JP3308667B2 - Ultrasonic vibration type fatigue tester - Google Patents

Ultrasonic vibration type fatigue tester

Info

Publication number
JP3308667B2
JP3308667B2 JP19905393A JP19905393A JP3308667B2 JP 3308667 B2 JP3308667 B2 JP 3308667B2 JP 19905393 A JP19905393 A JP 19905393A JP 19905393 A JP19905393 A JP 19905393A JP 3308667 B2 JP3308667 B2 JP 3308667B2
Authority
JP
Japan
Prior art keywords
test piece
ultrasonic vibration
temperature
fatigue tester
vibration type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19905393A
Other languages
Japanese (ja)
Other versions
JPH0735668A (en
Inventor
幹夫 福原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Tungaloy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tungaloy Corp filed Critical Tungaloy Corp
Priority to JP19905393A priority Critical patent/JP3308667B2/en
Publication of JPH0735668A publication Critical patent/JPH0735668A/en
Application granted granted Critical
Publication of JP3308667B2 publication Critical patent/JP3308667B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、超音波振動式疲労試験
機に関し、特に、金属、セラミックス、高分子等の各種
固体材料の疲労強度を広範囲な温度範囲にわたって短時
間で測定できるようにしたものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic vibration type fatigue tester, and more particularly to an ultrasonic vibration type fatigue tester capable of measuring the fatigue strength of various solid materials such as metals, ceramics and polymers in a short time over a wide temperature range. Things.

【0002】[0002]

【従来の技術】従来、この種の振動式疲労試験機は、5
00Hz以下の低周波式に限定され、しかも、常温測定
におけるもののみであった。また、低周波式であるた
め、繰返し数が106以上となるもので、測定には長時
間を要するものであった。
2. Description of the Related Art Conventionally, this type of vibration-type fatigue tester has
It was limited to the low-frequency type of 00 Hz or less, and was only for room temperature measurement. In addition, because of the low frequency type, the number of repetitions was 10 6 or more, and the measurement required a long time.

【0003】[0003]

【発明が解決しようとする課題】このようなことから、
振動式疲労試験機では、測定温度領域の拡大および短時
間測定を可能とした材料疲労試験機の開発が問題点にな
っていた。
SUMMARY OF THE INVENTION
With the vibration-type fatigue tester, the development of a material fatigue tester capable of expanding the measurement temperature range and enabling short-time measurement has been a problem.

【0004】[0004]

【課題を解決するための手段】本発明は、上述の点に鑑
みなされたもので、試験片保持具に支持された試験片に
は、超音波振動するホ−ンによって荷重および振動が与
えられるように構成したものであり、また、試験片保持
具が温度調整可能な雰囲気炉内に配置されるように構成
したものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and a load and vibration are applied to a test piece supported by a test piece holder by a horn that vibrates ultrasonically. The test piece holder is arranged in a temperature-adjustable atmosphere furnace.

【0005】また、この試験片保持具には、導波体が設
けられ、この導波体の炉外端では、常温に調整されると
ともに、試験片からの機械的振動を電気信号に変換する
ためのAEセンサおよびこれに接続される波形モニタが
備えられるように構成したものである。この場合、波形
モニタには、電算ユニットが接続されることにより、解
析能力を高めたり、試験継続の有無を判定することがで
きるものである。
Further, a waveguide is provided on the test piece holder, and the temperature of the waveguide is adjusted to room temperature at the outer end thereof, and mechanical vibration from the test piece is converted into an electric signal. Sensor and a waveform monitor connected thereto are provided. In this case, by connecting the computer unit to the waveform monitor, it is possible to enhance the analysis capability and determine whether or not to continue the test.

【0006】[0006]

【作用】本発明の超音波振動式疲労試験機は、試験片に
は、超音波振動するホ−ンによって荷重および振動が付
与されることから、材料疲労が短時間で発生するもので
ある。
According to the ultrasonic vibration type fatigue tester of the present invention, since the load and the vibration are applied to the test piece by the ultrasonic vibrating horn, material fatigue occurs in a short time.

【0007】また、試験片を支持する試験片保持具は、
温度調整可能な雰囲気炉内に配置されることから、広範
囲な温度領域に適用できるものである。
[0007] Further, a test piece holder for supporting a test piece,
Since it is arranged in a temperature-adjustable atmosphere furnace, it can be applied to a wide temperature range.

【0008】さらに、試験片の疲労状態は、炉外端で常
温維持された導波体に具備されたAEセンサによって、
電気信号として伝達され、波形モニタによって表示、記
録されるとともに、電算ユニットによって解析され、ま
た、試験継続の有無が判定される。
Further, the fatigue state of the test piece is determined by an AE sensor provided on a waveguide maintained at room temperature at the outer end of the furnace.
It is transmitted as an electric signal, displayed and recorded by the waveform monitor, analyzed by the computer unit, and it is determined whether the test is continued.

【0009】[0009]

【実施例】以下、本発明超音波振動式疲労試験機の一実
施例について、図を参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the ultrasonic vibration type fatigue tester of the present invention will be described below with reference to the drawings.

【0010】図1において、1は、超音波振動する上下
動可能なホ−ンであり、このホ−ン1の超音波振動は、
圧電送信子2からブ−スタ−3を介して与えられる。そ
して、このホ−ン1は、高靭性、耐熱性および耐寒性の
ある材料からなり、試験片保持具4に取付けた試験片5
に対して荷重および振動を与える。したがって、この試
験片5は、ホ−ン1からの超音波振動により共振させら
れ、荷重負荷から、材料疲労が短時間で発生する。そし
て、図1は、全長Lを有する試験片5に対して、三点曲
げ型による場合が例示されている。すなわち、試験片5
は、支持長さlで試験片保持具4によって両端支持さ
れ、その中央には、超音波振動する前記ホ−ン1によっ
て集中荷重が付与される。なお、超音波振動は、その振
幅が最大100μm程度であり、共振条件は、試験片5
の形状、密度、断面二次モ−メントを用いて計算できる
ものである。そして、ホ−ン1の振動および荷重による
疲労曲線は、負荷荷重の関数となる。
In FIG. 1, reference numeral 1 denotes a vertically movable horn for ultrasonic vibration. The ultrasonic vibration of the horn 1
It is provided from the piezoelectric transmitter 2 via the booster-3. The horn 1 is made of a material having high toughness, heat resistance, and cold resistance.
Load and vibration. Therefore, the test piece 5 is resonated by the ultrasonic vibration from the horn 1 and material fatigue occurs in a short time due to a load. FIG. 1 illustrates a case where a three-point bending die is used for a test piece 5 having an overall length L. That is, the test piece 5
Is supported at both ends by a test piece holder 4 having a support length l, and a concentrated load is applied to the center of the support by the horn 1 that vibrates ultrasonically. The ultrasonic vibration has an amplitude of about 100 μm at the maximum, and the resonance conditions
Can be calculated using the shape, density, and second-order moment of section. The fatigue curve due to the vibration and load of the horn 1 is a function of the applied load.

【0011】前記試験片保持具4は、高靭性、耐熱性お
よび耐寒性のある超硬合金、SiC,Si34、Ni基
超合金などから作製されるもので、端部には、導波体6
が設けられている。そして、この試験片保持具4は、試
験片5の使用温度条件に適合できるように温度調整可能
な雰囲気炉7内に配置される。また、前記導波体6は、
金属製またはセラミックス製からなり、導波体6の炉外
端には、常温を維持する温度調節器8が設けられてい
る。導波体6の炉外端で常温維持としたのは、前記AE
センサ9が雰囲気炉7からの熱伝導による影響を受けな
いようにしたものである。したがって、温度調節器8
は、雰囲気炉7が高温雰囲気であれば水冷ジャケット、
低温雰囲気であれば加熱器が適用される。そして、常温
維持された導波体6の炉外端には、試験片5からの機械
的振動などを電気信号に変換するAEセンサ9が備えら
れる。
The test piece holder 4 is made of a high-toughness, heat-resistant and cold-resistant cemented carbide, SiC, Si 3 N 4 , Ni-base superalloy or the like. Corrugated body 6
Is provided. The test piece holder 4 is placed in an atmosphere furnace 7 whose temperature can be adjusted so as to be compatible with the operating temperature conditions of the test piece 5. The waveguide 6 is
A temperature controller 8 that is made of metal or ceramics and that maintains the room temperature is provided at the outer end of the waveguide 6. The reason why the room temperature was maintained at the outer end of the waveguide body 6 was that the AE
The sensor 9 is not affected by the heat conduction from the atmosphere furnace 7. Therefore, the temperature controller 8
Is a water-cooled jacket if the atmosphere furnace 7 has a high temperature atmosphere,
If the temperature is low, a heater is applied. An AE sensor 9 that converts mechanical vibrations and the like from the test piece 5 into electric signals is provided at the outer end of the furnace of the waveguide 6 maintained at room temperature.

【0012】前記雰囲気炉7の温度調整は、液体窒素温
度から1500℃までの温度領域が考えられ、これは、
クライオスタットおよび加熱装置の適用により容易に得
られる。また、この雰囲気炉7の雰囲気は、1気圧から
5気圧までの空気、窒素、アルゴン、ヘリウム等のガス
および10-4Torrまでの真空に維持できることが好
ましい。これも、試験片5に適用された材料の使用環境
条件からの配慮である。
The temperature of the atmosphere furnace 7 can be adjusted in a temperature range from liquid nitrogen temperature to 1500 ° C.
It is easily obtained by applying a cryostat and a heating device. It is preferable that the atmosphere of the atmosphere furnace 7 can be maintained at a pressure of 1 to 5 atm, such as air, nitrogen, argon, and helium, and a vacuum of 10 -4 Torr. This is also a consideration from the working environment conditions of the material applied to the test piece 5.

【0013】また、前記AEセンサ9には、超音波の周
波数、振幅、電力を監視し、異常時の発振停止信号を出
す波形モニタ10が接続され、疲労状態が表示、記録さ
れる。そして、この波形モニタ10には、材料疲労の解
析能を高める電算ユニット11が接続される。この電算
ユニット11は、例えばパソコン11a、ディスプレイ
11bおよびプリンタ11cから構成される。
The AE sensor 9 is connected to a waveform monitor 10 for monitoring the frequency, amplitude and power of the ultrasonic wave and outputting an oscillation stop signal in the event of an abnormality, and displays and records the fatigue state. Then, a computer unit 11 for improving the ability to analyze material fatigue is connected to the waveform monitor 10. The computer unit 11 includes, for example, a personal computer 11a, a display 11b, and a printer 11c.

【0014】図2は、片持ち梁型の疲労試験機における
変形例を示したもので、試験片5は、突出し長さlで、
試験片保持具4に支持され、超音波振動する前記ホ−ン
1によって荷重および振動が付与される。そして、試験
片5からの機械的振動は、導波体6からAEセンサ9に
伝達されるとともに、電気信号に変換されて、波形モニ
タ10に表示され、記録される。また、電算ユニット1
1によって、演算処理、解析され、または、電算ユニッ
ト11によって、試験継続の有無の判定がなされる。そ
して、測定結果は、がプリンタ11cから、プリントア
ウトされる。
FIG. 2 shows a modified example of a cantilever type fatigue tester, in which a test piece 5 has a protruding length l,
A load and vibration are applied by the horn 1 which is supported by the test piece holder 4 and vibrates ultrasonically. Then, the mechanical vibration from the test piece 5 is transmitted from the waveguide 6 to the AE sensor 9, converted into an electric signal, displayed on the waveform monitor 10, and recorded. Computer unit 1
By 1, arithmetic processing and analysis are performed, or the computer unit 11 determines whether or not to continue the test. Then, the measurement result is printed out from the printer 11c.

【0015】次に、本発明超音波振動式疲労試験機によ
り、図1に示される三点曲げ型による材料疲労試験を行
なった例について説明する。
Next, an example in which a material fatigue test using a three-point bending type shown in FIG. 1 is performed using the ultrasonic vibration type fatigue tester of the present invention will be described.

【0016】試験片5は、Si34系セラミックスで、
幅4mm×厚さ3mm×長さ33mmの形状を有し、常
温および600℃における疲労曲線A,Bをそれぞれ求
めた。この結果は、図3に示されるが、いずれも材料破
壊まで2分以内であった。なお、ホ−ン1は、材質がT
i合金で、荷重については、1〜100の範囲で変動さ
せ、また、振動条件は、周波数=17.7KH z、振幅
=90μmに設定した。
The test piece 5 is made of SiThreeNFourSystem ceramics
It has a shape of width 4mm x thickness 3mm x length 33mm.
Temperature and 600 ° C fatigue curves A and B, respectively.
I did. The results are shown in FIG.
It took less than 2 minutes to break. The horn 1 is made of T
With i alloy, the load varies in the range of 1 to 100.
And the vibration condition is frequency = 17.7 KH z, amplitude
= 90 μm.

【0017】[0017]

【発明の効果】本発明は、以上説明したように、試験片
5には、超音波振動するホ−ン1により、荷重および振
動が付与されるように構成したことから、試験片5の疲
労が短時間で測定できるものである。また、試験片5
は、所定の温度に調整された雰囲気炉7内で測定される
ことから、使用条件に一致する疲労が測定できるもので
ある。さらに、試験片5の測定は、AEセンサ9、波形
モニタ10および電算ユニット11によって行なわれる
ことから、解析能も十分高められるという利点を有す
る。
As described above, according to the present invention, since the load and the vibration are applied to the test piece 5 by the horn 1 which vibrates ultrasonically, the fatigue of the test piece 5 is improved. Can be measured in a short time. Test piece 5
Is measured in the atmosphere furnace 7 adjusted to a predetermined temperature, so that fatigue matching the use conditions can be measured. Furthermore, since the measurement of the test piece 5 is performed by the AE sensor 9, the waveform monitor 10, and the computer unit 11, there is an advantage that the analysis ability can be sufficiently enhanced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明超音波振動式疲労試験機の一実施例を示
す概念的な説明図、
FIG. 1 is a conceptual explanatory view showing an embodiment of an ultrasonic vibration type fatigue tester of the present invention,

【図2】他の実施例を示す同じく概念的な説明図、FIG. 2 is a conceptual explanatory view showing another embodiment,

【図3】図1に示された試験機により得られた疲労曲線
図。
FIG. 3 is a fatigue curve diagram obtained by the tester shown in FIG.

【符号の説明】[Explanation of symbols]

1 ホ−ン 4 試験片保持具 5 試験片 6 導波体 7 雰囲気炉 8 温度調節器 9 AEセンサ 10 波形モニタ 11 電算ユニット DESCRIPTION OF SYMBOLS 1 Horn 4 Test piece holder 5 Test piece 6 Waveguide 7 Atmosphere furnace 8 Temperature controller 9 AE sensor 10 Waveform monitor 11 Computer unit

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01N 3/34 G01N 29/00 JICSTファイル(JOIS)Continuation of the front page (58) Field surveyed (Int. Cl. 7 , DB name) G01N 3/34 G01N 29/00 JICST file (JOIS)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 試験片保持具4に支持された試験片5に
は、超音波振動するホ−ン1によって荷重及び振動が与
えられ、これに伴って、この試験片5の疲労を測定する
ようにした超音波振動式疲労試験機において、 導波体6を備えた前記試験片保持具4は、温度調整可能
な雰囲気炉7に配置されるとともに、常温維持に温度調
整されている前記導波体6の炉外端には、試験片5から
の機械的振動を電気信号に変換するAEセンサ9が備え
られ、このAEセンサ9に接続された波形モニタ10に
よって前記試験片5の疲労が測定されるようにしたこと
を特徴とする超音波振動式疲労試験機。
A load and vibration are applied to a test piece 5 supported by a test piece holder 4 by a horn 1 that vibrates ultrasonically, and the fatigue of the test piece 5 is measured accordingly. In the ultrasonic vibration type fatigue tester as described above, the test piece holder 4 provided with the waveguide 6 is placed in an atmosphere furnace 7 capable of adjusting the temperature, and the temperature of the sample holder 4 is adjusted to a normal temperature. An AE sensor 9 that converts mechanical vibration from the test piece 5 into an electric signal is provided at the outer end of the corrugated body 6, and the waveform monitor 10 connected to the AE sensor 9 reduces the fatigue of the test piece 5. An ultrasonic vibration type fatigue tester characterized by being measured.
【請求項2】 請求項1に記載された波形モニタ10に
は、電算処理ユニット11が接続されている請求項1記
載の超音波振動式疲労試験機。
2. The ultrasonic vibration type fatigue tester according to claim 1, wherein a computer processing unit is connected to the waveform monitor according to claim 1.
JP19905393A 1993-07-16 1993-07-16 Ultrasonic vibration type fatigue tester Expired - Fee Related JP3308667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19905393A JP3308667B2 (en) 1993-07-16 1993-07-16 Ultrasonic vibration type fatigue tester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19905393A JP3308667B2 (en) 1993-07-16 1993-07-16 Ultrasonic vibration type fatigue tester

Publications (2)

Publication Number Publication Date
JPH0735668A JPH0735668A (en) 1995-02-07
JP3308667B2 true JP3308667B2 (en) 2002-07-29

Family

ID=16401330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19905393A Expired - Fee Related JP3308667B2 (en) 1993-07-16 1993-07-16 Ultrasonic vibration type fatigue tester

Country Status (1)

Country Link
JP (1) JP3308667B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005091318A (en) * 2003-09-19 2005-04-07 Fuji Kogyo Kk Ultrasonic densitometer

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002286605A (en) * 2001-03-23 2002-10-03 Ishikawajima Harima Heavy Ind Co Ltd Method and device for high strain rate fatigue test
AU2003281570A1 (en) * 2002-07-19 2004-02-09 Consejo Superior De Investigaciones Cientificas Method and device for examining fatigue resistance of metallic materials at ultrasonic frequencies and constant temperature
JP2008281544A (en) * 2007-04-13 2008-11-20 Noriyuki Hisamori Fatigue tester
US9297731B2 (en) 2010-04-06 2016-03-29 Varel Europe S.A.S Acoustic emission toughness testing for PDC, PCBN, or other hard or superhard material inserts
US8397572B2 (en) * 2010-04-06 2013-03-19 Varel Europe S.A.S. Acoustic emission toughness testing for PDC, PCBN, or other hard or superhard materials
US9086348B2 (en) 2010-04-06 2015-07-21 Varel Europe S.A.S. Downhole acoustic emission formation sampling
US8322217B2 (en) * 2010-04-06 2012-12-04 Varel Europe S.A.S. Acoustic emission toughness testing for PDC, PCBN, or other hard or superhard material inserts
US9249059B2 (en) 2012-04-05 2016-02-02 Varel International Ind., L.P. High temperature high heating rate treatment of PDC cutters
WO2014087538A1 (en) * 2012-12-07 2014-06-12 株式会社島津製作所 Ultrasonic fatigue testing device and ultrasonic fatigue testing method
WO2014112272A1 (en) * 2013-01-15 2014-07-24 日産自動車株式会社 Ultrasonic welding device and anvil-exchanging method for ultrasonic welding device
CN103940685A (en) * 2014-04-25 2014-07-23 华侨大学 Method for testing high-frequency fatigue characteristic of material under microscale
CN104483216A (en) * 2014-12-31 2015-04-01 华侨大学 Ultrasonic-vibration based microscale testing device for material impact fatigue
CN105738236B (en) * 2016-05-05 2018-04-27 西北工业大学 A kind of ultrasound high frequency ball fretting fatigue experimental rig
US11631653B2 (en) 2017-02-03 2023-04-18 Mitsubishi Electric Corporation Ultrasonic bonding apparatus, ultrasonic bonding inspection method and ultrasonically-bonded portion fabrication method
CN106950280B (en) * 2017-03-16 2019-04-12 东北大学 Fibre reinforced composites parameter identification method based on the lossless scanning of laser
JP7180572B2 (en) * 2019-09-17 2022-11-30 株式会社島津製作所 material testing machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005091318A (en) * 2003-09-19 2005-04-07 Fuji Kogyo Kk Ultrasonic densitometer

Also Published As

Publication number Publication date
JPH0735668A (en) 1995-02-07

Similar Documents

Publication Publication Date Title
JP3308667B2 (en) Ultrasonic vibration type fatigue tester
Lee et al. Resonant ultrasound spectroscopy for measurement of mechanical damping: Comparison with broadband viscoelastic spectroscopy
Ritchie et al. High-damping metals and alloys
JP2533678B2 (en) Metal stress relaxation method
Willertz Ultrasonic fatigue
WO2005017497A1 (en) System and method for the elastic properties measurement of materials
Frouin et al. In-situ monitoring of acoustic linear and nonlinear behavior of titanium alloys during cycling loading
US6822929B1 (en) Micro acoustic spectrum analyzer
JP3907267B2 (en) Vibrator with built-in sensor for measuring mechanical properties of biological surface
US20050166678A1 (en) Method and device for examining fatigue resistance of metallic materials at ultrasonic frequencies and constant temperature
Locke et al. Monolithic sapphire parametric transducer operation at cryogenic temperatures
Updike et al. The damping performance of aluminum-based composites
Campos-Pozuelo et al. Limiting strain of metals subjected to high-intensity ultrasound
Tittmann et al. Ultrasonic sensors for high temperature applications
US5731521A (en) Apparatus for monitoring high temperature ultrasonic characterization
JP2002517745A (en) Mass measuring device with balanced normalized temperature coefficient
JP4122443B2 (en) Elastic modulus measuring device and composite sensor
JP3119929B2 (en) Equipment for measuring the density of liquids and gases
Zhang et al. New technique for measuring the dynamic Young's modulus between 295 and 6 K
Salazar et al. Piezoelectric accelerometer for high temperature (1300° C) sensing
Maxfield et al. Electromagnetic detection of acoustic emission from a martensitic transformation.
Adams et al. Measurement of the strain-dependent damping of metals in axial vibration
Date et al. Measurement of the elasticity and ultrasound velocities of steel
Ni et al. Determination of stress intensity factor in ultrasonic fatigue loading by means of dynamic modal analysis and three-dimensional finite element calculation
Schindel et al. A study of materials at high temperature using miniaturized resonant tuning forks and noncontact capacitance transducers

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020507

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

LAPS Cancellation because of no payment of annual fees
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350