JP3308621B2 - Ultrasound diagnostic equipment - Google Patents

Ultrasound diagnostic equipment

Info

Publication number
JP3308621B2
JP3308621B2 JP01614593A JP1614593A JP3308621B2 JP 3308621 B2 JP3308621 B2 JP 3308621B2 JP 01614593 A JP01614593 A JP 01614593A JP 1614593 A JP1614593 A JP 1614593A JP 3308621 B2 JP3308621 B2 JP 3308621B2
Authority
JP
Japan
Prior art keywords
circuit
housing
signal
output signal
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01614593A
Other languages
Japanese (ja)
Other versions
JPH06225874A (en
Inventor
祐一 三和
裕 鱒沢
伴  秀行
正男 管
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP01614593A priority Critical patent/JP3308621B2/en
Publication of JPH06225874A publication Critical patent/JPH06225874A/en
Application granted granted Critical
Publication of JP3308621B2 publication Critical patent/JP3308621B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、医療診断に用いる超音
波診断装置のハードウェア構成に係り、特に、装置を構
成する回路が二つの部分に分割され、二つの部分間でデ
ータを相互に転送する超音波診断装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hardware configuration of an ultrasonic diagnostic apparatus used for medical diagnosis, and in particular, a circuit constituting the apparatus is divided into two parts, and data is exchanged between the two parts. The present invention relates to an ultrasonic diagnostic apparatus for transferring.

【0002】[0002]

【従来の技術】従来の超音波診断装置では、装置の全回
路が一つにまとめられ、全回路を収納する筐体が装置の
使用場所に置かれている。例として、医用超音波機器ハ
ンドブック(第100頁,コロナ社)がある。また超音
波診断装置の信号処理回路の大部分をプローブ内に集積
する例として特開昭57−170230号公報がある。
2. Description of the Related Art In a conventional ultrasonic diagnostic apparatus, all circuits of the apparatus are integrated into one, and a housing for accommodating all the circuits is placed at a place where the apparatus is used. An example is the Medical Ultrasound Equipment Handbook (page 100, Corona). JP-A-57-170230 discloses an example in which most of the signal processing circuit of an ultrasonic diagnostic apparatus is integrated in a probe.

【0003】[0003]

【発明が解決しようとする課題】従来技術では、超音波
診断装置の全回路を装置の使用場所に置くため、装置の
回路規模,消費電力が、使用場所に応じて制限を受け
る。例えば、病院の診察室が小さく、許容電力も少ない
場合には、大型,高消費電力の超音波診断装置を置くこ
とができない。また超音波診断装置に新しい機能を付加
する場合も、回路規模と消費電力の制限を受け、この制
限を満足しない場合は新機能付加が困難となる。よって
装置がいかなる診断場所でも使用可能であるためには、
コンパクト,高性能であることが必要である。しかし装
置が高性能であることと、コンパクトであることとは、
一般に相反する関係にある。つまり高性能にすると回路
規模,消費電力が大きくなり、一方、コンパクトにする
と性能が制限を受ける。この解決策として回路の集積化
がある。例えば、特開昭57−170230号公報では、プロー
ブ内に装置回路の大部分を集積しており、この方法によ
ればコンパクト,高性能の装置が実現できる。だが回路
の集積化には限度があり、高性能超音波診断装置の回路
を可能な限り集積化しても、使用場所によって課される
回路規模,消費電力の条件を満足しない場合がある。
In the prior art, since the entire circuit of the ultrasonic diagnostic apparatus is placed at the place where the apparatus is used, the circuit scale and power consumption of the apparatus are limited depending on the place of use. For example, if a hospital examination room is small and the allowable power is small, a large-sized, high-power-consumption ultrasonic diagnostic apparatus cannot be installed. Also, when a new function is added to the ultrasonic diagnostic apparatus, the circuit scale and the power consumption are limited. If the restriction is not satisfied, it is difficult to add a new function. Therefore, in order for the device to be usable in any diagnostic location,
It needs to be compact and high-performance. However, the high performance and compactness of the device
In general, they are in conflict. In other words, the higher the performance, the larger the circuit scale and power consumption, while the smaller the size, the more the performance is limited. One solution to this problem is circuit integration. For example, in Japanese Patent Application Laid-Open No. 57-170230, most of the device circuits are integrated in a probe, and according to this method, a compact and high-performance device can be realized. However, there is a limit to the integration of the circuit, and even if the circuits of the high-performance ultrasonic diagnostic apparatus are integrated as much as possible, the conditions of the circuit scale and power consumption imposed depending on the place of use may not be satisfied.

【0004】本発明の目的は、使用場所によって課され
る回路規模,消費電力の条件を、回路の高集積化以外の
方法で満足する、コンパクトで高性能な超音波診断装置
を提供することにある。
An object of the present invention is to provide a compact and high-performance ultrasonic diagnostic apparatus which satisfies conditions of a circuit scale and power consumption imposed by a place of use by a method other than high integration of circuits. is there.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明における超音波診断装置では、被検体内への
超音波送受を行う探触子と、前記探触子に電圧を印加す
る送波回路と、探触子で受けた複数の反射超音波信号を
増幅する増幅回路と、増幅された複数の受波信号をディ
ジタル化するAD変換器と、複数のディジタル化された
受波信号の位相を合わせる整相回路と、位相を合わせた
複数の信号を加算する加算回路と、加算後の信号を画像
信号に変換する検波回路と、加算後の信号を血流信号に
変換するドプラ回路と、画像信号ならびに血流信号を表
示する表示回路と、装置全回路の制御を行う制御回路
と、装置の使用者が診断時に用いる操作卓とを備え、探
触子,送波回路,増幅回路,AD変換器,表示回路,操
作卓を第1の筐体に収納し、整相回路,加算回路,検波
回路,ドプラ回路,制御回路を第2の筐体に収納し、第
1の筐体から第2の筐体へのデータ転送は、第1の筐体
の出力信号を変調する第1の変調回路と、変調された信
号を転送する第1の転送手段と、転送されたデータを復
調し第2の筐体への入力信号とする第1の復調回路とに
より行い、第2の筐体から第1の筐体へのデータ転送
は、第2の筐体の出力信号を変調する第2の変調回路
と、変調された信号を転送する第2の転送手段と、転送
されたデータを復調し第1の筐体への入力信号とする第
2の復調回路とにより行う。
In order to achieve the above object, in an ultrasonic diagnostic apparatus according to the present invention, a probe for transmitting / receiving ultrasonic waves to / from a subject, and a voltage is applied to the probe. A transmitting circuit, an amplifier circuit for amplifying a plurality of reflected ultrasonic signals received by the probe, an AD converter for digitizing the amplified plurality of received signals, and a plurality of digitized received signals Phase-adjusting circuit, an adding circuit that adds a plurality of signals that have been adjusted in phase, a detection circuit that converts the added signal into an image signal, and a Doppler circuit that converts the added signal into a blood flow signal. A display circuit for displaying an image signal and a blood flow signal; a control circuit for controlling the entire circuit of the device; and a console used by a user of the device for diagnosis, a probe, a transmission circuit, and an amplifier circuit. , AD converter, display circuit and console in the first case The phasing circuit, the addition circuit, the detection circuit, the Doppler circuit, and the control circuit are housed in a second housing, and data transfer from the first housing to the second housing is performed in the first housing. A first modulation circuit that modulates the output signal of the first case, a first transfer unit that transfers the modulated signal, and a first demodulation circuit that demodulates the transferred data and uses it as an input signal to the second housing. The data transfer from the second housing to the first housing is performed by a second modulation circuit that modulates an output signal of the second housing, and a second transfer that transfers the modulated signal. Means and a second demodulation circuit which demodulates the transferred data and makes it an input signal to the first housing.

【0006】[0006]

【作用】本発明では超音波診断装置の全回路を二つの部
分に分け、第1の部分を装置の使用場所に置き、第2の
部分を装置の使用場所以外に置き、部分間でディジタル
データ転送を行う。これにより、使用場所においてはコ
ンパクトに見える装置が、別に設置した回路とのデータ
転送により高性能で稼働することができる。
According to the present invention, the entire circuit of the ultrasonic diagnostic apparatus is divided into two parts, the first part is placed at the place of use of the apparatus, the second part is placed at a place other than the place of use of the apparatus, and digital data is placed between the parts. Perform a transfer. As a result, a device that looks compact at the place of use can operate with high performance by transferring data with a separately installed circuit.

【0007】[0007]

【実施例】図1に本発明の1実施例である超音波診断装
置のブロック図を示す。図1において、U1は第1の筐
体、U2は第2の筐体、PBは探触子、TRは送波回
路、AMPは増幅回路、A/DはAD変換器、PCは整
相回路、SUは加算回路、DTは検波回路、DOPはド
プラ回路、CRTは表示回路、OPは操作卓、CNTは制
御回路、M1は第1の変調器、T1は第1の転送手段、
D1は第1の復調器、M2は第2の変調器、T2は第2
の転送手段、D2は第2の復調器、ADSはAD変換器
の出力信号、OPSは操作卓の出力信号、DTSは検波
回路の出力信号、DOPSはドプラ回路の出力信号、C
NTS1は筐体1に含まれる全回路を制御する制御回路
の出力信号、CNTS2は筐体2に含まれる全回路を制
御する制御回路の出力信号である。ADS,OPS,D
TS,DOPS,CNTS1,CNTS2は全てディジ
タル信号である。
FIG. 1 is a block diagram showing an ultrasonic diagnostic apparatus according to one embodiment of the present invention. In FIG. 1, U1 is a first housing, U2 is a second housing, PB is a probe, TR is a transmission circuit, AMP is an amplification circuit, A / D is an AD converter, and PC is a phasing circuit. , SU is an addition circuit, DT is a detection circuit, DOP is a Doppler circuit, CRT is a display circuit, OP is a console, CNT is a control circuit, M1 is a first modulator, T1 is first transfer means,
D1 is the first demodulator, M2 is the second modulator, T2 is the second demodulator
D2 is the second demodulator, ADS is the output signal of the AD converter, OPS is the output signal of the console, DTS is the output signal of the detection circuit, DOPS is the output signal of the Doppler circuit, C
NTS1 is an output signal of a control circuit that controls all circuits included in the housing 1, and CNTS2 is an output signal of a control circuit that controls all circuits included in the housing 2. ADS, OPS, D
TS, DOPS, CNTS1, CNTS2 are all digital signals.

【0008】第1の筐体U1に、探触子PB,送波回路
TR,増幅回路AMP,AD変換器A/D,表示回路C
RT,操作卓OPを収納し、第2の筐体U2に、整相回
路PC,加算回路SU,検波回路DT,ドプラ回路DO
P,制御回路CNTを収納する。第1の筐体U1から第
2の筐体U2へのデータ転送は、第1の筐体の出力信号
を変調する第1の変調回路M1と、変調された信号を転
送する第1の転送手段T1と、転送されたデータを復調
し第2の筐体への入力信号とする第1の復調回路D1と
により行う。第2の筐体から第1の筐体へのデータ転送
は、第2の筐体の出力信号を変調する第2の変調回路M
2と、変調された信号を転送する第2の転送手段T2
と、転送されたデータを復調し第1の筐体への入力信号
とする第2の復調回路D2とにより行う。
A probe PB, a transmitting circuit TR, an amplifying circuit AMP, an AD converter A / D, and a display circuit C are provided in a first housing U1.
The RT and the console OP are housed, and the phasing circuit PC, the adding circuit SU, the detecting circuit DT, and the Doppler circuit DO are provided in the second housing U2.
P, which stores the control circuit CNT. Data transfer from the first case U1 to the second case U2 is performed by a first modulation circuit M1 for modulating an output signal of the first case and a first transfer unit for transferring the modulated signal. This is performed by T1 and a first demodulation circuit D1 which demodulates the transferred data and uses it as an input signal to the second housing. Data transfer from the second housing to the first housing is performed by a second modulation circuit M that modulates an output signal of the second housing.
2 and second transfer means T2 for transferring the modulated signal.
And a second demodulation circuit D2 which demodulates the transferred data and uses it as an input signal to the first case.

【0009】TRにより送波電圧を加えられたPBが被
検体に対し超音波を送波する。被検体からの複数の反射
信号を同じPBが受信する。複数の受波信号はAMPで
増幅された後、A/Dでディジタル化されADSとな
る。ADSはM1で変調され、T1を転送され、D1で
復調されPCの入力信号となる。PCは複数の受波信号
の位相を合わせ、位相の合った信号をSUで加算する。
DTは加算後の信号を画像信号DTSに変換し、DOP
は加算後の信号を血流信号DOPSに変換する。DTS
とDOPSはM2で変調され、T2を転送され、D2で
復調されCRTの入力信号となる。CRTでDTSとD
OPSを表示する。
The PB to which the transmission voltage has been applied by the TR transmits an ultrasonic wave to the subject. The same PB receives a plurality of reflection signals from the subject. After a plurality of received signals are amplified by AMP, they are digitized by A / D and become ADS. The ADS is modulated by M1, transferred by T1, demodulated by D1, and becomes an input signal of the PC. The PC adjusts the phases of the plurality of received signals, and adds the signals having the same phase using the SU.
DT converts the added signal into an image signal DTS,
Converts the added signal into a blood flow signal DOPS. DTS
And DOPS are modulated by M2, transferred by T2, demodulated by D2, and become an input signal of a CRT. DTS and D on CRT
Display OPS.

【0010】装置の使用者は、操作卓から装置を制御す
る。操作卓の出力信号OPSはADS同様M1,T1,D
1経由でU2に転送され、CNTの入力信号となる。C
NTはOPSを制御信号に変換する。なお、使用者から
の指示が不要な制御信号はCNTが自動的に発する。U
1内の回路はCNTS1により、U2内の回路はCNT
S2により制御される。CNTS1はDTS,DOPS
同様M2,T2,D2経由でU1に転送される。図1で
はブロック図を見やすくするために、U1内のCNTS
1,U2内のCNTS2の制御先を明示していないが、
実際は各筐体中の全回路を制御する。また図1では、O
PSはCNTにおいて制御信号に変換されることとした
が、OPSが直接U1,U2内の回路の制御信号となる
ことも可能である。
The user of the device controls the device from the console. The output signal OPS of the console is M1, T1, D like ADS.
The signal is transferred to U2 via 1 and becomes an input signal of CNT. C
NT converts the OPS into a control signal. The control signal that does not require an instruction from the user is automatically generated by the CNT. U
The circuit in U1 is CNTS1 and the circuit in U2 is CNT
It is controlled by S2. CNTS1 is DTS, DOPS
Similarly, it is transferred to U1 via M2, T2 and D2. In FIG. 1, to make the block diagram easier to see, CNTS in U1
1, Although the control destination of CNTS2 in U2 is not specified,
Actually, it controls all circuits in each case. In FIG. 1, O
The PS is converted into a control signal in the CNT, but the OPS can be directly used as a control signal for circuits in U1 and U2.

【0011】さて断層像が高精細であるためには素子数
が多いことが望ましく、装置が高フレームレートである
ためにはAD変換器が素子数と同数あることが望まし
い。例えば、素子数を128とすると、AD変換器は1
28個必要になる。このときAD変換器の出力信号AD
Sを、直接U1からU2へ転送すると、(128×A/
Dのビット数)の信号線が必要になりT1の規模が膨大
になる。そこで信号を変調する。信号線の数を減らす変
調方法の一つとして光通信がある。この場合、変調回路
M1,M2は発光回路、転送手段T1,T2は光ファイ
バ、復調回路D1,D2は受光回路となる。
It is desirable that the number of elements be large in order for the tomographic image to be high definition, and that the number of AD converters be the same as the number of elements in order for the apparatus to have a high frame rate. For example, if the number of elements is 128, the AD converter is 1
You need 28. At this time, the output signal AD of the AD converter
When S is directly transferred from U1 to U2, (128 × A /
(The number of bits of D) is required, and the scale of T1 becomes enormous. Therefore, the signal is modulated. Optical communication is one of the modulation methods for reducing the number of signal lines. In this case, the modulation circuits M1 and M2 are light emitting circuits, the transfer means T1 and T2 are optical fibers, and the demodulation circuits D1 and D2 are light receiving circuits.

【0012】U1は装置の使用場所に設置し、U2は装
置の使用場所以外に設置する。U1は設置場所が小さ
く、消費電力が少ない場合にも対応できるようコンパク
トな構成にする。よって本発明ではU1に収納する回路
は、装置の使用場所に必須の回路だけに限定した。通常
の超音波診断装置において、回路の規模が大きく消費電
力が多いのは整相部,ドプラ部,制御部である。本発明
ではこれら三つはU2に収納するので、U1はコンパク
トに設計することが可能であり、高集積化する。
U1 is installed at a place where the apparatus is used, and U2 is installed at a place other than the place where the apparatus is used. U1 has a compact configuration so that it can cope with a case where the installation place is small and the power consumption is small. Therefore, in the present invention, the circuits housed in U1 are limited to only those circuits that are essential in the place where the device is used. In a normal ultrasonic diagnostic apparatus, the phasing unit, the Doppler unit, and the control unit have a large circuit scale and large power consumption. In the present invention, these three are housed in U2, so that U1 can be designed to be compact and highly integrated.

【0013】U2には、U1に収納しなっかた全回路を
収納する。筐体間のデータ転送は全てディジタルで行う
ため、U1とU2を長距離離しても転送時の情報劣化が
ない。よってU2は設置場所,消費電力に余裕のある地
下室などに置く。これによりU2の回路に対しては、性
能を重視し、回路規模,消費電力をあまり考慮せずに、
種々の機能を付加することができる。通常の超音波診断
装置において、その機能により装置の性能が大きく変わ
るのは整相部,ドプラ部である。本発明においてこれら
二つはU2に収納するので、装置の高性能化が容易に行
える。
U2 accommodates all the circuits that cannot be accommodated in U1. Since all data transfer between the housings is performed digitally, there is no information deterioration at the time of transfer even if U1 and U2 are separated by a long distance. Therefore, U2 is placed in an installation place, a basement room where power consumption is sufficient, or the like. As a result, for the circuit of U2, the performance is emphasized, and the circuit scale and the power consumption are not considered so much.
Various functions can be added. In a normal ultrasonic diagnostic apparatus, the function of the function greatly changes the performance of the apparatus in the phasing unit and the Doppler unit. In the present invention, these two are housed in U2, so that the performance of the device can be easily improved.

【0014】U1,U2の接続方法の1例を図2に示
す。U1CはU1付属のコネクタ、U1RCはU1を設
置する場所付属のコネクタ、U2CはU2付属のコネク
タ、U2RCはU2を設置する場所付属のコネクタであ
る。U1,U2はそれぞれ、光ファイバとのコネクタU
1C,U2Cを筐体の表面に持つ。例えば、U1を診察
室に、U2を地下室に置く。U1の使用場所である診察
室では、例えば壁などから光ファイバT1,T2が出て
おり、ファイバの先は診察室備え付けのコネクタU1R
Cとなっている。U2の設置場所である地下室でも、壁
などから光ファイバT1,T2が出ており、ファイバの
先は地下室備え付けのコネクタU2RCとなっている。
装置の使用時、U1RCはU1Cと接続され、U2RC
はU2Cと接続され、相互にデータ転送を行う。
FIG. 2 shows an example of a method of connecting U1 and U2. U1C is a connector attached to U1, U1RC is a connector attached to a place where U1 is installed, U2C is a connector attached to U2, and U2RC is a connector attached to a place where U2 is installed. U1 and U2 are connectors U to the optical fiber, respectively.
1C and U2C are provided on the surface of the housing. For example, U1 is placed in the examination room and U2 is placed in the basement. In the examination room where U1 is used, for example, optical fibers T1 and T2 emerge from a wall or the like, and the end of the fiber is a connector U1R provided in the examination room.
C. Even in the basement where U2 is installed, the optical fibers T1 and T2 protrude from walls and the like, and the end of the fiber is a connector U2RC provided in the basement.
When using the device, U1RC is connected to U1C and U2RC
Are connected to U2C, and mutually transfer data.

【0015】U2を設置場所から動かさないならば、地
下室の壁などから出ている光ファイバはコネクタを介さ
ず直接U2に接続する。一方、U1はコンパクトなの
で、移動が簡単である。そこで各病室、各手術室等にU
1RCを設置する。ユーザはU1を適宜使用場所に移動
し、使用場所のU1RCとU1Cとを接続しU2との間
でデータ転送を行い撮像をする。
If U2 is not moved from the installation location, the optical fiber coming out of the basement wall or the like is directly connected to U2 without using a connector. On the other hand, since U1 is compact, it is easy to move. Therefore, each hospital room, each operating room, etc.
Install 1RC. The user moves U1 to the place of use as appropriate, connects U1RC and U1C at the place of use, performs data transfer with U2, and performs imaging.

【0016】さて、U1は装置の使用場所に必須の回路
のみを収納し、極力集積化するので低価格で作成するこ
とが可能である。そこで複数のU1と、一つのU2でシ
ステムを構成することも可能である。これを図3に示
す。SWは切換器である。図3ではU1を4つとし、そ
れぞれU11,U12,U13,U14とする。このと
き各U1はリアルタイムで断層像を構成しなければなら
ない。U2がU11〜U14の四つの信号を同時にリア
ルタイム処理できるならば、SWは必要なく同時に四つ
の場所でU1を稼動することができる。だがU2が一つ
のU1の信号しか処理できないならば、SWにより一つ
のU1を選択し、選択されたU1のみが撮像を行う。こ
の場合、同時に稼動できるU1は一つであるが、例え
ば、病院の各階でU1を持てば、各階間でU1を移動す
る必要が無くなる。
U1 accommodates only essential circuits in the place where the apparatus is used and is integrated as much as possible, so that it can be manufactured at a low price. Therefore, it is possible to configure a system with a plurality of U1s and one U2. This is shown in FIG. SW is a switch. In FIG. 3, there are four U1, and they are U11, U12, U13, and U14, respectively. At this time, each U1 must form a tomographic image in real time. If U2 can simultaneously process the four signals U11 to U14 in real time, it is possible to operate U1 in four places at the same time without the need for SW. However, if U2 can process only one U1 signal, one U1 is selected by SW, and only the selected U1 performs imaging. In this case, only one U1 can be operated at the same time. For example, if U1 is held at each floor of the hospital, there is no need to move U1 between each floor.

【0017】また、U2を巡回車に搭載し、U1を個人
の住宅に持ち込むことにより、在宅診療や巡回診断に応
用できる。この例を図4に示す。CARは巡回車、HO
MEは個人の住宅である。大規模なU2は車の中に残
し、コンパクトなU1を家の中に入れる。U2の電力は
巡回車が供給する。これにより、患者は病院に出向くこ
となく、個人の住宅でも高性能の超音波診断を行うこと
ができる。U1を持ち込む先は、他にも学校,老人ホー
ム等が考えられる。
Further, by mounting U2 on a patrol car and bringing U1 to a private residence, it can be applied to home medical treatment and patrol diagnosis. This example is shown in FIG. CAR is a patrol car, HO
ME is a private residence. Leave the large U2 in the car and put the compact U1 in the house. U2 power is supplied by the patrol car. Thereby, the patient can perform high-performance ultrasonic diagnosis even in a private residence without going to the hospital. Schools, nursing homes, etc. may be considered as destinations for bringing U1.

【0018】データ転送部の構成について述べる。デー
タ量が最も多いのはADSである。例えばA/Dの振幅
分解能を8ビット、時間分解能を40nsec(25MH
z)、素子数を128とすれば全データ転送量は25Gb
it/secである。光ファイバは1本で2Tbit/sec
まで転送可能なので、T1は1本の光ファイバで構成で
きる。しかし、1組の発光回路,受光回路で25Gbit
/secを転送するのは困難であり、発光回路,受光回路
は複数組必要になる。例えば1組の発光回路,受光回路
が2Gbit/sec の転送レートを持つならば、M1に
は13個の発光回路、D1には13個の受光回路が必要
になる。
The configuration of the data transfer section will be described. ADS has the largest amount of data. For example, the A / D amplitude resolution is 8 bits, and the time resolution is 40 nsec (25 MHz).
z), if the number of elements is 128, the total data transfer amount is 25 Gb
It / sec. One optical fiber is 2Tbit / sec
Since T1 can be transferred, T1 can be constituted by one optical fiber. However, one set of light emitting circuit and light receiving circuit requires 25 Gbit
/ Sec is difficult to transfer, and a plurality of light emitting circuits and light receiving circuits are required. For example, if one set of light emitting circuit and light receiving circuit has a transfer rate of 2 Gbit / sec, M1 requires 13 light emitting circuits and D1 requires 13 light receiving circuits.

【0019】このとき1本の光ファイバで、複数の発光
回路の信号を転送することも可能であるし、一つの発光
回路の信号を1本の光ファイバで転送することも可能で
ある。ただしU1RCの操作性を考えると、T1を構成
する光ファイバの数は少ない方がよい。OPS,DT
S,DOPS,CNTS1のデータ量はいずれもADS
より2桁以上小さいので、OPSはADSと同回路で転
送可能であり、DTS,DOPS,CNTS1の転送に
は発光回路,受光回路が1組あれば十分である。さらに
双方向光通信が可能ならば、T1とT2をまとめて1本
の光ファイバとすることも可能である。
At this time, it is possible to transfer the signals of a plurality of light emitting circuits with one optical fiber, and it is also possible to transfer the signals of one light emitting circuit with one optical fiber. However, considering the operability of U1RC, it is better that the number of optical fibers constituting T1 is small. OPS, DT
The data amount of S, DOPS and CNTS1 is ADS
Since the OPS can be transferred by the same circuit as the ADS since it is smaller by two digits or more, a single set of a light emitting circuit and a light receiving circuit is sufficient for transferring DTS, DOPS, and CNTS1. Further, if bidirectional optical communication is possible, T1 and T2 can be combined into one optical fiber.

【0020】また本発明では、装置のバージョンアップ
をU2の回路修正のみで行うならば、バージョンアップ
時にはU2のみを交換すればよいので、アップグレーダ
ブルになる。
Further, according to the present invention, if the device is upgraded only by modifying the circuit of U2, only U2 needs to be replaced at the time of upgrading, so that upgrade is possible.

【0021】[0021]

【発明の効果】本発明では、超音波診断装置の全回路を
二つの筐体に分けて収納し、コンパクトな第1の筐体を
装置の使用場所に置き、高性能撮像に必要な大規模な回
路を有する第2の筐体を装置の使用場所以外に置き、筐
体間でディジタルデータ転送を行うこととした。これに
より、回路の高集積化を行わなくても、使用場所ではコ
ンパクトであり、かつ、高性能な超音波診断装置を実現
できる。
According to the present invention, the entire circuit of the ultrasonic diagnostic apparatus is housed in two housings, and the first housing, which is compact, is placed at the place where the apparatus is used, and the large scale necessary for high-performance imaging is obtained. The second housing having a simple circuit is placed at a place other than the place where the apparatus is used, and digital data is transferred between the housings. As a result, a compact and high-performance ultrasonic diagnostic apparatus can be realized at the place of use without high integration of the circuit.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の1実施例における超音波診断装置のブ
ロック図。
FIG. 1 is a block diagram of an ultrasonic diagnostic apparatus according to an embodiment of the present invention.

【図2】第1の筐体と第2の筐体とを光ファイバで結ぶ
場合のブロック図。
FIG. 2 is a block diagram in a case where a first housing and a second housing are connected by an optical fiber.

【図3】複数の第1の筐体と一つの第2の筐体とを接続
する場合のブロック図。
FIG. 3 is a block diagram in a case where a plurality of first housings is connected to one second housing.

【図4】第1の筐体を個人の住宅に持ち込み、第2の筐
体を巡回車に設置する場合の説明図。
FIG. 4 is an explanatory diagram of a case where a first housing is brought into a private residence and a second housing is installed on a patrol car.

【符号の説明】[Explanation of symbols]

U1…第1の筐体、U2…第2の筐体、PB…探触子、
TR…送波回路、AMP…増幅回路、A/D…AD変換
器、PC…整相回路、SU…加算回路、DT…検波回
路、DOP…ドプラ回路、CRT…表示回路、OP…操
作卓、CNT…制御回路、M1…第1の変調器、T1…
第1の転送手段、D1…第1の復調器、M2…第2の変
調器、T2…第2の転送手段、D2…第2の復調器。
U1: first housing, U2: second housing, PB: probe,
TR: transmission circuit, AMP: amplification circuit, A / D: AD converter, PC: phasing circuit, SU: addition circuit, DT: detection circuit, DOP: Doppler circuit, CRT: display circuit, OP: console, CNT: control circuit, M1: first modulator, T1 ...
First transfer means, D1 first demodulator, M2 second modulator, T2 second transfer means, D2 second demodulator.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 管 正男 東京都国分寺市東恋ケ窪1丁目280番地 株式会社 日立製作所 中央研究所内 (56)参考文献 特開 平5−130993(JP,A) 特開 平5−228139(JP,A) 特開 平4−208141(JP,A) 特開 昭61−113435(JP,A) 特開 平2−98344(JP,A) 実開 昭63−201517(JP,U) (58)調査した分野(Int.Cl.7,DB名) A61B 8/00 - 8/15 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Masao Kan 1-280 Higashi Koigakubo, Kokubunji-shi, Tokyo Central Research Laboratory, Hitachi, Ltd. (56) References JP-A-5-130993 (JP, A) JP-A-5 JP-A-228139 (JP, A) JP-A-4-208141 (JP, A) JP-A-61-113435 (JP, A) JP-A-2-98344 (JP, A) Japanese Utility Model Laid-Open No. 63-201517 (JP, U) (58) Fields surveyed (Int. Cl. 7 , DB name) A61B 8/00-8/15

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 被検体内への超音波送受を行う探触子と、
前記探触子に電圧を印加する送波回路と、増幅された複
数の受波信号をディジタル化するAD変換器と、前記探
触子で受信された超音波による信号を処理することによ
り得られる画像信号を表示する表示回路と、操作卓と、
前記操作卓ないしAD変換器の出力信号を変調する第1
の変調回路とが収納された第1の筐体と、 前記探触子で受波した複数の反射超音波信号を増幅する
増幅回路と、前記AD変換器の出力信号の位相を整相す
る整相回路と、該整相回路の出力信号を加算する加算回
路と、加算後の信号を画像信号に変換する検波回路と、
加算後の信号を血流信号に変換するドプラ回路と、前記
第1の筐体内に格納された回路、前記増幅回路、整相回
路、加算回路、検波回路およびドプラ回路の制御を行う
制御回路と、前記検波回路ないしドプラ回路、あるいは
制御回路の出力信号を変調する第2の変調回路とが収納
された第2の筐体とを有し、 前記第1の筐体は、更に前記第1の変調回路の出力信号
を前記第2の筐体へ転送する第1の転送手段と、前記第
2の変調回路からの入力信号を復調する第2の復調回路
とを有し、 前記第2の筐体は、更に前記第2の変調回路の出力信号
を前記第1の筐体へ転送する第2の転送手段と、前記第
1の転送手段からの出力を入力とする第1の復調回路と
を有することを特徴とする超音波診断装置。
A probe for transmitting / receiving ultrasonic waves to / from a subject;
A wave transmitting circuit that applies a voltage to the probe, an AD converter that digitizes a plurality of amplified received signals, and a signal that is obtained by processing an ultrasonic signal received by the probe. A display circuit for displaying image signals, a console,
A first modulator for modulating an output signal of the console or the AD converter;
A first housing accommodating the above-mentioned modulation circuit, an amplification circuit for amplifying a plurality of reflected ultrasonic signals received by the probe, and a phasing for phasing the phase of an output signal of the AD converter. A phase circuit, an addition circuit that adds the output signals of the phasing circuit, and a detection circuit that converts the added signal into an image signal,
A Doppler circuit for converting the signal after addition into a blood flow signal, a circuit stored in the first housing, a control circuit for controlling the amplification circuit, the phasing circuit, the addition circuit, the detection circuit, and the Doppler circuit; A second housing in which the detection circuit or the Doppler circuit or a second modulation circuit for modulating an output signal of the control circuit is housed. The first housing further includes the first housing. A first transfer unit that transfers an output signal of the modulation circuit to the second housing; and a second demodulation circuit that demodulates an input signal from the second modulation circuit; The body further includes a second transfer unit that transfers an output signal of the second modulation circuit to the first housing, and a first demodulation circuit that receives an output from the first transfer unit as an input. An ultrasonic diagnostic apparatus comprising:
【請求項2】 請求項1に記載の超音波診断装置におい
て、前記第1の転送手段および第2の転送手段として光
ファイバを備え、前記第1の筐体と第2の筐体内に発光
素子と受光素子とを設けたことを特徴とする超音波診断
装置。
2. An ultrasonic diagnostic apparatus according to claim 1, further comprising an optical fiber as said first transfer means and said second transfer means, wherein a light emitting element is provided in said first housing and said second housing. An ultrasonic diagnostic apparatus comprising: a light receiving element;
JP01614593A 1993-02-03 1993-02-03 Ultrasound diagnostic equipment Expired - Fee Related JP3308621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01614593A JP3308621B2 (en) 1993-02-03 1993-02-03 Ultrasound diagnostic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01614593A JP3308621B2 (en) 1993-02-03 1993-02-03 Ultrasound diagnostic equipment

Publications (2)

Publication Number Publication Date
JPH06225874A JPH06225874A (en) 1994-08-16
JP3308621B2 true JP3308621B2 (en) 2002-07-29

Family

ID=11908337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01614593A Expired - Fee Related JP3308621B2 (en) 1993-02-03 1993-02-03 Ultrasound diagnostic equipment

Country Status (1)

Country Link
JP (1) JP3308621B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2345543A (en) * 1999-01-06 2000-07-12 Intravascular Res Ltd Ultrasonic visualisation system with remote components
JP3537358B2 (en) 1999-08-30 2004-06-14 松下電器産業株式会社 Ultrasound diagnostic equipment

Also Published As

Publication number Publication date
JPH06225874A (en) 1994-08-16

Similar Documents

Publication Publication Date Title
US20020016545A1 (en) Mobile ultrasound diagnostic instrument and system using wireless video transmission
CN101742968B (en) Wireless ultrasound probe user interface
US20180185009A1 (en) Method and system for pda-based ultrasound
US6364839B1 (en) Ultrasound diagnostic instrument having software in detachable scanhead
USRE40608E1 (en) Arrangement of IVUS system components including remote and adjacent components
US7549961B1 (en) System and method supporting imaging and monitoring applications
US7471310B2 (en) Intelligent camera head
US6440072B1 (en) Medical diagnostic ultrasound imaging system and method for transferring ultrasound examination data to a portable computing device
RU2529889C2 (en) Ultrasonic device and system comprising replaceable transducers and displays
EP0833266A3 (en) Ultrasonic diagnostic imaging system with universal access to diagnostic information and images
DE69722839D1 (en) Network connectivity of a portable patient monitoring system
KR970012211A (en) Medical system for at-home patients
CN101742969A (en) Dual frequency doppler ultrasound probe
JP2006519684A (en) Portable ultrasound unit and docking station
EP1153573A3 (en) Stethoscope mouse
JP2005279274A (en) Ultrasound system
JP2005519719A5 (en)
JP3308621B2 (en) Ultrasound diagnostic equipment
WO2014030933A1 (en) Ultrasound diagnosis device, display device displaying ultrasound image, and method of operating ultrasound diagnosis device
JPH06327681A (en) Ultrasonic diagnostic apparatus
CA2372152C (en) Ultrasound diagnostic instrument having software in detachable scanhead
US20090131786A1 (en) Ultrasonic diagnostic apparatus and ultrasonic diagnostic apparatus system
JP2000163364A (en) Ultrasonic diagnostic system
JP2005144086A (en) Ophthalmic medical care system
JP2001178025A (en) Method of on/off controlling apparatus and on/off control system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080517

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080517

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090517

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100517

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110517

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees