JP3306580B2 - Regenerative burner furnace - Google Patents

Regenerative burner furnace

Info

Publication number
JP3306580B2
JP3306580B2 JP07103597A JP7103597A JP3306580B2 JP 3306580 B2 JP3306580 B2 JP 3306580B2 JP 07103597 A JP07103597 A JP 07103597A JP 7103597 A JP7103597 A JP 7103597A JP 3306580 B2 JP3306580 B2 JP 3306580B2
Authority
JP
Japan
Prior art keywords
burner
furnace
regenerative
regenerative burner
adjusting means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07103597A
Other languages
Japanese (ja)
Other versions
JPH10267262A (en
Inventor
良基 藤井
健人 佐々木
裕和 勝島
敏明 長谷川
敏幸 佐野
康弘 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
JFE Engineering Corp
Original Assignee
Daido Steel Co Ltd
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd, JFE Engineering Corp filed Critical Daido Steel Co Ltd
Priority to JP07103597A priority Critical patent/JP3306580B2/en
Publication of JPH10267262A publication Critical patent/JPH10267262A/en
Application granted granted Critical
Publication of JP3306580B2 publication Critical patent/JP3306580B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃焼反応を熱源と
する蓄熱式バーナ炉、特にその炉内温度の制御にに関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a regenerative burner furnace using a combustion reaction as a heat source, and more particularly to controlling the temperature in the furnace.

【0002】[0002]

【従来の技術】近年、金属加熱炉、熱処理炉等工業用炉
の熱効率を高める燃焼装置として、例えば特開昭62−
94703号公報、特開平2−10002号公報等にお
いては、第1のバーナと第2のバーナとを一対として、
一対または複数対のバーナ群を1つの燃焼室に配置し、
各バーナはそれぞれ燃焼用空気及び燃焼排ガスが通過す
る蓄熱体を有し、第1のバーナ群と第2のバーナ群とを
交互に燃焼させてバーナが非燃焼時にそのバーナの蓄熱
体を通過する燃焼排ガスの熱をその蓄熱体に伝熱、蓄熱
させ、燃焼時にその蓄熱体に蓄熱された熱を通過する燃
焼用空気が抜熱し予熱(加熱)されるサイクルを繰り返
す蓄熱式バーナが提案されており、また、特開平5−1
18764号公報にはその蓄熱式バーナを配置した工業
炉(蓄熱式バーナ炉)が提案されている。
2. Description of the Related Art In recent years, as a combustion apparatus for improving the thermal efficiency of industrial furnaces such as a metal heating furnace and a heat treatment furnace, Japanese Patent Application Laid-Open No.
No. 94703, Japanese Unexamined Patent Publication No. 2-10002 and the like, a first burner and a second burner are paired,
Placing one or more pairs of burners in one combustion chamber,
Each burner has a heat storage body through which combustion air and combustion exhaust gas pass, and the first burner group and the second burner group are alternately burned, and the burner passes through the heat storage body of the burner when not burning. A regenerative burner has been proposed which repeats a cycle in which heat of combustion exhaust gas is transferred and stored in the regenerator, and combustion air passing through the heat stored in the regenerator is removed and preheated (heated) during combustion. And Japanese Patent Laid-Open No. 5-1
No. 18764 proposes an industrial furnace (a regenerative burner furnace) in which the regenerative burner is arranged.

【0003】[0003]

【発明が解決しようとする課題】この種の工業炉は複数
のバーナをいくつかのグループに分けて使用するのが一
般的である。このバーナのグループ1単位をゾーンと称
している。このゾーン単位で炉内温度(燃焼負荷)制
御、空気比制御を行い、バーナ単位では燃焼負荷制御等
行わずに数ヶ月に一度燃焼調整を行って、ゾーン内の各
バーナが同一燃焼負荷、燃焼状態となるようにバランス
調整を行う燃焼調整作業を実施している。
Generally, such an industrial furnace uses a plurality of burners in several groups. One unit of this group of burners is called a zone. In this zone, furnace temperature (combustion load) control and air ratio control are performed. In burner units, combustion adjustment is performed once every several months without performing combustion load control, etc., so that each burner in the zone has the same combustion load and combustion. A combustion adjustment operation is performed to adjust the balance so as to be in a state.

【0004】蓄熱式バーナが提案される以前の工業炉
(従来バーナ炉)においては、バーナには燃焼用空気、
燃料が供給され燃焼反応を起こし燃焼排ガスは所定の排
気口からまとめて煙突を通して炉外に排出するのが一般
的であり、省エネルギーを考慮して排ガス顕熱を空気予
熱に有効利用するために空気予熱器を集合煙道に設置
し、予熱空気をバーナに供給する炉もあった。従って、
各バーナに供給される燃焼用空気、燃料の性状はほぼ均
一のものが供給されていた。
[0004] In an industrial furnace before a regenerative burner was proposed (conventional burner furnace), the burner includes combustion air,
In general, fuel is supplied to cause a combustion reaction, and flue gas is generally discharged from the furnace through a chimney through a predetermined exhaust port. Some furnaces installed preheaters in the stack and supplied preheated air to the burners. Therefore,
The characteristics of the combustion air and fuel supplied to each burner were almost uniform.

【0005】蓄熱式バーナは、前述のように、各バーナ
に蓄熱体を配置して各バーナで炉内燃焼ガスを吸引し、
燃焼用空気に排ガス顕熱を熱交換する機構を有するバー
ナである。ここが従来バーナ炉と大きな違いを生むこと
になる。従来バーナ炉と同様にゾーン内の各バーナへの
燃料投入量を同一値としバーナをサイドバーナ配置、す
なわち、被加熱物の搬送方向にバーナを配置した場合に
は、炉内と被加熱物との温度差によってほぼ決定される
被加熱物への伝熱量に、炉体放散損失、冷却水損失熱を
加えた炉内の必要熱量は、被加熱物の搬送方向のバーナ
設置位置によって変化するので、同一入熱量であれば被
加熱物低温側では被加熱物への伝熱量が多くなるので炉
内雰囲気温度が低下して熱力学の第1法則であるエネル
ギー保存の法則と、熱は高温から低温に向かって流れる
熱力学の第2法則の両方を満足させることで、自然界の
法則を満足させようとするので、結果的に同一ゾーン内
で炉内雰囲気温度が変化することとなる。
[0005] In the regenerative burner, as described above, a regenerator is arranged in each burner, and each burner sucks combustion gas in the furnace.
This burner has a mechanism for exchanging sensible heat of exhaust gas with combustion air. This makes a big difference from the conventional burner furnace. Similar to the conventional burner furnace, the burners are arranged in side burners with the same amount of fuel input to each burner in the zone, that is, when the burners are arranged in the transport direction of the heated object, the inside of the furnace and the heated object The required amount of heat in the furnace, which is obtained by adding the heat dissipation to the furnace and the heat loss from the cooling water to the heat transfer to the object to be heated, which is almost determined by the temperature difference, varies depending on the burner installation position in the transport direction of the object to be heated. However, if the heat input is the same, the amount of heat transferred to the object to be heated increases on the low-temperature side of the object to be heated, so that the atmosphere temperature in the furnace decreases, and the heat conservation law, which is the first law of thermodynamics, By satisfying both of the laws of the natural world by satisfying both the second laws of thermodynamics flowing toward lower temperatures, the furnace atmosphere temperature changes within the same zone as a result.

【0006】このとき、1つのゾーン内でバーナが配置
された位置の炉内雰囲気温度が異なれば当然の事ながら
各バーナの吸引する燃焼ガス温度は配置された位置によ
って異なる事となる。従って、同様に、各バーナの予熱
空気温度も異なる事となる。このことによってゾーン内
で廃熱回収量が異なるので、燃料投入量が一定であって
も予熱空気の顕熱差分は炉への入熱量が異なることとな
り、ゾーン内で温度分布を生じる原因の一つとなる。
At this time, if the atmosphere temperature in the furnace at the position where the burner is arranged in one zone is different, the temperature of the combustion gas sucked by each burner naturally depends on the position where the burner is arranged. Accordingly, similarly, the preheated air temperature of each burner is also different. As a result, the amount of waste heat recovered in the zone is different. Therefore, even if the fuel input amount is constant, the difference in the sensible heat of preheated air results in a difference in the amount of heat input to the furnace, which is one of the causes of the temperature distribution in the zone. One.

【0007】また、従来バーナ炉では、ゾーン内のバー
ナヘの燃焼用空気、燃料の各ユーティリティー供給は各
ヘッダーを介してゾーン内の各バーナの燃焼負荷等を均
等化できる。しかし、蓄熱式バーナ炉の場合には、前述
のように各バーナ毎に燃焼用空気温度、吸引排ガス温度
が異なるという事は、ゾーンに配置された各バーナが同
一形式の場合、各バーナの蓄熱体を通過する流体温度が
異なるので流体の蓄熱体通過流速が異なり、蓄熱体での
圧力損失が異なることとなる。同様にして、バーナノズ
ル部での圧力損失も異なることとなり、ゾーンの各ユー
ティリティ配管構成が従来バーナ炉のようにヘッダーで
各バーナへの供給、吸引圧力が均等化されていると、炉
圧とヘッダーとの差圧は各バーナでほぼ同一値をとなる
ので各バーナに供給される空気量、吸引される排ガス量
は1つのゾーン内であってもバーナ毎に異なる量とな
る。一方、燃料系統は、従来バーナ炉と同様で断続的に
バーナに供給されるもののヘッダーで均等化され、各バ
ーナへの燃料供給量はほぼ同一量である。従って、従来
バーナ炉のような形式で蓄熱式バーナの燃焼機器を構成
すると、燃料は各バーナで均等化されて同一量が炉内に
噴出され、一方、燃焼用空気は各バーナでバーナ前供給
圧力は一定、すなわち、同一値であってもバーナでの蓄
熱体、ノズル圧損の大小によって噴出量が異なる事にな
る。
Further, in the conventional burner furnace, the utility load of combustion air and fuel to the burners in the zone can equalize the combustion load of each burner in the zone through each header. However, in the case of a regenerative burner furnace, the fact that the combustion air temperature and suction exhaust gas temperature differ for each burner as described above means that if the burners arranged in the zone are of the same type, the heat storage Since the temperature of the fluid passing through the body is different, the flow velocity of the fluid through the heat storage body is different, and the pressure loss in the heat storage body is different. Similarly, the pressure loss at the burner nozzle will also be different, and if the supply and suction pressure to each burner is equalized by the header of each utility piping configuration in the zone as in the conventional burner furnace, the furnace pressure and header Is substantially the same value for each burner, so that the amount of air supplied to each burner and the amount of exhaust gas sucked are different for each burner even in one zone. On the other hand, the fuel system is intermittently supplied to the burners as in the conventional burner furnace, but is equalized by the header, and the amount of fuel supplied to each burner is substantially the same. Therefore, when a regenerative burner combustion device is configured in the same manner as a conventional burner furnace, the fuel is equalized in each burner and the same amount is injected into the furnace, while the combustion air is supplied to each burner before the burner. Even if the pressure is constant, that is, even if the pressure is the same, the amount of ejection differs depending on the magnitude of the heat storage body and nozzle pressure loss in the burner.

【0008】以上のようなことが複雑に絡み合って同一
ゾーン内で雰囲気温度が異なる状態を生み出し、各バー
ナでの燃焼空気比が異なり、或るバーナでは過剰空気燃
焼、或るバーナでは不完全燃焼と、ゾーン内のバーナが
同一の状態で燃焼できなくなるという問題が発生する。
最悪の場合は、不完全燃焼によってすす等煤塵の発生に
つながり環境汚染を起こすという問題がある。また、バ
ーナ位置によって、燃焼反応に伴って発生する発熱エネ
ルギー量が異なるので、前述の予熱空気顕熱量差と併せ
てゾーン内で投入熱量に差が発生する事になる。
[0008] The above-mentioned factors are complicatedly intertwined to create a state in which the ambient temperature is different in the same zone, and the combustion air ratio in each burner is different. In some burners, excess air combustion is performed. In some burners, incomplete combustion is performed. This causes a problem that the burners in the zone cannot be burned in the same state.
In the worst case, there is a problem that incomplete combustion leads to the generation of soot and soot and causes environmental pollution. Further, since the amount of heat generated by the combustion reaction varies depending on the burner position, a difference occurs in the amount of heat input in the zone in addition to the difference in the amount of sensible heat of preheated air.

【0009】本発明は、以上のような問題を解決するた
めになされたものであり、サイドバーナ配置で蓄熱式バ
ーナを配置した炉においてゾーン内の各バーナの燃焼状
態を均一にし、ゾーン内の炉内温度を均一化することを
可能にした蓄熱式バーナ炉を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems. In a furnace in which regenerative burners are arranged in a side burner arrangement, the combustion state of each burner in a zone is made uniform, and It is an object of the present invention to provide a regenerative burner furnace capable of making the furnace temperature uniform.

【0010】[0010]

【課題を解決するための手段】本発明に係る蓄熱式バー
ナ炉(請求項1)は、少なくとも1つ以上のバーナゾー
ンを有する炉の少なくとも1つ以上のバーナゾーンそれ
ぞれにおいて、被加熱物の搬送方向に沿って配置された
複数の蓄熱式バーナと、蓄熱式バーナに対応してそれぞ
れ設けられ、各蓄熱式バーナの投入熱量を炉内と被加熱
物との温度差に応じて異なったものに調整してバーナゾ
ーン単位で炉内温度を一定にする熱量調整手段とを有す
る。本発明に係る蓄熱式バーナ炉(請求項2)は、少な
くとも1つ以上のバーナゾーンを有する炉の少なくとも
1つ以上のバーナゾーンそれぞれにおいて、被加熱物の
搬送方向に沿って配置された複数の蓄熱式バーナと、蓄
熱式バーナにそれぞれ対応して設けられ、各蓄熱式バー
ナの投入熱量を被加熱物の搬送方向に沿って異なったも
のに調整してバーナゾーン単位で炉内温度を一定にする
熱量調整手段とを有する。本発明に係る蓄熱式バーナ炉
(請求項3)において、熱量調整手段は、被加熱物装
入、抽出扉及び炉開口部直近の蓄熱式バーナを除いた、
各蓄熱式バーナの投入熱量を調整する。
Regenerative burners furnace according to the present invention SUMMARY OF THE INVENTION (Claim 1) is at least one or more burners zone of the furnace having at least one burner zone it
Oite to, respectively, a plurality of regenerative burners arranged along the conveying direction of the object to be heated, regenerative respectively provided corresponding to the burner, the furnace and the heated object the heat quantity of each regenerative burner And adjust it to a different one according to the temperature difference.
Calorific value adjusting means for keeping the furnace temperature constant in units of energy. Regenerative burners furnace according to the present invention (Claim 2), at least one burner zone Oite each furnace having at least one burner zone, arranged along the conveying direction of the object to be heated A plurality of regenerative burners and a plurality of regenerative burners are provided corresponding to the respective regenerative burners, and the amount of heat input to each regenerative burner is adjusted to be different along the transport direction of the object to be heated, so that the furnace temperature can be adjusted in burner zone units. And a means for adjusting the amount of heat. In the regenerative burner furnace according to the present invention (claim 3), the calorific value adjusting means excludes a regenerative burner near the furnace opening, the charging door, and the extraction door.
Adjust the heat input to each regenerative burner.

【0011】本発明に係る蓄熱式バーナ炉(請求項4)
において、熱量調整手段は、各蓄熱式バーナ個々に、燃
焼空気、排ガス又は燃料ガスそれぞれの流量調整を常時
行う機構ではなく、各バーナゾーンの燃焼用空気、排ガ
ス又は燃料ガスのヘッダー管から炉内の間の各ユーティ
リティ(燃焼用空気、排ガス又は燃料ガス)の圧力損失
を、各蓄熱式バーナの配置位置に対応して固定した一定
の比率で与える。本発明に係る蓄熱式バーナ炉(請求項
5)において、熱量調整手段は、各ユーティリティ(燃
燃焼用空気、排ガス又は燃料ガス)のヘッダー管と蓄熱
式バーナとの間に配置されたオリフィス板から構成され
る。本発明に係る蓄熱式バーナ炉(請求項6)におい
て、熱量調整手段は、燃焼用空気ノズル兼炉内燃焼ガス
吸引口の開口面積又は/及び燃料噴出ノズルの開口面積
を、各蓄熱式バーナ毎にそれぞれ異ならせたことにより
構成される。本発明に係る蓄熱式バーナ炉(請求項7)
において、熱量調整手段は、各ユーティリティ(燃燃焼
用空気、排ガス又は燃料ガス)のヘッダー管と蓄熱式バ
ーナとの間の配管の内径を、各蓄熱式バーナ毎にそれぞ
れ異ならせたことにより構成される。本発明に係る蓄熱
式バーナ炉(請求項8)において、熱量調整手段は、各
蓄熱式バーナの蓄熱体充填量を異ならせたことにより構
成される。本発明に係る蓄熱式バーナ炉(請求項9)に
おいて、熱量調整手段は、各ユーティリティ(燃燃焼用
空気、排ガス又は燃料ガス)の配管に配置された調整弁
を更に備えている。
[0011] A regenerative burner furnace according to the present invention (Claim 4).
The calorie adjusting means is not a mechanism for constantly adjusting the flow rate of combustion air, exhaust gas or fuel gas for each regenerative burner individually, but from the header pipe of combustion air, exhaust gas or fuel gas in each burner zone to the inside of the furnace. , The pressure loss of each utility (combustion air, exhaust gas or fuel gas) is given at a fixed fixed ratio corresponding to the position of each regenerative burner. In the regenerative burner furnace according to the present invention (claim 5), the calorie adjusting means is provided by an orifice plate disposed between a header pipe of each utility (air, exhaust gas or fuel gas for combustion) and the regenerative burner. Be composed. In the regenerative burner furnace according to the present invention (claim 6), the calorie adjusting means determines the opening area of the combustion air nozzle and the combustion gas suction port in the furnace and / or the opening area of the fuel ejection nozzle for each regenerative burner. It is constituted by making each different. A regenerative burner furnace according to the present invention (Claim 7)
In the above, the calorific value adjusting means is constituted by making the inner diameter of the pipe between the header pipe of each utility (air, exhaust gas or fuel gas for combustion and combustion) and the regenerative burner different for each regenerative burner. You. In the regenerative burner furnace according to the present invention (claim 8), the calorie adjusting means is constituted by making the regenerative body filling amount of each regenerative burner different. In the regenerative burner furnace according to the present invention (claim 9), the calorie adjusting means further includes an adjusting valve arranged in a pipe of each utility (air for combustion, exhaust gas or fuel gas).

【0012】本発明の発明者らは蓄熱式バーナ炉を設計
製作して運転に入った段階で上述の問題に直面して種々
検討を行った結果、本発明に至ったものである。本発明
の基本は、燃焼制御ゾーンの被加熱物の搬送方向で炉内
温度を均一化してその温度変化を無くすことにある。炉
内温度が変化することによって種々の課題が発生するの
で、炉内温度を一定に保つにはバーナを配置するその箇
所での炉内温度制御目標値となるように入熱量と出熱量
とを一致させる適切な燃料投入を行う必要がある。従っ
て、炉内と被加熱物との温度差は搬送方向順に小さくな
るので、装入口から抽出口に向かって各バーナの燃焼量
は徐々に小さくなる傾向となる。ただし、被加熱物装入
口及び抽出口近傍では、被加熱物装入抽出時に扉が開閉
することで生じる開口部損失(高温の炉内ガス、及び、
高温の放射エネルギーの炉外への漏洩)があるので、必
ずしも装入口から抽出口に向かって各バーナの燃焼量は
徐々に小さくなる傾向に合致しない場合もある。
The inventors of the present invention have conducted various investigations in the stage of designing and manufacturing a regenerative burner furnace and starting the operation in the stage of operation, and as a result, have reached the present invention. The basis of the present invention is to make the furnace temperature uniform in the transport direction of the object to be heated in the combustion control zone to eliminate the temperature change. Since various problems occur due to changes in the furnace temperature, in order to keep the furnace temperature constant, the amount of heat input and the amount of heat output must be adjusted so that the furnace temperature control target value at the place where the burner is placed is set. Appropriate fuel inputs need to be matched. Therefore, since the temperature difference between the inside of the furnace and the object to be heated becomes smaller in the order of conveyance, the combustion amount of each burner tends to gradually decrease from the charging inlet to the extraction port. However, in the vicinity of the heating object inlet and the extraction port, the opening loss caused by the opening and closing of the door at the time of charging and extracting the heating object (high-temperature furnace gas and
There is a case in which the combustion amount of each burner does not always match the tendency of gradually decreasing from the charging inlet to the extraction port due to high temperature radiant energy leaking out of the furnace.

【0013】燃焼制御ゾーン内での炉内温度を均一化す
ることで、ゾーン内各蓄熱式バーナでの予熱空気温度及
び排ガス温度が均一化でき、各ユーティリティー(燃焼
用空気、排ガス又は燃焼ガス)の性状をゾーン内で安定
化できる(燃焼管理が容易となる)。また、各バーナに
個々に、空気、排ガス、燃料ガスそれぞれの流量調整を
常時行う機構を有するものではなく、投入熱量を調整す
るための熱量調整手段として、各ゾーンの燃焼用空気、
排ガス、燃料ガスそれぞれのヘツダー管から炉内の間の
各ユーティリティを同一流量流した場合の圧力損失を各
バーナの配置位置に対応して固定した一定の比率で与え
ていること、及び、前述の各ユーティリティー性状のゾ
ーン内安定化によって、実操業時には、各ユーティリテ
ィのヘッダー管から炉内までの圧力差が同一になり、上
述のように圧力差の比が流量の比に比例するので、バー
ナ配置に応じて各バーナの負荷(燃焼量)配分を与える
ことが可能となる。
By equalizing the furnace temperature in the combustion control zone, the preheated air temperature and exhaust gas temperature in each regenerative burner in the zone can be equalized, and each utility (air for combustion, exhaust gas or combustion gas) can be used. Can be stabilized in the zone (combustion management becomes easy). In addition, each burner individually does not have a mechanism for constantly adjusting the flow rate of each of air, exhaust gas, and fuel gas, but as a calorie adjusting means for adjusting the amount of heat input, the combustion air of each zone,
Pressure loss when the same flow rate of each utility between exhaust gas and fuel gas from the header pipe to the inside of the furnace is given at a fixed ratio fixed in accordance with the position of each burner, and By stabilizing each utility property in the zone, during actual operation, the pressure difference from the header pipe of each utility to the inside of the furnace becomes the same, and the ratio of the pressure difference is proportional to the ratio of the flow rate as described above. It is possible to give the load (combustion amount) distribution of each burner according to.

【0014】[0014]

【発明の実施の形態】図1は本発明の一実施形態に係る
サイドバーナ配置の蓄熱式バーナ炉の概要図である。こ
の炉10は2つのゾーンに分割されている。1ゾーンに
は5ペア計10台の蓄熱式バーナ1−1−A,1−1−
B,…1−5−Bが配置され、2ゾーンには3ペア計6
台の蓄熱式バーナ2−1−A,2−1−B,…2−3−
Bが配置されている。各バーナには、燃料噴射を制御す
る燃料電磁弁20、燃焼用空気噴射を制御する燃焼用空
気電磁弁30、さらに、炉内雰囲気すなわち燃焼排ガス
吸引を制御する排ガス電磁弁40が各々配置されてい
る。さらに、各バーナの各ユーティリティーの配管中に
は、各バーナの投入熱量バランスを調整するオリフイス
50が配置されており、本発明を実施している。本実施
形態においては、オリフィス方式を採用しているが、そ
の他の手段を適用しても、また、併用して実施しても何
ら支障はない。加えて、各バーナには着火源としてパイ
ロットバーナ(図示せず)、関連機器配管等が配置され
ている。被加熱物は、蓄熱式バーナ1−1−A、B側か
ら蓄熱式バーナ2−3A、B側に向かって搬送され所定
の温度に加熱される。
FIG. 1 is a schematic diagram of a regenerative burner furnace having a side burner arrangement according to one embodiment of the present invention. The furnace 10 is divided into two zones. One zone has 10 pairs of regenerative burners 1-1-A and 1-1.
B,... 1-5-B, 3 pairs in 2 zones, 6 in total
Two regenerative burners 2-1-A, 2-1-B, ... 2-3-
B is arranged. Each burner is provided with a fuel solenoid valve 20 for controlling fuel injection, a combustion air solenoid valve 30 for controlling combustion air injection, and an exhaust gas solenoid valve 40 for controlling furnace atmosphere, that is, suction of combustion exhaust gas. I have. Further, an orifice 50 for adjusting the input heat balance of each burner is arranged in the piping of each utility of each burner, and the present invention is implemented. In the present embodiment, the orifice system is adopted, but there is no problem if other means are applied or used in combination. In addition, a pilot burner (not shown), associated equipment piping, and the like are arranged as ignition sources in each burner. The object to be heated is conveyed from the regenerative burners 1-1-A and B toward the regenerative burners 2-3A and B and heated to a predetermined temperature.

【0015】各ゾーンには、投入熱量を制御すべく燃料
流調弁21、22が、また、投入燃料に見合った燃焼用
空気投入量を燃焼用空気流調弁31、32が、さらに、
排ガス吸引量を制御すべく排ガス流調弁41、42が配
置され、燃料投入量を制御する炉内温度制御、燃料と空
気の比率を制御する空気比制御を行いつつ、吸引排ガス
量を制御する炉圧制御を行って炉10を運転している。
蓄熱体での排ガス放出顕熱、燃焼用空気吸収顕熱のバラ
ンスをとる場合には、燃焼排ガスの一部を直接炉外へ放
出する方式を炉に採用する場合があるが、このうような
炉に本発明を適用しても何ら支障がない。燃料には、本
実施形態では供給圧力自体で圧送出来る天然ガスを適用
しているが、その他の気体燃料、重油等の液体燃料、微
粉炭等の固体燃料等如何なる燃料にも本発明を適用する
ことができる。燃料用空気は燃焼用空気ブロワ33より
大気が圧送され、燃焼排ガスは排ガス誘引ファン43に
よって誘引され煙突より大気中に放散される。
In each zone, fuel flow regulating valves 21 and 22 for controlling the amount of heat input, and combustion air flow regulating valves 31 and 32 for controlling the amount of combustion air supplied corresponding to the supplied fuel,
Exhaust gas flow control valves 41 and 42 are arranged to control the amount of exhaust gas suction, and control the temperature of the exhaust gas while controlling the temperature inside the furnace to control the amount of fuel input and the air ratio to control the ratio of fuel to air. The furnace 10 is operated by controlling the furnace pressure.
When balancing the sensible heat of exhaust gas emission from the heat storage body and the sensible heat of air absorption for combustion, a method in which part of the combustion exhaust gas is directly discharged to the outside of the furnace may be adopted in the furnace. There is no problem even if the present invention is applied to a furnace. In the present embodiment, as the fuel, natural gas that can be pumped at the supply pressure itself is applied, but the present invention is applied to any other fuel such as other gaseous fuels, liquid fuels such as heavy oil, and solid fuels such as pulverized coal. be able to. The atmosphere of the fuel air is pressure-fed from a combustion air blower 33, and the combustion exhaust gas is attracted by an exhaust gas inducing fan 43 and diffused into the atmosphere from a chimney.

【0016】図2は図1の蓄熱式バーナ炉全体の蓄熱式
バーナの動作を時系列に示した図である。次に、この炉
の蓄熱式バーナの個々の動作を説明する。1ゾーンにお
いては、空気一排ガス系の排ガスから空気への置換時間
Tpaを2秒、燃焼切替前の燃料残圧による燃料パージ
時間Tpgを2秒とし、1ゾーン内のバーナペア数は5
ペアであるので、1ゾーン1つのバーナの燃料噴出時間
Tcは16秒となる。従って、−対のバーナの燃焼切替
時間CTは20秒である。この結果、1ゾーンの燃料電
磁弁は常に4個開いた状態を維持している。
FIG. 2 is a diagram showing the operation of the regenerative burner of the entire regenerative burner furnace of FIG. 1 in time series. Next, individual operations of the regenerative burner of the furnace will be described. In one zone, the replacement time Tpa from the exhaust gas of the air-exhaust gas system to the air is 2 seconds, the fuel purge time Tpg due to the residual fuel pressure before the combustion switching is 2 seconds, and the number of burner pairs in one zone is 5
Since it is a pair, the fuel ejection time Tc of one burner per zone is 16 seconds. Therefore, the combustion switching time CT of the minus pair of burners is 20 seconds. As a result, four fuel solenoid valves in one zone are always kept open.

【0017】また、2ゾーンにおいては、空気一排ガス
系の排ガスから空気への置換時間Tpaを5秒、燃焼切
替前の燃料残圧による燃料パージ時間Tpgを5秒と
し、1ゾーン内のバーナペア数は3ペアであるので、1
ゾーン1つのバーナの燃料噴出時間Tcは20秒とな
る。従って、一対のバーナの燃焼切替時間CTは30秒
である。この結果、1ゾーンの燃料電磁弁は常に2個開
いた状態を維持している。炉全体では、常に6個の電磁
弁が開いた状態を維持している。
In the two zones, the replacement time Tpa from the exhaust gas of the air-exhaust gas system to the air is 5 seconds, the fuel purge time Tpg due to the residual fuel pressure before the combustion switching is 5 seconds, and the number of burner pairs in one zone is set. Is 3 pairs, so 1
The fuel ejection time Tc of one burner in one zone is 20 seconds. Therefore, the combustion switching time CT of the pair of burners is 30 seconds. As a result, the two fuel solenoid valves in one zone are always kept open. In the entire furnace, six solenoid valves are always kept open.

【0018】図3は上述の実施形態における蓄熱式バー
ナ炉の炉内雰囲気温度、被加熱物昇温曲線及び各バーナ
の熱負荷量分布を示した図である。同図から明らかなよ
うに炉内雰囲気と被加熱物との温度差に基づいて、すな
わち、被加熱物の搬送方向に沿って投入熱量(熱負荷)
を減少させることにより(被加熱物の装入部分及び排出
部分を除く)、各ゾーンの炉内雰囲気温度が一定になっ
ていることが分かる。
FIG. 3 is a diagram showing a furnace atmosphere temperature, a heating target heating curve, and a heat load distribution of each burner in the regenerative burner furnace in the above embodiment. As is clear from the figure, the amount of heat input (heat load) based on the temperature difference between the furnace atmosphere and the object to be heated, that is, along the transport direction of the object to be heated.
It can be seen that the furnace atmosphere temperature in each zone is constant by reducing the temperature (excluding the charged portion and the discharged portion of the object to be heated).

【0019】図4は従来の蓄熱式バーナ炉の炉内雰囲気
温度、被加熱物昇温曲線及び各蓄熱式バーナの熱負荷量
分布を示した図である。同図から明らかなように、ここ
では各ゾーンの蓄熱式バーナの投入熱量(熱負荷)が一
定なので、各ゾーンの炉内雰囲気温度は被加熱物の搬送
方向に沿って変化していることが分かる。
FIG. 4 is a diagram showing a furnace atmosphere temperature of a conventional regenerative burner furnace, a heating object heating curve, and a thermal load distribution of each regenerative burner. As can be seen from the figure, since the heat input (heat load) of the regenerative burner in each zone is constant, the furnace atmosphere temperature in each zone varies along the transport direction of the object to be heated. I understand.

【0020】[0020]

【発明の効果】以上のように本発明によれば、各バーナ
ゾーン内の蓄熱式バーナの投入熱量を被加熱物との温度
差によって(又は被加熱物の搬送方向に沿って)それぞ
れ異なったものにし、各バーナゾーン内の各蓄熱式バー
ナの燃焼状態を均一にしたので、ゾーン内の炉内温度の
均一化が可能になっている。
As described above, according to the present invention, the amount of heat input to the regenerative burner in each burner zone differs depending on the temperature difference with the object to be heated (or along the transport direction of the object to be heated). Since the combustion state of each regenerative burner in each burner zone is made uniform, it is possible to make the furnace temperature in the zone uniform.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を一実施形態に係るサイドバーナ配置の
蓄熱式バーナ炉の概要図である。
FIG. 1 is a schematic diagram of a regenerative burner furnace having a side burner arrangement according to an embodiment of the present invention.

【図2】図1の蓄熱式バーナ炉全体の蓄熱式バーナの動
作を時系列に示した図である。
FIG. 2 is a diagram showing the operation of the regenerative burner of the entire regenerative burner furnace of FIG. 1 in chronological order.

【図3】図1の実施形態の蓄熱式バーナ炉の炉内雰囲気
温度、被加熱物昇温曲線及び各蓄熱式バーナの熱負荷量
分布を示した図である。
FIG. 3 is a diagram showing a furnace atmosphere temperature, a heated object heating curve, and a heat load distribution of each regenerative burner in the regenerative burner furnace of the embodiment of FIG. 1;

【図4】従来のサイドバーナ配置の蓄熱式バーナ炉の炉
内雰囲気温度、被加熱物昇温曲線及び各蓄熱式バーナの
熱負荷量分布を示した図である。
FIG. 4 is a diagram showing a furnace atmosphere temperature, a heating target heating curve, and a heat load distribution of each regenerative burner in a conventional regenerative burner furnace having a side burner arrangement.

【符号の説明】[Explanation of symbols]

10 炉 20 バーナ前バーナ個々に配置する燃料電磁弁 21 1Z燃料流量調整弁 22 2Z燃料流量調整弁 30 バーナ前バーナ個々に配置する燃焼用空気電磁弁 31 1Z燃焼用空気流量調整弁 32 2Z燃焼用空気流量調整弁 33 燃焼用空気ブロワ 40 バーナ前バーナ個々に配置する排ガス電磁弁 41 1Z燃焼排ガス吸引流量調整弁 42 2Z燃焼排ガス吸引流量調整弁 43 燃焼排ガス誘引ファン 50 オリフィス板 DESCRIPTION OF SYMBOLS 10 Furnace 20 Fuel solenoid valve arranged individually for burner before burner 21 1Z Fuel flow regulating valve 22 2Z fuel flow regulating valve 30 Air solenoid valve for combustion arranged individually for burner before burner 31 1Z Air flow regulating valve for combustion 32 2Z combustion Air flow control valve 33 Combustion air blower 40 Exhaust gas solenoid valve disposed individually for burner in front of burner 41 1Z combustion exhaust gas suction flow control valve 42 2Z combustion exhaust gas suction flow control valve 43 Combustion exhaust gas induction fan 50 Orifice plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐々木 健人 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (72)発明者 勝島 裕和 神奈川県横浜市鶴見区尻手2丁目1番53 号 日本ファーネス工業株式会社内 (72)発明者 長谷川 敏明 神奈川県横浜市鶴見区尻手2丁目1番53 号 日本ファーネス工業株式会社内 (72)発明者 佐野 敏幸 名古屋市南区豊二丁目14−6 (72)発明者 高橋 康弘 愛知県一宮市今伊勢町馬寄字山島21−7 (56)参考文献 特開 平7−233935(JP,A) 特開 平9−318271(JP,A) (58)調査した分野(Int.Cl.7,DB名) F23L 15/02 C21D 1/52 F27B 9/10 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Kento Sasaki 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Co., Ltd. (72) Inventor Hirokazu Katsushima 2-1-1 53, Shirite, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture No. Japan Furnace Industry Co., Ltd. (72) Inventor Toshiaki Hasegawa 2-53-1, Shirite, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture In-house Furnace Industry Co., Ltd. (72) Inventor Yasuhiro Takahashi 21-7 Yamajima, Imago-cho, Ichinomiya, Aichi Prefecture (56) References JP-A-7-233935 (JP, A) JP-A-9-318271 (JP, A) (58) ) Surveyed field (Int.Cl. 7 , DB name) F23L 15/02 C21D 1/52 F27B 9/10

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 少なくとも1つ以上のバーナゾーンを有
する炉の少なくとも1つ以上のバーナゾーンそれぞれに
おいて、被加熱物の搬送方向に沿って配置された複数の
蓄熱式バーナと、前記蓄熱式バーナに対応してそれぞれ
設けられ、各蓄熱式バーナの投入熱量を炉内と被加熱物
との温度差に応じて異なったものに調整してバーナゾー
ン単位で炉内温度を一定にする熱量調整手段とを有する
ことを特徴とする蓄熱式バーナ炉。
A plurality of regenerative burners arranged along a conveying direction of an object to be heated in each of at least one or more burner zones of a furnace having at least one or more burner zones. The heat storage type burners are provided in correspondence with the regenerative burners, and the amount of heat input to each regenerative burner is adjusted to be different according to the temperature difference between the inside of the furnace and the object to be heated.
A heat storage type burner furnace , comprising: a calorie adjusting means for making the furnace temperature constant in units of heat.
【請求項2】 少なくとも1つ以上のバーナゾーンを有
する炉の少なくとも1つ以上のバーナゾーンそれぞれに
おいて、被加熱物の搬送方向に沿って配置された複数の
蓄熱式バーナと、前記蓄熱式バーナにそれぞれ対応して
設けられ、各蓄熱式バーナの投入熱量を被加熱物の搬送
方向に沿って異なったものに調整してバーナゾーン単位
で炉内温度を一定にする熱量調整手段とを有することを
特徴とする蓄熱式バーナ炉。
2. A plurality of regenerative burners arranged along a conveying direction of an object to be heated in each of at least one or more burner zones of a furnace having at least one or more burner zones. , Provided corresponding to each of the regenerative burners, the amount of heat input to each regenerative burner is adjusted to be different along the transport direction of the object to be heated, and the burner zone unit
And a calorie adjusting means for keeping the furnace temperature constant .
【請求項3】 前記熱量調整手段は、被加熱物装入、抽
出扉及び炉開口部直近の蓄熱式バーナを除いた、各蓄熱
式バーナの投入熱量を調整するものである請求項1又は
2記載の蓄熱式バーナ炉。
3. The heat amount adjusting means adjusts the heat input amount of each regenerative burner excluding the charging of an object to be heated, the extraction door, and the regenerative burner immediately adjacent to the furnace opening. A regenerative burner furnace as described.
【請求項4】 前記熱量調整手段は、各バーナゾーンの
燃焼用空気、排ガス又は燃料ガスのヘッダー管から炉内
の間の圧力損失を各蓄熱式バーナの配置位置に対応して
固定した一定の比率で与えるものであることを特徴とす
る請求項1、2又は3記載の蓄熱式バーナ炉。
4. The calorific value adjusting means, wherein a pressure loss between a header pipe of combustion air, exhaust gas or fuel gas in each burner zone and the inside of the furnace is fixed in accordance with an arrangement position of each regenerative burner. The regenerative burner furnace according to claim 1, wherein the burner furnace is provided in a ratio.
【請求項5】 前記熱量調整手段は、燃焼用空気、排ガ
ス又は燃料ガスのヘッダー管と前記蓄熱式バーナとの間
に配置されたオリフィス板から構成されることを特徴と
する請求項4記載の蓄熱式バーナ炉。
5. The heat amount adjusting means according to claim 4, wherein said calorie adjusting means comprises an orifice plate disposed between a header tube of combustion air, exhaust gas or fuel gas and said regenerative burner. Regenerative burner furnace.
【請求項6】 前記熱量調整手段は、燃焼用空気ノズル
兼炉内燃焼ガス吸引口の開口面積又は/及び燃料噴出ノ
ズルの開口面積を各蓄熱式バーナ毎にそれぞれ異ならせ
たことにより構成されることを特徴とする請求項4記載
の蓄熱式バーナ炉。
6. The heat amount adjusting means is configured such that the opening area of the combustion air nozzle and the combustion gas suction port in the furnace and / or the opening area of the fuel ejection nozzle are different for each regenerative burner. The regenerative burner furnace according to claim 4, characterized in that:
【請求項7】 前記熱量調整手段は、燃焼用空気、排ガ
ス又は燃料ガスのヘッダー管と前記蓄熱式バーナとの間
の配管の内径を各蓄熱式バーナ毎にそれぞれ異ならせた
ことにより構成されることを特徴とする請求項4記載の
蓄熱式バーナ炉。
7. The heat amount adjusting means is configured such that an inner diameter of a pipe between a header pipe of combustion air, exhaust gas or fuel gas and the regenerative burner is different for each regenerative burner. The regenerative burner furnace according to claim 4, characterized in that:
【請求項8】 前記熱量調整手段は、各蓄熱式バーナの
蓄熱体充填量を異ならせたことにより構成されることを
特徴とする請求項4記載の蓄熱式バーナ炉。
8. The regenerative burner furnace according to claim 4, wherein said heat amount adjusting means is constituted by changing the regenerator filling amount of each regenerative burner.
【請求項9】 前記熱量調整手段として、燃焼用空気、
排ガス又は燃料ガスの配管に配置された調整弁を更に備
えたことを特徴とする請求項5、6、7又は8記載の蓄
熱式バーナ炉。
9. As the heat amount adjusting means, combustion air,
9. The regenerative burner furnace according to claim 5, further comprising a regulating valve disposed in an exhaust gas or fuel gas pipe.
JP07103597A 1997-03-25 1997-03-25 Regenerative burner furnace Expired - Fee Related JP3306580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07103597A JP3306580B2 (en) 1997-03-25 1997-03-25 Regenerative burner furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07103597A JP3306580B2 (en) 1997-03-25 1997-03-25 Regenerative burner furnace

Publications (2)

Publication Number Publication Date
JPH10267262A JPH10267262A (en) 1998-10-09
JP3306580B2 true JP3306580B2 (en) 2002-07-24

Family

ID=13448877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07103597A Expired - Fee Related JP3306580B2 (en) 1997-03-25 1997-03-25 Regenerative burner furnace

Country Status (1)

Country Link
JP (1) JP3306580B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60017869T2 (en) 1999-09-01 2006-03-30 Jfe Engineering Corp. HEAT TREATMENT PLANT, METHOD OF INSERTING POROUS, REGENERATIVE BODY, METHOD OF MANUFACTURING A HEAT-TREATED SUBSTANCE
JP2008157620A (en) * 2002-07-16 2008-07-10 Dowa Holdings Co Ltd Method of controlling combustion of burner
JP4278990B2 (en) * 2003-01-14 2009-06-17 中外炉工業株式会社 Catenary furnace
EP2299175A4 (en) 2008-07-07 2015-03-11 Jp Steel Plantech Co Radiant tube burner device and heat storing element unit capable of being mounted to radiant tube burner
JP5404533B2 (en) * 2010-06-03 2014-02-05 中外炉工業株式会社 Combustion control method of heat storage combustion type heat treatment furnace
JP6480287B2 (en) * 2015-08-13 2019-03-06 中外炉工業株式会社 Industrial furnace and method for igniting industrial furnace

Also Published As

Publication number Publication date
JPH10267262A (en) 1998-10-09

Similar Documents

Publication Publication Date Title
US4784069A (en) Chemical process fired heaters, furnaces or boilers
CN103727784B (en) A kind of energy saving of system method of domestic ceramics oxygen-enriched combusting shuttle kiln
CN104121581A (en) Efficient low-NOx tube type heating furnace low-concentration oxygen-enriched combustion system and combustor
JP2017020689A (en) Waste treatment facility and waste treatment facility operation method
JP3306580B2 (en) Regenerative burner furnace
US4182274A (en) Prevention of low temperature corrosion
CN110287561B (en) Low-temperature flue gas cooling system of standby combustor and parameter design method thereof
US4492568A (en) Process and apparatus for preheating the combustion mediums used for firing blast furnace stoves
US2689722A (en) Heating apparatus for soaking pits
US2514084A (en) Apparatus for supplying heated air to blast furnaces and the like
JPH11236614A (en) Heating equipment and heating method using the same
CN1301335C (en) High-air temp hot-blast stove for blast furnace
CN115094179A (en) Hot blast stove furnace change waste gas recycling system and method
CN1172008C (en) Equipment and method for preheating gas and combustion-promoting air of blast furnace
WO2011069257A1 (en) Flue gas recirculation method and system for combustion systems
JP3893677B2 (en) Furnace with regenerative burner
JP3709649B2 (en) Operation method of regenerative burner furnace and regenerative burner furnace
JP2687830B2 (en) Exhaust heat recovery method in heating furnace using regenerative burner
CN208253641U (en) Split assembled regenerative air heater
CN110410771B (en) Flue gas recirculation system
CN220205795U (en) Flue gas treatment system of coal-fired boiler
CN212339954U (en) Head smoke exhaust pipe type heating furnace
CN210951277U (en) Flue gas recirculation system
JPH08319520A (en) Continuous annealing furnace
SU1044938A1 (en) Powered processing unit

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090517

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090517

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090517

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090517

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090517

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100517

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110517

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120517

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees