JP3303586B2 - Heat exchanger seal member - Google Patents

Heat exchanger seal member

Info

Publication number
JP3303586B2
JP3303586B2 JP04234395A JP4234395A JP3303586B2 JP 3303586 B2 JP3303586 B2 JP 3303586B2 JP 04234395 A JP04234395 A JP 04234395A JP 4234395 A JP4234395 A JP 4234395A JP 3303586 B2 JP3303586 B2 JP 3303586B2
Authority
JP
Japan
Prior art keywords
cross arm
arm portion
heat exchanger
seal member
slit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04234395A
Other languages
Japanese (ja)
Other versions
JPH08219671A (en
Inventor
義光 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP04234395A priority Critical patent/JP3303586B2/en
Publication of JPH08219671A publication Critical patent/JPH08219671A/en
Application granted granted Critical
Publication of JP3303586B2 publication Critical patent/JP3303586B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Gasket Seals (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Sealing Devices (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ガスタービン等に使用
される蓄熱式熱交換器のシール部材、特に蓄熱式熱交換
器のクロスアーム部に配設されるシール部材の構造に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a seal member of a regenerative heat exchanger used for a gas turbine or the like, and more particularly, to a structure of a seal member disposed on a cross arm portion of the regenerative heat exchanger.

【0002】[0002]

【従来の技術】ガスタービン、各種熱回収プラント等に
おいては装置の熱効率の向上を図る手段の1つとして回
転蓄熱式熱交換器が用いられている。この回転蓄熱式熱
交換器は、高温ガスによって加熱された回転可能な固体
(コア)を熱媒体として利用するものであって、固体を
一定時間高温ガス中にさらして熱を吸収させて蓄熱した
後に回転させて蓄熱面を移動し、次の一定時間蓄熱面を
低温ガスに接触せしめて固体に蓄えられた熱を低温ガス
中に放出させることにより熱エネルギを回収するもので
ある。
2. Description of the Related Art In a gas turbine, various heat recovery plants, and the like, a rotary heat storage type heat exchanger is used as one of means for improving the thermal efficiency of a device. This rotary regenerative heat exchanger uses a rotatable solid (core) heated by a high-temperature gas as a heat medium, and stores heat by exposing the solid to high-temperature gas for a certain period of time to absorb heat. The heat energy is recovered by rotating the heat storage surface by rotating the heat storage surface later, bringing the heat storage surface into contact with the low-temperature gas for the next predetermined time, and releasing the heat stored in the solid into the low-temperature gas.

【0003】図5に前記回転蓄熱式熱交換器(非公知)
の概要を示す。図において1は多数の細孔が形成された
セラミックス製ハニカム状エレメントを備えた円柱状の
コアであり、該コア1はこれの外周に固着されたリング
ギヤ1aを介して駆動源(ガスタービンのローラ軸等)
により回転軸Z廻りに回転駆動せしめられる。
FIG. 5 shows a rotary heat storage type heat exchanger (unknown).
The outline of is shown. In the figure, reference numeral 1 denotes a cylindrical core provided with a ceramic honeycomb element having a large number of pores formed thereon. The core 1 is driven by a driving source (roller of a gas turbine) via a ring gear 1a fixed to the outer periphery of the core. Axis)
By this, it is driven to rotate around the rotation axis Z.

【0004】6は燃焼器(図示せず)への高圧低温の空
気が流過する高圧低温空気通路、5はタービン(図示せ
ず)からの低圧高温のガスが流過する低圧高温ガス通路
であり、該高圧低温空気通路6と低圧高温ガス通路5と
はコア1の上端面1bにおいてアウタシール3により、
コア1の下端面1cにおいてインナシール2により夫々
シールされている。
Reference numeral 6 denotes a high-pressure low-temperature air passage through which high-pressure low-temperature air flows to a combustor (not shown). Reference numeral 5 denotes a low-pressure high-temperature gas passage through which low-pressure high-temperature gas flows from a turbine (not shown). The high-pressure low-temperature air passage 6 and the low-pressure high-temperature gas passage 5 are connected to each other by an outer seal
The lower end surface 1 c of the core 1 is sealed by an inner seal 2.

【0005】即ち前記アウタシール3の下面(摺動面)
とコアの上端面1bとが、インナシール2の上面(摺動
面)とコアの下端面1cとが夫々摺接されて両通路5、
6をシールされた状態でコア1が回転せしめられる。
That is, the lower surface (sliding surface) of the outer seal 3
And the upper end surface 1b of the core, the upper surface (sliding surface) of the inner seal 2 and the lower end surface 1c of the core are in sliding contact with each other.
The core 1 is rotated while the core 6 is sealed.

【0006】図3に、前記インナシール2の、コア1と
摺動面側から視た平面図を示す。前記インナシール2
は、図3に示すように、左右2個の半環状のリム部2
2、22と、該リム部22、22の両端部にクリップ2
3、23を介して連結された直方板状のクロスアーム部
21とにより構成される。
FIG. 3 is a plan view of the inner seal 2 as viewed from the side of the core 1 and the sliding surface. The inner seal 2
As shown in FIG. 3, two right and left semi-annular rim portions 2
2 and 22 and clips 2 on both ends of the rim portions 22 and 22
It is constituted by a rectangular plate-shaped cross arm portion 21 connected via the third and third members 23.

【0007】また前記クロスアーム部21の断面形状は
図4のように構成されており、図4において21aは耐
熱鋼材からなるシュー(下地材)で、コア1との摺動面
21d側にはセラミックス材等の耐熱性、耐摩性を有す
る摺動性の表層材(摺動材)21bがコーティングされ
ている。
The cross-sectional shape of the cross arm portion 21 is configured as shown in FIG. 4. In FIG. 4, reference numeral 21a denotes a shoe (base material) made of a heat-resistant steel material. A sliding surface material (sliding material) 21b having heat resistance and abrasion resistance such as a ceramic material is coated.

【0008】24はシュー21の上面に固定された耐熱
性ばね材料からなるダイアフラムで、該ダイアフラム2
4の上面をそれ自身のばね力によりハウジング4のシー
ト面4aに押圧することにより、低圧ガスと高圧空気と
の間をシールしている。
Reference numeral 24 denotes a diaphragm made of a heat-resistant spring material fixed to the upper surface of the shoe 21.
The upper surface of the housing 4 is pressed against the seat surface 4a of the housing 4 by its own spring force, thereby sealing between the low-pressure gas and the high-pressure air.

【0009】[0009]

【発明が解決しようとする課題】図5に示される回転蓄
熱式熱交換器において、これをガスタービンに使用した
場合、低圧高温ガス通路5内を流れるガスの温度が10
00℃程度に上がり高圧低温空気通路6内を流れる空気
の温度が常温近傍である場合、インナシール2のクロス
アーム部21の両側では900〜1000℃程度の温度
差が生じる。
When the rotary heat storage type heat exchanger shown in FIG. 5 is used for a gas turbine, the temperature of the gas flowing through the low-pressure high-temperature gas passage 5 becomes 10 degrees.
When the temperature of the air rising to about 00 ° C. and flowing in the high-pressure low-temperature air passage 6 is near normal temperature, a temperature difference of about 900 to 1000 ° C. occurs on both sides of the cross arm portion 21 of the inner seal 2.

【0010】さらに、前記インナシール2のクロスアー
ム部21は、図4に示されるように耐熱鋼材からなるシ
ュー21aにセラミックス材からなる表層材21bをコ
ーティングしていることから、下地材(シュー21a)
と表層材21bとで熱膨張率が大きく異なり、温度が同
一でも熱膨張量が大きく異なる。
Further, as shown in FIG. 4, the cross arm portion 21 of the inner seal 2 has a shoe 21a made of a heat-resistant steel material coated with a surface material 21b made of a ceramic material. )
And the surface layer material 21b have significantly different coefficients of thermal expansion, and even at the same temperature, the amounts of thermal expansion are significantly different.

【0011】従って、クロスアーム部21は、前記のよ
うな大きな温度差及び下地材と表層材との熱膨張率の差
(熱膨張量の差)により、一定温度を超えると、その両
端部近傍を中核として大きな熱変形が生じ、板厚方向に
反りを生ずる。
Therefore, due to the large temperature difference and the difference in the coefficient of thermal expansion between the base material and the surface layer material (difference in the amount of thermal expansion), the cross arm portion 21 will be in the vicinity of both ends when a certain temperature is exceeded. Large thermal deformation occurs with the core as a core, and warpage occurs in the thickness direction.

【0012】このため、前記インナシール2には、該イ
ンナシール2のコア1との摺動面であるクロスアーム部
21の摺動面21dとコア1との間のシール不良による
高圧側から低圧側へのガス漏れが発生する。このガス漏
れはアウタシール3側にも前記と同様に発生する。
For this reason, the inner seal 2 has a low pressure from the high pressure side due to a poor seal between the core 1 and the sliding surface 21d of the cross arm 21 which is the sliding surface of the inner seal 2 with the core 1. Gas leakage to the side occurs. This gas leakage also occurs on the outer seal 3 side in the same manner as described above.

【0013】本発明の目的は、周囲の温度差によるクロ
スアーム部の熱変形を減少せしめることにより、シール
部材とコアとの間のシール性能の低下によるガス漏れの
発生を防止することである。
An object of the present invention is to prevent the occurrence of gas leakage due to a decrease in sealing performance between a sealing member and a core by reducing thermal deformation of a cross arm due to a difference in ambient temperature.

【0014】[0014]

【課題を解決するための手段】本発明は前記問題点を解
決するため、ハウジングに取付けられた支軸廻りに回転
可能にされ両端面間を連通する多数の細流路を有する柱
状のコアと、 半円環状のリム部及び該リム部の端部間に
架設された直方板状のクロスアーム部を有し、該リム部
及びクロスアーム部の一面が前記コアの両端面に所定圧
力にて摺接せしめられるシール部材とを備え、 該シール
部材により高圧ガスと低圧ガスの流路域を区画して構成
された蓄熱式熱交換器において、前記クロスアーム部の
シール部材の長手方向両端部に、その両端面から板面に
平行にスリットが所定長さ形成されてなることを特徴と
し、好ましくは前記クロスアーム部のシール部材が、耐
熱材からなる下地材の表面に摺動材を形成した2層構造
となすとともに、前記下地材にスリットを形成して構成
される。尚、前記シール部材は、高温ガス側に位置する
インナーシール部材に構成するのがよいが、アウタシー
ル部材にも同様に適用してもよい。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems by rotating around a spindle mounted on a housing.
A pillar having a large number of narrow channels that are enabled and communicate between both end faces
-Shaped core, between the semi-annular rim and the end of the rim
A cubic cross-arm portion having a cubic plate shape,
And one surface of the cross arm portion is pressed against both end surfaces of the core by a predetermined pressure.
And a sealing member to be brought into sliding contact with a force, the seal
The high pressure gas and the low pressure gas flow area are divided by members.
In the regenerative heat exchanger, the seal member of the cross arm portion is provided at both ends in the longitudinal direction , from both end surfaces thereof to the plate surface.
The slit is formed in a predetermined length in parallel.
Preferably, the sealing member of the cross arm portion is
Two-layer structure in which a sliding material is formed on the surface of a base material made of a heat material
And a slit formed in the base material
Is done. The seal member is preferably configured as an inner seal member located on the high-temperature gas side, but may be similarly applied to an outer seal member.

【0015】また、請求項3記載の発明は、前記シール
部材が、クロスアーム部の高圧ガス流路に臨む側面に、
前記スリットを覆蓋する薄板をスポット溶接等により取
付けてなることにある。
According to a third aspect of the present invention, the seal member is provided on a side of the cross arm facing the high-pressure gas flow path.
The thin plate for covering the slit is attached by spot welding or the like.

【0016】[0016]

【作用】クロスアーム部の板厚をh、板の幅をbとする
とその曲げ剛性I=1/12bh3 で表わされる。一
方、この板を板厚hの1/2の箇所で長手方向に板面に
平行に切断した場合の曲げ剛性:I’=2×(1/1
2)b(h/2)3 で表わされる。
When the thickness of the cross arm portion is h and the width of the plate is b, the bending rigidity is represented by I = 1/12 bh 3 . On the other hand, the bending rigidity when this plate is cut in the longitudinal direction parallel to the plate surface at a half of the plate thickness h: I ′ = 2 × (1/1
2) It is represented by b (h / 2) 3 .

【0017】従って、前記の関係より、I’=(1/1
2)b×2/8×h3 =(1/12)bh3 ×1/4=
1/4Iとなり、前記のように板厚の1/2の箇所で切
断すると曲げ剛性は、切断しないものの1/4となる。
Therefore, from the above relationship, I '= (1/1)
2) b × 2/8 × h 3 = (1/12) bh 3 × 1/4 =
The bending stiffness becomes 1/4 of that of the non-cut one when cut at a half of the plate thickness as described above.

【0018】即ちクロスアーム部は、板厚内部に、その
端面から板面に平行なスリットを形成して、このスリッ
トにより端面から一定長さに亘り2枚の板に分離せしめ
ることにより、曲げ剛性が従来のものの1/4となり、
熱変形が生じた場合にそれを修正するのに要する力も従
来のものの1/4と小さくて済む。
That is, the cross arm portion has a bending rigidity by forming a slit parallel to the plate surface from the end surface in the thickness of the plate and separating the plate into two plates from the end surface over a predetermined length by the slit. Becomes 1/4 of the conventional one,
When thermal deformation occurs, the force required to correct the thermal deformation can be reduced to 1/4 of the conventional one.

【0019】従って、クロスアームの周囲の温度差によ
る熱変形が容易に復元されることとなり、板面の平面度
が保持される。これによりコアとの摺動面のシール性が
良好に保持され、該シール部からのガス漏れの発生が防
止される。
Therefore, the thermal deformation due to the temperature difference around the cross arm is easily restored, and the flatness of the plate surface is maintained. As a result, the sealing property of the sliding surface with the core is maintained well, and the occurrence of gas leakage from the seal portion is prevented.

【0020】さらに、スリットを薄板で覆蓋すれば、高
圧側の流体がスリット部を通って低圧側へ漏洩するのを
防止することができる。勿論前記曲げ剛性を低下する手
段はスリットのみに限定される事なく、その両端部にシ
ール部材本体に比較して弾性力を有する部材の接合し熱
変形を吸収する手段等によっても可能である。
Further, if the slit is covered with a thin plate, it is possible to prevent the fluid on the high pressure side from leaking to the low pressure side through the slit portion. Of course, the means for lowering the bending rigidity is not limited to the slit alone, but may be a means for absorbing a thermal deformation by joining a member having elasticity at both ends thereof as compared with the sealing member body.

【0021】[0021]

【実施例】以下、図1〜5を参照して本発明の実施例に
つき詳しく説明する。但し、この実施例に記載されてい
る構成部品の寸法、材質、形状、その相対位置などは特
に特定的な記載がない限りは、この発明の範囲をそれの
みに限定する趣旨ではなく単なる説明例に過ぎない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to FIGS. However, unless otherwise specified, the dimensions, materials, shapes, relative positions, and the like of the components described in this embodiment are not intended to limit the scope of the present invention, but are merely illustrative examples. It's just

【0022】図1は本発明の実施例に係る回転蓄熱式熱
交換器用シール部材のクロスアーム部の外観斜視図を示
し、図2は前記クロスアーム部の端部拡大外観図を示
す。
FIG. 1 is an external perspective view of a cross arm portion of a seal member for a rotary regenerative heat exchanger according to an embodiment of the present invention, and FIG. 2 is an enlarged external view of an end portion of the cross arm portion.

【0023】図1、図2において、21は図3及び図4
に示されるインナシール2のクロスアーム部であり、前
記インナシール2は該クロスアーム部21と左右2個の
半環状のリム部22、22とをクリップ23、23によ
り連結して構成される。
In FIGS. 1 and 2, reference numeral 21 denotes FIGS.
Is a cross arm portion of the inner seal 2, and the inner seal 2 is configured by connecting the cross arm portion 21 and two left and right semi-annular rim portions 22, 22 with clips 23, 23.

【0024】21dはクロスアーム部の摺動面であり、
図4と同様にセラミックス材等の耐熱性、耐摩耗性を有
する材料からなる表層材21bにより形成される。21
aは耐熱鋼材からなるシュー(下地材)であり、前記摺
動性の表層材21b、例えばセラミックスがコーティン
グされている。又前記耐熱鋼材からなる下地材21aに
はメカニカルアロイ(Fe,Y,Alを組成とする粒子
分散型高圧焼結合金、耐熱温度1100℃前後)、ハス
テロイ(Ni,Crを組成とする合金で耐熱温度100
0℃前後)を用いる。以上の構成態様は、従来のものと
同様である。
21d is a sliding surface of the cross arm portion,
Similar to FIG. 4, it is formed of a surface material 21b made of a material having heat resistance and wear resistance such as a ceramic material. 21
Reference symbol a denotes a shoe (base material) made of a heat-resistant steel material, which is coated with the slidable surface material 21b, for example, ceramics. The base material 21a made of the heat-resistant steel is made of a mechanical alloy (a particle-dispersed high-pressure sintering alloy having a composition of Fe, Y, or Al, a heat-resistant temperature of about 1100 ° C.), or hastelloy (an alloy having a composition of Ni or Cr). Temperature 100
(Around 0 ° C.). The above configuration is the same as the conventional one.

【0025】50はクロスアーム21の両方の端面21
h、21hからクロスアーム部の摺動面21dに平行に
刻設されたスリットである。前記スリット50は、図1
に示すように、クロスアーム部21の板厚hの1/2の
部位に、クロスアーム部の一定深さlに亘って、ワイヤ
ソーによる切断等により刻設される。
Reference numeral 50 denotes both end surfaces 21 of the cross arm 21.
h, 21h are slits formed in parallel with the sliding surface 21d of the cross arm portion. The slit 50 is shown in FIG.
As shown in (1), a half of the plate thickness h of the cross arm portion 21 is cut by a wire saw or the like over a predetermined depth l of the cross arm portion.

【0026】前記クロスアーム部21の高圧低温空気通
路6(図5参照)に臨む高圧側側面21fには前記スリ
ット50を覆うように下地材21aと同種の耐熱金属か
らなる薄板25がスポット溶接等により貼着され、高圧
低温空気通路6内の高圧空気がスリット50を通って低
圧高温ガス通路5(図5参照)側に漏洩するのを防止し
ている。
A thin plate 25 made of the same kind of heat-resistant metal as the base material 21a is spot-welded on the high-pressure side surface 21f of the cross arm 21 facing the high-pressure low-temperature air passage 6 (see FIG. 5) so as to cover the slit 50. To prevent the high pressure air in the high pressure low temperature air passage 6 from leaking to the low pressure high temperature gas passage 5 (see FIG. 5) through the slit 50.

【0027】前記のように構成されたクロスアーム部2
1を有するインナシール2を組み込んだガスタービン用
回転蓄熱式熱交換器の運転時において、低圧高温ガス通
路5(図5参照)内を流れるガスの温度は1000℃以
上に上がるため、特にインナシール2のクロスアーム部
21の両側面即ち図1に示す側面21fと21gの周り
では900〜1000℃の温度差が生じる。
The cross arm 2 constructed as described above
During the operation of the rotary heat storage type heat exchanger for a gas turbine incorporating the inner seal 2 having the structure 1, the temperature of the gas flowing through the low-pressure high-temperature gas passage 5 (see FIG. A temperature difference of 900 to 1000 ° C. occurs on both side surfaces of the second cross arm portion 21, that is, around the side surfaces 21f and 21g shown in FIG.

【0028】従って、クロスアーム部21は、前記のよ
うな大きな温度差及び下地材(シュー21a)と表層材
(摺動材)であるセラミックス21b(図4参照)との
熱膨張差とにより、その両端面21h、21h近傍を中
核として熱変形が生じる。
Therefore, the cross arm portion 21 has a large temperature difference as described above and a thermal expansion difference between the base material (shoe 21a) and the ceramic material 21b (see FIG. 4) as the surface material (sliding material). Thermal deformation occurs around the two end surfaces 21h, 21h as a core.

【0029】しかるに、本発明に係る実施例にあって
は、前記のようにクロスアーム部21の板厚内部にスリ
ット50を設け、一定長さlに亘りクロスアーム部21
を2枚の板に分割しているので、曲げ剛性が前記スリッ
ト50を有しない従来のものに較べて1/4となる。以
下にこの理由を説明する。尚前記耐熱材からなる下地材
21aにはメカニカルアロイ(Fe,Y,Alを組成と
する粒子分散型高圧焼結合金、耐熱温度1100℃前
後)、ハステロイ(Ni,Crを組成とする合金で耐熱
温度1000℃前後)を用い、又熱交換器と摺接する摺
動材には、セラミックスを用いる。
However, in the embodiment according to the present invention, the slit 50 is provided inside the thickness of the cross arm portion 21 as described above, and the cross arm portion 21 extends over a predetermined length l.
Is divided into two plates, so that the bending rigidity is reduced to 1/4 of that of the conventional one having no slit 50. The reason will be described below. The base material 21a made of the heat-resistant material is made of a mechanical alloy (a particle-dispersed high-pressure sintered alloy having a composition of Fe, Y, and Al, a heat-resistant temperature of about 1100 ° C.), and hastelloy (an alloy having a composition of Ni and Cr). Ceramics are used for the sliding material that is in sliding contact with the heat exchanger.

【0030】クロスアーム部21の板厚をh、板の幅を
bとするとその曲げ剛性I=(1/12)bh3 で表わ
される。一方、この板を板厚hの1/2の箇所で長手方
向に板面に平行に切断した場合の曲げ剛性:I’=2×
(1/12)b(h/2)3 で表わされる。
Assuming that the thickness of the cross arm portion 21 is h and the width of the plate is b, the bending rigidity is represented by I = (1/12) bh 3 . On the other hand, the bending rigidity when this plate is cut in a longitudinal direction parallel to the plate surface at a half of the plate thickness h: I ′ = 2 ×
It is represented by (1/12) b (h / 2) 3 .

【0031】従って、前記の関係より、前記曲げ剛性
I’は次式のようになる。
Therefore, from the above relationship, the bending stiffness I 'is as follows.

【0032】I'=(1/12)b×2/23×h3=(1/
12)bh3×1/4=(1/4)I
I '= (1/12) b × 2/2 3 × h 3 = (1 /
12) bh 3 × 1/4 = (1/4) I

【0033】即ち前記のように、クロスアーム部21の
板厚hの1/2の箇所で切断しスリット50を形成する
と、曲げ剛性I’は、該スリットを形成しない従来のも
のの1/4となる。
That is, as described above, when the slit 50 is formed by cutting at a half of the plate thickness h of the cross arm portion 21, the bending rigidity I 'becomes 1/4 that of the conventional one in which the slit is not formed. Become.

【0034】従って、前記のように、クロスアーム部2
1に熱変形が生じた場合において、それを修正するに要
する力も従来のものの1/4と、はるかに小さな力で済
むこととなる。
Accordingly, as described above, the cross arm 2
In the case where the thermal deformation occurs in 1, the force required to correct the thermal deformation is 1/4 of the conventional one, which is much smaller.

【0035】これにより、クロスアーム21の両側面即
ち高圧低温空気通路6側の高圧側側面21f及び低圧高
温ガス通路5側の低圧側側面21gの周りの温度差によ
る熱変形が容易に復元されることとなり、摺動面21d
及びこれと反対側の上面21eの平面度が維持され、ク
ロスアーム21とコア1との摺接部のシール性が良好に
保持される。
As a result, the thermal deformation due to the temperature difference between both sides of the cross arm 21, that is, the high-pressure side 21f on the high-pressure low-temperature air passage 6 side and the low-pressure side 21g on the low-pressure high-temperature gas passage 5 side can be easily restored. The sliding surface 21d
In addition, the flatness of the upper surface 21e on the opposite side is maintained, and the sealing property of the sliding contact portion between the cross arm 21 and the core 1 is well maintained.

【0036】また、高圧側側面21fに薄板25を貼設
しスリット50を覆ったので、高圧空気がスリット50
を通って低圧側に漏洩するのが防止され、前記と同様、
良好なシール性が維持される。
Since the thin plate 25 is attached to the high-pressure side surface 21f to cover the slit 50, high-pressure air is
Leakage to the low pressure side through
Good sealability is maintained.

【0037】前記実施例はインナシール2用クロスアー
ム部について示したが、アウタシール3用クロスアーム
部についても全く同様な構成とすることができる。
In the above embodiment, the cross arm portion for the inner seal 2 has been described, but the cross arm portion for the outer seal 3 may have exactly the same configuration.

【0038】[0038]

【発明の効果】本発明によれば、シール部材を構成する
クロスアーム部の板厚内部に、両端面から板面に平行に
所定深さに亘ってスリットを刻設したので、該スリット
によりクロスアーム部が、その端面から一定長さに亘り
2枚の板に分割されて、曲げ剛性が従来のものの1/4
程度と小さくなり、熱変形が生じた場合に、それを修正
するのに要する力も従来のものの1/4程度と大幅に小
さくなる。
According to the present invention, a slit is formed in the thickness of the cross arm portion forming the seal member from both end surfaces to a predetermined depth in parallel with the plate surface. The arm part is divided into two plates over a certain length from the end face, and the bending rigidity is 1/4 that of the conventional one.
When thermal deformation occurs, the force required to correct the thermal deformation is significantly reduced to about one-fourth of the conventional one.

【0039】従って、クロスアームの周囲の温度差によ
る熱変形が容易に復元されることとなり、板面の平面度
が保持される。これによりコアとの摺動面のシール性が
良好に保持され、該シール部からのガス漏れの発生を防
止することができる。
Therefore, the thermal deformation due to the temperature difference around the cross arm is easily restored, and the flatness of the plate surface is maintained. As a result, the sealing performance of the sliding surface with the core is maintained well, and the occurrence of gas leakage from the sealing portion can be prevented.

【0040】また、本発明によれば、高圧側側面に薄板
を貼設しスリットを覆ったので、高圧空気がスリットを
通って低圧側に漏洩するのが防止され、前記と同様、良
好なシール性が維持される。
Further, according to the present invention, since the thin plate is attached to the high-pressure side surface to cover the slit, high-pressure air is prevented from leaking to the low-pressure side through the slit, and a good seal is formed as described above. Sex is maintained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に係る回転蓄熱式熱交換器用シ
ール部材のクロスアームの外観斜視図。
FIG. 1 is an external perspective view of a cross arm of a seal member for a rotary heat storage type heat exchanger according to an embodiment of the present invention.

【図2】(A)は前記クロスアームの両端部の拡大斜視
図、(B)はその中央縦断面図である。
FIG. 2 (A) is an enlarged perspective view of both ends of the cross arm, and FIG. 2 (B) is a central longitudinal sectional view thereof.

【図3】前記熱交換器用インナシールの底面図。FIG. 3 is a bottom view of the inner seal for a heat exchanger.

【図4】図3のAーA断面図。FIG. 4 is a sectional view taken along line AA of FIG. 3;

【図5】回転蓄熱式熱交換器の構成図。FIG. 5 is a configuration diagram of a rotary heat storage type heat exchanger.

【符号の説明】[Explanation of symbols]

1 コア 2 インナシール 3 アウタシール 4 ハウジング 21 クロスアーム 21a 下地材 21b 摺動材 21f 高圧側側面 21g 低圧側側面 21h 端面 25 薄板 50 スリット DESCRIPTION OF SYMBOLS 1 Core 2 Inner seal 3 Outer seal 4 Housing 21 Cross arm 21a Base material 21b Sliding material 21f High-pressure side surface 21g Low-pressure side surface 21h End surface 25 Thin plate 50 Slit

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ハウジングに取付けられた支軸廻りに回
転可能にされ両端面間を連通する多数の細流路を有する
柱状のコアと、 半円環状のリム部及び該リム部の端部間に架設された直
方板状のクロスアーム部を有し、該リム部及びクロスア
ーム部の一面が前記コアの両端面に所定圧力にて摺接せ
しめられるシール部材とを備え、 該シール部材により高圧ガスと低圧ガスの流路域を区画
して構成された蓄熱式熱交換器において、 前記クロスアーム部のシール部材の長手方向両端部に
その両端面から板面に平行にスリットが所定長さ形成さ
れてなることを特徴とする熱交換器のシール部材。
1. A column-shaped core rotatable around a support shaft attached to a housing and having a plurality of narrow channels communicating between both end surfaces, a semi-annular rim portion, and an end portion of the rim portion. A sealing member having a rectangular plate-shaped cross arm portion provided and having one surface of the rim portion and the cross arm portion slidably contacting both end surfaces of the core with a predetermined pressure; And a regenerative heat exchanger configured by partitioning a flow path region of the low-pressure gas, at both ends in the longitudinal direction of the seal member of the cross arm portion ,
Slits are formed from both end surfaces in parallel to the plate surface for a predetermined length.
Sealing member of the heat exchanger characterized by comprising been.
【請求項2】 前記クロスアーム部のシール部材が、
熱材からなる下地材の表面に摺動材を形成した2層構造
となすとともに、前記下地材にスリットを形成した請求
項1記載の熱交換器のシール部材。
2. A sealing member of the crossarm portion, resistance
Two-layer structure in which a sliding material is formed on the surface of a base material made of a heat material
The seal member for a heat exchanger according to claim 1 , wherein a slit is formed in the base material .
【請求項3】 前記シール部材が、クロスアーム部の高
圧ガス流路に臨む側面に、前記スリットを覆蓋する薄板
をスポット溶接等により取付けてなる請求項記載の熱
交換器のシール部材。
3. The sealing member according to claim 1, wherein said sealing member has a height of a cross arm portion.
A thin plate that covers the slit on the side facing the pressure gas flow path
The seal member for a heat exchanger according to claim 1 , wherein the seal member is attached by spot welding or the like .
JP04234395A 1995-02-07 1995-02-07 Heat exchanger seal member Expired - Fee Related JP3303586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04234395A JP3303586B2 (en) 1995-02-07 1995-02-07 Heat exchanger seal member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04234395A JP3303586B2 (en) 1995-02-07 1995-02-07 Heat exchanger seal member

Publications (2)

Publication Number Publication Date
JPH08219671A JPH08219671A (en) 1996-08-30
JP3303586B2 true JP3303586B2 (en) 2002-07-22

Family

ID=12633384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04234395A Expired - Fee Related JP3303586B2 (en) 1995-02-07 1995-02-07 Heat exchanger seal member

Country Status (1)

Country Link
JP (1) JP3303586B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4180830B2 (en) 2002-02-05 2008-11-12 カルソニックカンセイ株式会社 Heat exchanger

Also Published As

Publication number Publication date
JPH08219671A (en) 1996-08-30

Similar Documents

Publication Publication Date Title
JP4689882B2 (en) Plate brush seal device
US6312218B1 (en) Sealing arrangement
JP4386010B2 (en) Flexible heat pipe
JPH1144201A (en) Gas turbine interstage part sealing device
JP3303586B2 (en) Heat exchanger seal member
JPS63106471A (en) Composite type annular seal
US4212472A (en) Seal assembly for rotary heat-exchanger
JP5352034B2 (en) Adsorption roll
JP2011226559A (en) Machinable honeycomb sealant material and gas turbine
JPH05113136A (en) Ceramic gas turbine
US4031279A (en) Composite construction of metallic strips disposed in side-by-side relationship
US3392776A (en) Spirally wound rotary heat exchanger having barrel center mount
JPH04222636A (en) Metal carrier for exhaust gas purifying catalyst
US4103908A (en) Seal structures for rotary regenerative heat exchangers of gas turbine engines
US3586096A (en) Gas turbine heat exchanging system using flexible locating members for torque transmission
US3666001A (en) High temperature seal
US3235270A (en) High pressure regenerator seal
JP3252607B2 (en) Seal member for rotary heat storage type heat exchanger
JPS6330073Y2 (en)
US3692098A (en) Thermal regenerators
JPH0450437Y2 (en)
JPH0547970Y2 (en)
JPS6036556B2 (en) Sealing device for regenerative heat exchanger
JPH036438B2 (en)
JPH05693Y2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020402

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees