10A,10Bによる殻体1
8内に流し込まれたコンクリート21は、凍土部1に近
接する部分は勿論、いずれの部分も固化前に水分が凍っ
てしまうことがないため、該コンクリート21の品質が
良好に維持されることになる。また、これにより、超軟
弱地盤等で溝壁崩壊を防止するために地盤を凍結させて
地中連続壁を施工することが実現できる。しかも、殻体
18内へのコンクリート21の打設時に、殻体18は埋
戻し材20で保持されているため安定することになる。
よって、例えば、高さが高い地中連続壁の施工に好適で
ある等、種々のメリットがある。なお、幅広溝部4aの
幅は、埋戻し材20の層が、コンクリート21と凍土部
1との間で十分な断熱効果を発揮するように設定され
る。
As described above, according to the first embodiment, the range from the ground surface side to the underground side of the frozen ground 1 is the shell 18.
The groove 4 is excavated and formed into a wider groove 4a, and a steel box-type sheet pile 10 is formed in the excavated groove 4.
A and 10B are erected to form a shell 18, and a back-insulating material 2 having a heat insulating property is provided between the wide groove 4a of the groove 4 and the shell 18.
0, the concrete 21 is cast into the shell 18 and the concrete 21 is hardened. Therefore, the concrete 21 cast into the shell 18 has a heat-insulating backfill when hardened. The transmission of heat to and from the frozen soil part 1 is cut off by the material 20, so that heat such as heat generated during the hardening of the frozen soil part 1 itself is not lost to the frozen soil part 1. Therefore, even when applied to the ground 3 having the frozen soil part 1, the shell 1 made of the steel box-type sheet piles 10A and 10B can be used.
The concrete 21 poured into the inside 8 does not freeze the moisture before solidification, not to mention the part close to the frozen soil part 1, so that the quality of the concrete 21 is maintained well. Become. This also makes it possible to realize the construction of an underground continuous wall by freezing the ground in order to prevent the collapse of the groove wall in an extremely soft ground or the like. Moreover, when the concrete 21 is poured into the shell 18, the shell 18 is stabilized by the backfilling material 20.
Therefore, for example, there are various merits such as being suitable for construction of a tall underground continuous wall. The width of the wide groove 4a is set such that the layer of the backfill material 20 exhibits a sufficient heat insulating effect between the concrete 21 and the frozen soil part 1.

【0015】ここで、一般に、地盤3は、上記したよう
に、凍土部1が地表面側にあり未凍土部2がこれより下
方にあるため、鋼製箱型矢板10A,10Bの、少なく
とも凍土部1にある上側部分は、埋戻し材20の内部へ
の流入を防止するため上記した長手方向に連続する連結
継手部材17を用いて連結することになる。また、未凍
土部2に位置する所定範囲において、例えば、図10に
示すように、複数の短い連結継手部材17を、隣り合う
もの同士でスリットを形成するように所定ピッチで接合
させた構造を採用し前記スリットからコンクリートを外
側に回させることにより、埋戻しに先行して根固めを行
うことも可能である。この場合、キャンバスシート等を
貼った状態で根固めコンクリートを打設すれば、該根固
めコンクリートの圧力で該キャンバスシートが地盤側に
密着し、これにより該キャンバスシートでコンクリート
の地盤側への漏れを防ぐとともに地盤にコンクリートを
密着させることができる。また、根固めコンクリート
は、例えば、後工程での埋戻し材20の殻体18内への
流入を防止する場合、前記スリットを含む殻体18の底
側部分の開口を閉塞させる位置まで打設すればよい。勿
論未凍土部2の全範囲に根固めコンクリートを打設する
ことも可能である。
In general, the ground 3 has at least the frozen soil portion of the steel box-type sheet piles 10A and 10B because the frozen soil portion 1 is on the ground surface side and the unfrozen soil portion 2 is below the ground portion, as described above. The upper part of the part 1 is connected by using the above-described connecting joint member 17 that is continuous in the longitudinal direction in order to prevent the backfill material 20 from flowing into the inside. Further, in a predetermined range located in the unfrozen soil portion 2, for example, as shown in FIG. 10, a structure in which a plurality of short connecting joint members 17 are joined at a predetermined pitch so as to form a slit between adjacent members. By adopting and turning the concrete outward from the slit, it is also possible to carry out consolidation prior to backfilling. In this case, if the compacted concrete is poured with the canvas sheet or the like stuck, the canvas sheet adheres to the ground side by the pressure of the compacted concrete, whereby the concrete leaks to the ground side with the canvas sheet. And prevent concrete from sticking to the ground. For example, in order to prevent the backfill material 20 from flowing into the shell 18 in a later step, the consolidation concrete is cast to a position where the opening of the bottom portion of the shell 18 including the slit is closed. do it. Of course, it is also possible to pour the solidified concrete in the entire area of the unfrozen soil portion 2.

【0016】なお、鋼製箱型矢板10A,10Bのジョ
イント構造は、上記に限定されることなく種々の周知の
構造を適用することができる。例えば、図11に示すよ
うに、円弧状部13を相互に係合可能な形状として、円
弧状部13,13同士を係合させる構造等を採用するこ
とができる。加えて、例えば、必要に応じて、ウェブ1
1に厚さ方向に貫通する開口部24を設けた鋼製箱型矢
板10A,10Bを用いることも可能である。さらに、
鋼製箱型矢板10A,10Bの外側面に、建て込み前に
あらかじめ埋戻し材20を注入する図示せぬトレミー管
を添わせる形でセットしておく方が、トレミー管のセッ
ト作業が容易となるため有利である。
The joint structure of the steel box type sheet piles 10A and 10B is not limited to the above, and various known structures can be applied. For example, as shown in FIG. 11, a structure or the like in which the arc-shaped portions 13 are engaged with each other can be adopted by making the arc-shaped portions 13 engageable with each other. In addition, for example, if necessary, the web 1
It is also possible to use steel box-type sheet piles 10A and 10B provided with an opening 24 penetrating in the thickness direction in FIG. further,
It is easier to set the tremy tube by setting the tremy tube to the outside surface of the steel box-shaped sheet piles 10A and 10B in advance by attaching a not-shown tremy tube for injecting the backfill material 20 before embedding. This is advantageous.

【0017】次に、本発明の第2実施例による凍土内地
中連続壁の施工方法について図12〜図15を参照し
て、第1実施例と相違する部分を中心に以下に説明す
る。第2実施例においては、まず、図12に示すよう
に、地盤3の所定の構築位置に、地表側から凍土部1の
地中側までの範囲に加えてさらに凍土部1の地中側から
未凍土部2の所定深さまでの範囲を殻体18より幅広と
した同形断面の溝4を、安定液5を満たして内壁面の安
定を図りながら、掘削形成する。そして、図13に示す
ように、溝4に、上記した鋼製箱型矢板10A,10B
を建て込んで殻体18を形成する。このとき、溝4の底
部に、根固めコンクリート23を、図示せぬトレミー管
で安定液5と置換しつつ打設する。この場合、鋼製箱型
矢板10A,10Bには、未凍土部2に位置する底側所
定範囲の部分に、上記した複数の短い連結継手部材17
同士でスリットを形成する構造が採用できる。これに応
じて、根固めコンクリート23は、例えば、後工程での
埋戻し材20の殻体18内への流入を防止するため、前
記スリットを含む殻体18の底側部分の開口を閉塞させ
る位置まで打設される。勿論未凍土部2の全範囲に根固
めコンクリート23を打設することも可能である。
Next, a method for constructing an underground frozen ground wall according to a second embodiment of the present invention will be described below with reference to FIGS. 12 to 15, focusing on the differences from the first embodiment. In the second embodiment, first, as shown in FIG. 12, at a predetermined construction position of the ground 3, in addition to the range from the ground surface side to the underground side of the frozen soil part 1, and further from the underground side of the frozen soil part 1 The groove 4 having the same cross-section in which the range of the unfrozen soil portion 2 to a predetermined depth is wider than the shell 18 is formed by excavation while filling the stabilizing liquid 5 to stabilize the inner wall surface. Then, as shown in FIG. 13, the steel box-type sheet piles 10A, 10B
To form the shell 18. At this time, the reinforced concrete 23 is poured into the bottom of the groove 4 while replacing the stabilizing liquid 5 with a tremy pipe (not shown). In this case, the plurality of short connecting joint members 17 described above are provided on the steel box-shaped sheet piles 10A and 10B in a predetermined range on the bottom side located in the unfrozen soil portion 2.
A structure in which slits are formed between each other can be adopted. In response, the consolidation concrete 23 closes the opening of the bottom portion of the shell 18 including the slit, for example, to prevent the backfill material 20 from flowing into the shell 18 in a later step. It is driven to the position. Of course, it is also possible to cast the concrete 23 in the whole area of the unfrozen soil portion 2.

【0018】次に、根固めコンクリート23が養生した
時点で、図14に示すように、溝4と殻体18とで画成
される空間部に、断熱性を有する埋戻し材20を、図示
せぬトレミー管で安定液5と置換しつつ流し込んで、こ
の部分を埋め戻す。そして、図15に示すように、上記
鋼製箱型矢板10A,10Bによる殻体18内に、図示
せぬトレミー管で安定液5と置換しつつコンクリート2
1を打設する。そして、この状態でコンクリート21を
硬化させる。このような工程で、先行エレメントと、該
先行エレメント間を連結させる後行エレメントとを構築
することにより、凍土部1を有する地盤3内に地中連続
壁22を構築する。
Next, at the time when the compacted concrete 23 has been cured, as shown in FIG. 14, a back-insulating material 20 having heat insulating properties is placed in a space defined by the groove 4 and the shell 18. It is poured while replacing the stabilizing solution 5 with a tremy tube (not shown), and this portion is backfilled. Then, as shown in FIG. 15, the concrete 2 is replaced in the shell 18 by the steel box-shaped sheet piles 10A and 10B with the stabilizing liquid 5 by a not-shown tremy tube.
1 is cast. Then, the concrete 21 is hardened in this state. In such a process, the underground continuous wall 22 is constructed in the ground 3 having the frozen soil part 1 by constructing the preceding element and the succeeding element that connects the preceding elements.

【0019】以上の第2実施例によれば、第1実施例と
同様の効果を奏することは勿論、加えて、溝4を異形断
面形状に掘削する必要がないので、掘削機の段取替えが
不要になる等の理由から施工が容易となり、しかも、溝
4の底部と鋼製箱型矢板10A,10Bとの間の隙間が
大きいので根固めを確実に行うことができる等のメリッ
トがある。
According to the second embodiment described above, the same effect as that of the first embodiment can be obtained, and in addition, since it is not necessary to excavate the groove 4 to have an irregular cross-sectional shape, the setup change of the excavator can be performed. Construction is facilitated because it becomes unnecessary, and moreover, since the gap between the bottom of the groove 4 and the steel box-shaped sheet piles 10A and 10B is large, there is an advantage that solidification can be reliably performed.

【0020】[0020]

【発明の効果】以上詳述したように、本発明の凍土内地
中連続壁の施工方法によれば、少なくとも地表側から凍
土部の地中側までの範囲を殻体より幅広にして溝を掘削
形成するとともに、該掘削形成された溝内に、鋼製箱型
矢板を建て込んで殻体を形成し、溝の殻体より幅広に形
成された部分と、殻体との間を断熱性を有する埋戻し材
で埋め戻し、殻体内にコンクリートを打設し硬化させる
ことになるため、殻体の内部に打設されたコンクリート
は、硬化時に、埋戻し材によって凍土部との間の熱の伝
達が断たれることになり、よって、それ自体の硬化時の
発生熱等の熱が凍土部に奪われてしまうことがなくな
る。したがって、凍土部を有する地盤に適用しても、鋼
製箱型矢板の殻体内に流し込まれたコンクリートは、凍
土部に近接する部分は勿論、いずれの部分も固化前に水
分が凍ってしまうことがないため、該コンクリートの品
質が良好に維持されることになる。
As described above in detail, according to the method for constructing a submerged ground wall in frozen ground according to the present invention, a trench is excavated by making at least the area from the ground surface side to the ground side of the frozen ground part wider than the shell body. In addition to forming the shell, a steel box-type sheet pile is erected in the excavated groove to form a shell, and a heat insulating property is provided between a portion formed wider than the shell of the groove and the shell. Since the concrete back into the shell is hardened by backfilling with the backfill material having it, the concrete poured into the shell is hardened by the backfill material, The transmission is cut off, so that heat such as heat generated at the time of hardening itself is not taken by the frozen soil portion. Therefore, even when applied to the ground having a frozen soil part, the concrete poured into the shell of the steel box-type sheet pile will freeze the moisture before solidifying any part, not to mention the part close to the frozen soil part. As a result, the quality of the concrete is maintained well.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例による凍土内地中連続壁の
施工方法の殻体内へのコンクリート打設後の状態を示す
図2におけるX−X線に沿う断面図である。
FIG. 1 is a cross-sectional view taken along the line XX in FIG. 2 showing a state after placing concrete into a shell body in a method of constructing a frozen ground in-ground continuous wall according to a first embodiment of the present invention.

【図2】本発明の第1実施例による凍土内地中連続壁の
施工方法の殻体内へのコンクリート打設後の状態を示す
図1におけるY−Y線に沿う平断面図である。
FIG. 2 is a plan sectional view taken along the line YY in FIG. 1 showing a state after the concrete is poured into the shell body in the method of constructing a ground wall in frozen ground according to the first embodiment of the present invention.

【図3】本発明の第1実施例による凍土内地中連続壁の
施工方法で用いられる鋼製箱型矢板の一方を示す斜視図
である。
FIG. 3 is a perspective view showing one of the steel box-type sheet piles used in the method for constructing a frozen ground in-ground continuous wall according to the first embodiment of the present invention.

【図4】本発明の第1実施例による凍土内地中連続壁の
施工方法で用いられる鋼製箱型矢板の他方を示す斜視図
である。
FIG. 4 is a perspective view showing the other side of the steel box-type sheet pile used in the method for constructing a frozen ground inland ground wall according to the first embodiment of the present invention.

【図5】本発明の第1実施例による凍土内地中連続壁の
施工方法で用いられる鋼製箱型矢板の連結状態を示す平
面図である。
FIG. 5 is a plan view showing a connection state of steel box-type sheet piles used in the method of constructing a ground wall in frozen ground according to the first embodiment of the present invention.

【図6】本発明の第1実施例による凍土内地中連続壁の
施工方法の溝掘削時の状態を示す図2におけるX−X線
に相当する線に沿う断面図である。
FIG. 6 is a cross-sectional view taken along a line corresponding to line XX in FIG. 2 showing a state at the time of trench excavation in the method of constructing a frozen ground in-ground continuous wall according to the first embodiment of the present invention.

【図7】本発明の第1実施例による凍土内地中連続壁の
施工方法の鋼製箱型矢板による殻体形成時の状態を示す
図2におけるX−X線に相当する線に沿う断面図であ
る。
FIG. 7 is a cross-sectional view taken along a line corresponding to line XX in FIG. 2, showing a state when the shell is formed by the steel box-shaped sheet pile in the method for constructing a frozen ground inland ground wall according to the first embodiment of the present invention. It is.

【図8】本発明の第1実施例による凍土内地中連続壁の
施工方法の埋戻し時の状態を示す図2におけるX−X線
に相当する線に沿う断面図である。
FIG. 8 is a cross-sectional view taken along a line corresponding to line XX in FIG. 2 showing a state at the time of backfilling in the method of constructing a frozen ground in-ground continuous wall according to the first embodiment of the present invention.

【図9】本発明の第1実施例による凍土内地中連続壁の
施工方法の埋戻し時の状態を示す図1におけるY−Y線
に相当する線に沿う平断面図である。
FIG. 9 is a plan sectional view taken along a line corresponding to the line YY in FIG. 1 showing a state at the time of backfilling in the method of constructing a frozen ground in-ground continuous wall according to the first embodiment of the present invention.

【図10】本発明の第1実施例による凍土内地中連続壁
の施工方法で用いられる鋼製箱型矢板の根固め対応時の
変更例を示す斜視図である。
FIG. 10 is a perspective view showing a modification of the steel box-type sheet pile used in the method for constructing a continuous ground wall in frozen ground according to the first embodiment of the present invention at the time of coping with rooting.

【図11】本発明の第1実施例による凍土内地中連続壁
の施工方法で用いられる鋼製箱型矢板の別の例を示す斜
視図である。
FIG. 11 is a perspective view showing another example of the steel box-type sheet pile used in the method for constructing a frozen ground inland continuous wall according to the first embodiment of the present invention.

【図12】本発明の第2実施例による凍土内地中連続壁
の施工方法の溝掘削時の状態を示す図2におけるX−X
線に相当する線に沿う断面図である。
FIG. 12 is a view illustrating a state of excavating a trench in the method for constructing a frozen ground inland ground wall according to a second embodiment of the present invention, taken along the line XX in FIG. 2;
It is sectional drawing which follows the line equivalent to a line.

【図13】本発明の第2実施例による凍土内地中連続壁
の施工方法の鋼製箱型矢板による殻体形成時の状態を示
す図2におけるX−X線に相当する線に沿う断面図であ
る。
FIG. 13 is a cross-sectional view taken along a line corresponding to line XX in FIG. 2, showing a state where a shell is formed by a steel box-shaped sheet pile in the method of constructing a frozen ground inland ground wall according to the second embodiment of the present invention. It is.

【図14】本発明の第2実施例による凍土内地中連続壁
の施工方法の埋戻し時の状態を示す図2におけるX−X
線に相当する線に沿う断面図である。
FIG. 14 is a view illustrating a state of backfilling in the method of constructing the underground frozen ground wall in accordance with the second embodiment of the present invention at the time of backfilling, and FIG.
It is sectional drawing which follows the line equivalent to a line.

【図15】本発明の第2実施例による凍土内地中連続壁
の施工方法の殻体内へのコンクリート打設後の状態を示
す図2におけるX−X線に相当する線に沿う断面図であ
る。
FIG. 15 is a cross-sectional view taken along a line corresponding to line XX in FIG. 2, showing a state after placing concrete into a shell body in the method of constructing a frozen ground in-ground continuous wall according to the second embodiment of the present invention. .

【符号の説明】[Explanation of symbols]

1 凍土部 3 地盤 4 溝 10A,10B 鋼製箱型矢板 18 殻体 20 埋戻し材 21 コンクリート DESCRIPTION OF SYMBOLS 1 Frozen ground 3 Ground 4 Groove 10A, 10B Steel box-shaped sheet pile 18 Shell 20 Backfill material 21 Concrete

フロントページの続き (72)発明者 小田原 卓郎 東京都港区芝浦一丁目2番3号 清水建 設株式会社内 (56)参考文献 特開 昭60−92514(JP,A) 特開 平3−295926(JP,A) 特開 平1−275806(JP,A) (58)調査した分野(Int.Cl.7,DB名) E02D 5/20 102 E02D 5/18 102 E02D 3/115 Continuation of the front page (72) Inventor Takuro Odawara Shimizu Construction Co., Ltd. 1-3-2 Shibaura, Minato-ku, Tokyo (56) References JP-A-60-92514 (JP, A) JP-A-3-295926 (JP, A) JP-A-1-275806 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) E02D 5/20 102 E02D 5/18 102 E02D 3/115

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 凍土部を有する地盤に掘削形成された溝
内に設けられるとともに、鋼製箱型矢板で殻体を形成し
その内部にコンクリートを打設してなる凍土内地中連続
壁の施工方法であって、 少なくとも地表側から凍土部の地中側までの範囲を前記
殻体より幅広にして溝を掘削形成するとともに、 該掘削形成された溝内に、前記鋼製箱型矢板を建て込ん
で殻体を形成し、 前記溝の殻体より幅広に形成された部分と、前記殻体と
の間を断熱性を有する埋戻し材で埋め戻し、 前記殻体内にコンクリートを打設し硬化させることを特
徴とする凍土内地中連続壁の施工方法。
1. Construction of an underground continuous wall in frozen ground which is provided in a trench excavated and formed in the ground having a frozen soil portion, formed of a shell body with a steel box-shaped sheet pile, and casts concrete therein. A method wherein at least a range from the ground surface side to the underground side of the frozen soil part is wider than the shell body to excavate and form a groove, and the steel box-type sheet pile is built in the excavated groove. And a shell body is formed, and a space formed between the portion of the groove wider than the shell body and the shell body is backfilled with a heat-insulating backfill material. Concrete is poured into the shell body and hardened. A method for constructing a ground wall in a frozen ground, wherein
JP09777394A 1994-05-11 1994-05-11 Construction method of underground diaphragm wall in frozen soil Expired - Fee Related JP3309303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09777394A JP3309303B2 (en) 1994-05-11 1994-05-11 Construction method of underground diaphragm wall in frozen soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09777394A JP3309303B2 (en) 1994-05-11 1994-05-11 Construction method of underground diaphragm wall in frozen soil

Publications (2)

Publication Number Publication Date
JPH07305341A JPH07305341A (en) 1995-11-21
JP3309303B2 true JP3309303B2 (en) 2002-07-29

Family

ID=14201170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09777394A Expired - Fee Related JP3309303B2 (en) 1994-05-11 1994-05-11 Construction method of underground diaphragm wall in frozen soil

Country Status (1)

Country Link
JP (1) JP3309303B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105421497A (en) * 2015-09-14 2016-03-23 上海建工七建集团有限公司 Water-proof construction method for connected nodes of foundation slab and ground wall in composite surround system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113944194B (en) * 2021-11-29 2023-03-17 东北农业大学 Pile foundation isolation anti-freezing measure adapting to underground water level

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105421497A (en) * 2015-09-14 2016-03-23 上海建工七建集团有限公司 Water-proof construction method for connected nodes of foundation slab and ground wall in composite surround system

Also Published As

Publication number Publication date
JPH07305341A (en) 1995-11-21

Similar Documents

Publication Publication Date Title
KR102431393B1 (en) Construction Method of Underground Structures
JP3309303B2 (en) Construction method of underground diaphragm wall in frozen soil
JP3829319B2 (en) Construction method of underground hollow structure and its underground hollow structure
JP3395093B2 (en) Construction method of underground diaphragm wall in frozen soil
JP3353176B2 (en) Construction method of underground diaphragm wall in frozen soil
JP3251698B2 (en) Tunnel lining element and tunnel construction method using the same
JPS61122320A (en) Method of coupling continuous underground wall with underground structure
JP3309302B2 (en) Construction method of underground diaphragm wall in frozen soil
JP2949595B2 (en) Continuous underground wall construction method
JP3353178B2 (en) Construction method of underground diaphragm wall in frozen soil
JP3603272B2 (en) Underground continuous wall construction method and steel cage with outer shell
JP2979118B2 (en) Retaining wall structure
JP2565452B2 (en) Construction method of self-supporting retaining wall
JP3353177B2 (en) Construction method of underground diaphragm wall in frozen soil
JP2000104248A5 (en)
JPS6135359B2 (en)
JPH0477764B2 (en)
JP2852570B2 (en) Building underground structure construction method
JP2001090060A (en) Driving method for pile and constructing method for cut- off wall using the method
JP3472867B2 (en) Underground continuous wall construction method and steel cage with outer shell
JPH07100937B2 (en) Construction method of joint part in continuous underground wall method
JPH0438844B2 (en)
JP2002081056A (en) Steel pipe sheet pile wall construction method
JP2024024044A (en) Sheet pile connection structure and sheet pile connection method
JPH03295926A (en) Execution of underground continuous wall

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020416

LAPS Cancellation because of no payment of annual fees