JP3300232B2 - High barrier film defect detection apparatus and method - Google Patents
High barrier film defect detection apparatus and methodInfo
- Publication number
- JP3300232B2 JP3300232B2 JP22799896A JP22799896A JP3300232B2 JP 3300232 B2 JP3300232 B2 JP 3300232B2 JP 22799896 A JP22799896 A JP 22799896A JP 22799896 A JP22799896 A JP 22799896A JP 3300232 B2 JP3300232 B2 JP 3300232B2
- Authority
- JP
- Japan
- Prior art keywords
- barrier film
- gas
- defect
- detecting
- closed space
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Examining Or Testing Airtightness (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、合成高分子やこの
合成高分子に各種のコーティング等の表面改質を施して
なるハイバリアフイルムの欠陥検出装置及び方法に係
り、特に、ガス透過係数が10-14乃至10-11cm3(S
TP)cm-2S-1cmHg-1の高度のバリア性を有するハイバ
リアフイルムの品質管理に有効な簡易型の欠陥検出装置
及び方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and a method for detecting defects in a high barrier film obtained by subjecting a synthetic polymer or a surface modification such as various coatings to the synthetic polymer. -14 to 10 -11 cm 3 (S
The present invention relates to a simple defect detection apparatus and method effective for quality control of a high barrier film having a high barrier property of TP) cm −2 S −1 cmHg −1 .
【0002】[0002]
【従来の技術】近年、高分子合成技術や製膜技術の進歩
により新規な高分子材料を用いたガス透過性フイルムや
ガスバリア性のフイルムの開発が盛んである。これ等の
フイルムは年々薄膜化され、且つ無欠陥でフイルム厚を
均一にする要請が高まってきている。2. Description of the Related Art In recent years, the development of a polymer permeable film and a gas barrier film using a novel polymer material has been actively pursued with advances in polymer synthesis technology and film formation technology. These films are becoming thinner year by year, and there is an increasing demand for uniform film thickness without defects.
【0003】また、合成高分子フイルムの表面に蒸着,
スパッタリング,プラズマ重合法等の各種表面改質を行
うことにより様々な機能を有する機能性フイルムがで
き、これ等は電子部品,液晶ディスプレイ等で代表され
るフラットパネルの部材,医薬包装分野の材料,更には
産業資材分野にまで広く利用されている。このために、
薄膜化フイルムを作る工程や各種の機能性フイルムのベ
ースとなる高分子フイルムを作る工程における品質管理
が必要不可欠のものになる。[0003] In addition, evaporation on the surface of a synthetic polymer film,
Functional films having various functions can be made by performing various surface modifications such as sputtering and plasma polymerization, and these are made of electronic components, flat panel members represented by liquid crystal displays, etc., materials for the pharmaceutical packaging field, Furthermore, it is widely used in the field of industrial materials. For this,
Quality control in the process of making a thin film and the process of making a polymer film which is the base of various functional films becomes indispensable.
【0004】[0004]
【発明が解決しようとする課題】各種製膜メーカにおい
ては、コンピュータの導入による製膜工程の自動化や品
質管理が進んできており、膜厚の均一性については技術
が確定されている。また、機械的強度や寸法安定性等で
代表される諸物性についても製膜ロットごとに測定され
品質保証されている。Various film-making manufacturers have advanced automation and quality control of the film-forming process by introducing a computer, and the technology for the uniformity of the film thickness has been determined. In addition, various physical properties such as mechanical strength and dimensional stability are measured for each film forming lot and the quality is assured.
【0005】然し乍ら、従来技術では、製膜の高速化お
よび薄膜化といったプロセスにおいて発生する微小なピ
ンホールなどの欠陥についての検査手段が確立されてい
ない。特に、0.1μm乃至数μmといった比較的小さ
いピンホールや欠陥については顕微鏡で調べても検出が
困難の場合が多い。なお、浸透性のたかい薬剤を用いて
欠陥部を染色してフイルムの欠陥等を検出する方法があ
るが、ノウハウ性の高いものであり、且つ定量化が難し
い問題点がある。However, in the prior art, there is no established means for inspecting defects such as minute pinholes generated in processes such as high-speed film formation and thinning. In particular, it is often difficult to detect a relatively small pinhole or defect having a size of 0.1 μm to several μm even when examined with a microscope. In addition, there is a method of detecting a defect or the like of a film by dyeing a defective portion by using a penetrable chemical, but has a problem that it has high know-how and is difficult to quantify.
【0006】本発明は、以上の事情に鑑みてなされたも
のであり、ハイバリアフイルムの微小なピンホールなど
の欠陥を確実に、且つ容易に検出することができ、従来
できなかった超薄膜フイルムやガス選択性フイルムのよ
うな機能性素材の品質管理に有用なハイバリアフイルム
の欠陥検出装置及び方法を提供することを目的とする。The present invention has been made in view of the above circumstances, and it is possible to reliably and easily detect a defect such as a minute pinhole of a high barrier film. An object of the present invention is to provide an apparatus and a method for detecting a defect of a high barrier film which are useful for quality control of a functional material such as a gas selective film.
【0007】[0007]
【課題を解決するための手段】本発明は、以上の目的を
達成するために、ガス透過係数が10-14乃至10-11cm
3(STP)cm-2S-1cmHg-1の範囲にあるバリアフイル
ムの欠陥を検出する欠陥検出装置であって、前記バリア
フイルムを介して隔てられた二つの密閉空間を形成する
サンプルホルダと、該サンプルホルダの二つの密閉空間
を真空にする真空排気手段と、前記密閉空間の一方側に
異なる分子半径を有する少なくとも二種類のガスを所定
の圧力に調整して一定の温度で選択的に導入するガス導
入手段と、前記密閉空間の他方側に連通して配置され、
前記バリアフイルムを透過して前記他方側の密閉空間に
入ったガスの単位時間当りの圧力上昇値を検出する圧力
検出手段と、前記圧力上昇値を基にして夫々のガスの透
過係数を算出すると共にこれらの透過係数比を求める演
算手段と、該透過係数比から前記バリアフイルムの欠陥
を判定する欠陥判定手段とを設けてなるハイバリアフイ
ルムの欠陥検出装置を構成するものである。SUMMARY OF THE INVENTION In order to achieve the above object, the present invention has a gas permeability coefficient of 10 -14 to 10 -11 cm.
A defect detector for detecting a defect of a barrier film in a range of 3 (STP) cm -2 S -1 cmHg -1 , comprising: a sample holder forming two sealed spaces separated by the barrier film; Vacuum evacuation means for evacuating two closed spaces of the sample holder, and selectively adjusting at least two types of gases having different molecular radii on one side of the closed space to a predetermined pressure at a constant temperature. Gas introduction means to be introduced, arranged to communicate with the other side of the closed space,
A pressure detecting means for detecting a pressure rise value per unit time of the gas permeating the barrier film and entering the closed space on the other side; and calculating a permeation coefficient of each gas based on the pressure rise value. In addition, a high barrier film defect detection device is provided which includes a calculating means for determining these transmission coefficient ratios and a defect determining means for determining a defect of the barrier film from the transmission coefficient ratio.
【0008】また、ガス透過係数が10-14乃至10-11
cm3(STP)cm-2S-1cmHg-1の範囲にあるバリアフイ
ルムの欠陥を検出する欠陥検出装置であって、前記バリ
アフイルムを介して隔てられた二つの密閉空間を形成す
るサンプルホルダと、該サンプルホルダの二つの密閉空
間を真空にする真空排気手段と、前記密閉空間の一方側
に任意の分子半径を有する少なくとも一種類のガスを所
定の圧力に調整すると共に温度条件を変えて導入するガ
ス導入手段と、前記密閉空間の他方側に連通して配置さ
れ前記バリアフイルムを透過して前記他方側の密閉空間
に入ったガスの単位時間当りの圧力上昇値を検出する圧
力検出手段と、前記圧力上昇値を基にして各温度におけ
る前記ガスの透過係数を算出すると共に前記ガスの透過
係数の温度依存性から前記バリアフイルムの欠陥を判定
する欠陥判定手段とを設けてなるハイバリアフイルムの
欠陥検出装置を構成するものである。Further, the gas permeability coefficient is 10 -14 to 10 -11.
What is claimed is: 1. A defect detector for detecting a defect of a barrier film in a range of cm 3 (STP) cm −2 S −1 cmHg −1 , wherein the sample holder forms two closed spaces separated by the barrier film. Vacuum evacuation means for evacuating the two closed spaces of the sample holder, and adjusting the temperature conditions while adjusting at least one type of gas having an arbitrary molecular radius on one side of the closed space to a predetermined pressure. Gas introducing means to be introduced, and pressure detecting means arranged to communicate with the other side of the closed space and detecting a pressure rise value per unit time of gas permeating the barrier film and entering the closed space on the other side. Defect determination means for calculating a permeability coefficient of the gas at each temperature based on the pressure rise value and determining a defect of the barrier film from the temperature dependence of the permeability coefficient of the gas; Are provided to constitute a defect detection device for a high barrier film.
【0009】また、ガス透過係数が10-14乃至10-11
cm3(STP)cm-2S-1cmHg-1の範囲にあるバリアフイ
ルムの欠陥を検出する欠陥検出方法であって、前記バリ
アフイルムを介して隔てられた二つの密閉空間を真空排
気する第1の手順と、前記密閉空間の一方側に異なる分
子半径を有する少なくとも二種類のガスを所定圧力下所
定温度で別々に導入する第2の手順と、前記バリアフイ
ルムを透過して他方側の前記密閉空間に導入された各ガ
スの透過量に応じた単位時間当りの圧力上昇値を検出す
る第3の手順と、前記圧力上昇値から各ガスの透過係数
を算出すると共にこれらの透過係数比を求める第4の手
順と、該透過係数比の大きさから前記バリアフイルムの
欠陥を判定する第5の手順とを順次行うことを特徴とす
るハイバリアフイルムの欠陥検出方法を特徴とするもの
である。Further, the gas permeability coefficient is 10 -14 to 10 -11.
A defect detection method for detecting a defect of a barrier film in a range of cm 3 (STP) cm −2 S −1 cmHg −1 , wherein the two closed spaces separated through the barrier film are evacuated. A second procedure of separately introducing at least two types of gases having different molecular radii at one side of the closed space at a predetermined temperature under a predetermined pressure, and a second procedure of transmitting the gas through the barrier film on the other side. A third procedure of detecting a pressure rise value per unit time according to the permeation amount of each gas introduced into the closed space, and calculating a permeation coefficient of each gas from the pressure rise value and calculating a ratio of these permeation coefficients; A fourth aspect of the present invention is characterized in that a fourth procedure to be determined and a fifth procedure to determine a defect of the barrier film from the magnitude of the transmission coefficient ratio are sequentially performed, and a defect detection method for a high barrier film is characterized.
【0010】また、ガス透過係数が10-14乃至10-11
cm3(STP)cm-2S-1cmHg-1の範囲にあるバリアフイ
ルムの欠陥を検出する欠陥検出方法であって、前記バリ
アフイルムを介して隔てられた二つの密閉空間を真空排
気する第1の手順と、前記密閉空間の一方側に少なくと
も一種類のガスを所定圧力に保持しながら温度条件を変
えて導入する第2の手順と、前記バリアフイルムを透過
して他方側の密閉空間に導入された前記ガスの透過量に
応じた単位時間当りの圧力上昇値を求める第3の手順
と、前記圧力上昇値から前記ガスの各温度ごとの透過係
数を算出する第4の手順と、温度に対する透過係数の傾
きを求める第5の手順と、該傾きの大きさから前記バリ
アフイルムの欠陥を判定する第6の手順とを順次行うこ
とを特徴とするハイバリアフイルムの欠陥検出方法を特
徴とするものである。Further, the gas permeability coefficient is 10 -14 to 10 -11.
A defect detection method for detecting a defect of a barrier film in a range of cm 3 (STP) cm −2 S −1 cmHg −1 , wherein the two closed spaces separated through the barrier film are evacuated. A first procedure, a second procedure of introducing at least one type of gas into one side of the closed space while maintaining a predetermined pressure while changing the temperature condition, and passing the barrier film through the barrier film into the closed space on the other side. A third procedure for obtaining a pressure rise value per unit time according to the amount of the introduced gas permeation, a fourth procedure for calculating a permeability coefficient for each temperature of the gas from the pressure rise value, And a sixth procedure for determining a defect of the barrier film from the magnitude of the gradient is sequentially performed. Things.
【0011】また、本発明では、基準ガスとして例え
ば、窒素を用い、複数種類のガスとしては例えば、窒素
および酸素採用しているまた、密閉空間に導入されるガ
スの所定圧力は0.1kg/cm2乃至10kg/cm2であり、温
度条件としては室温から60℃までの範囲のものが採用
される。Further, in the present invention, for example, nitrogen is used as a reference gas, and nitrogen and oxygen are used as a plurality of kinds of gases. The predetermined pressure of the gas introduced into the closed space is 0.1 kg / kg. cm 2 to 10 kg / cm 2 , and a temperature condition from room temperature to 60 ° C. is adopted.
【0012】高分子フイルムにピンホールなどの欠陥が
なければ、高分子フイルムのガス透過係数は透過するガ
スの分子半径が大きいほど小さな値を示す。異なる分子
半径を有するガス間の透過係数比は高分子の種類や高分
子の高次構造により変化するが、概ね一定の値をとるこ
とが知られている。例えば、窒素ガスと酸素ガス及び窒
素ガスと二酸化炭素との透過係数比は窒素ガスを基準と
すると各々その3乃至9倍及び15乃至30倍であるこ
とが知られている。従って、ハイバリアフイルムに例え
ば窒素ガス,酸素ガス,二酸化炭素ガス等を所定の圧力
条件の基に透過させて透過係数を求め、透過係数比を算
出することによりピンホールなどの欠陥の有無を判定す
ることができる。フイルムにピンホールが存在すると分
子半径の大きなガスも分子半径の小さなガスと同様にピ
ンホールを介して自由に透過し易くなる。従って、本来
透過を強く制限される分子半径大のガスの見かけ上のガ
ス透過係数が大きく上昇し、分子半径小のガス透過係数
との差が目立たなくなる。そこで、両ガスの透過係数の
比を実測し、この値が正常値より低い場合にピンホール
の存在が推定される。更には、ガス透過係数比によりピ
ンホールのサイズや発生頻度もある程度推定できる。特
に、異種ガス間の相対的な透過係数比を用いて欠陥検出
を行なっているので測定条件に大きく依存することなく
客観的な判定が可能になる。また、ある特定のガスにつ
いてガス透過係数の温度依存性(例えば、ガス透過の活
性化エネルギ(Ep)(Kcal/mol)の絶対値)
を求めることによりピンホールや欠陥を判定することが
できる。一般にガス透過係数には大きな温度依存性があ
り、例えば、窒素は温度上昇と共に透過係数が増大し比
較的大きな活性化エネルギが認められる。然し乍ら、ピ
ンホールが存在すると温度に拘らず分子が自由に透過す
るので温度依存性が見かけ上失われる。即ち、活性化エ
ネルギが0.5乃至数(Kcal/mol)のような小
さな値を示した場合はピンホールや欠陥が存在する。If the polymer film has no defects such as pinholes, the gas permeability coefficient of the polymer film shows a smaller value as the molecular radius of the gas passing therethrough is larger. It is known that the transmission coefficient ratio between gases having different molecular radii varies depending on the type of polymer and the higher-order structure of the polymer, but takes a substantially constant value. For example, it is known that the transmission coefficient ratio between nitrogen gas and oxygen gas and between nitrogen gas and carbon dioxide is 3 to 9 times and 15 to 30 times that of nitrogen gas, respectively. Therefore, for example, nitrogen gas, oxygen gas, carbon dioxide gas, or the like is transmitted through the high barrier film under predetermined pressure conditions to determine the transmission coefficient, and the transmission coefficient ratio is calculated to determine the presence or absence of a defect such as a pinhole. be able to. When a pinhole is present in the film, a gas having a large molecular radius is easily transmitted through the pinhole similarly to a gas having a small molecular radius. Therefore, the apparent gas permeability coefficient of a gas having a large molecular radius, which is originally strongly restricted in permeation, greatly increases, and the difference from the gas permeability coefficient of a gas having a small molecular radius becomes less noticeable. Therefore, the ratio of the permeability coefficient of both gases is actually measured, and when this value is lower than the normal value, the presence of a pinhole is estimated. Further, the size and occurrence frequency of the pinhole can be estimated to some extent from the gas permeability coefficient ratio. In particular, since defect detection is performed using the relative transmission coefficient ratio between different gases, objective judgment can be made without largely depending on measurement conditions. Further, the temperature dependence of the gas permeation coefficient for a specific gas (for example, the absolute value of the activation energy (Ep) (Kcal / mol) of gas permeation)
, Pinholes and defects can be determined. In general, the gas permeation coefficient has a large temperature dependence. For example, nitrogen has a permeation coefficient that increases with an increase in temperature, and a relatively large activation energy is recognized. However, the presence of pinholes allows molecules to freely permeate regardless of the temperature, so that the temperature dependence is apparently lost. That is, when the activation energy shows a small value such as 0.5 to several (Kcal / mol), a pinhole or a defect exists.
【0013】本発明は、以上のことから真空排気された
密閉空間内に分子半径の異なるガスを導入し、バリアフ
イルムを透過させて透過係数比や活性化エネルギを求め
欠陥を検出するものである。なお、透過係数は、ガスの
透過によって生ずる単位時間当りの圧力上昇値を実測す
ることにより理論的に算出することができる。According to the present invention, a gas having different molecular radii is introduced into a closed space evacuated from the above, and transmitted through a barrier film to determine a transmission coefficient ratio and an activation energy to detect a defect. . The permeability coefficient can be theoretically calculated by actually measuring a pressure rise value per unit time caused by gas permeation.
【0014】また、本発明におけるバリアフイルムのピ
ンホールや欠陥の大きさは、円形に換算して0.1μm
乃至数百μm程度の直径を有する範囲である。0.1μ
mよりも小さくなると、フイルムを構成する高分子の高
次構造に起因する拡散がガス透過の主体となるため本発
明の考え方が適用されなくなる。一方、数百μmよりも
大きい欠陥の場合は10-14乃至10-11cm3(STP)c
m-2S-1cmHg-1の範囲のガス透過係数を示さないためハ
イバリアフイルムから外れたものになり本発明の範囲か
ら除外される。In the present invention, the size of pinholes and defects of the barrier film is 0.1 μm in terms of a circle.
It is a range having a diameter of about to several hundred μm. 0.1μ
If m is smaller than m, diffusion caused by the higher-order structure of the polymer constituting the film becomes the main component of gas permeation, and the concept of the present invention is not applied. On the other hand, in the case of a defect larger than several hundred μm, 10 −14 to 10 −11 cm 3 (STP) c
Since it does not show a gas permeability coefficient in the range of m −2 S −1 cmHg −1 , it falls outside the high barrier film and is excluded from the scope of the present invention.
【0015】[0015]
【発明の実施の形態】以下、本発明のハイバリアフイル
ムの欠陥検出装置及び方法を図面等を参照して詳述す
る。まず、図1により本発明のハイバリアフイルムの欠
陥検出装置の概要構成を説明する。図1に示すように欠
陥検出装置は大別して非検査物であるバリアフイルム1
を保持するサンプルホルダ2と、ガス導入手段3と、真
空排気手段4と、圧力検出手段5と、演算手段6と、欠
陥判定手段7等とからなり、サンプルホルダ2の周囲に
はサンプルホルダ内の温度を制御する恒温槽などからな
る制御部8が設けてある。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an apparatus and a method for detecting defects in a high barrier film according to the present invention will be described in detail with reference to the drawings. First, a schematic configuration of a defect detection apparatus for a high barrier film according to the present invention will be described with reference to FIG. As shown in FIG. 1, the defect detection apparatus is roughly classified into a barrier film 1 which is a non-inspection object.
, A gas introducing means 3, a vacuum exhaust means 4, a pressure detecting means 5, a calculating means 6, a defect determining means 7 and the like. A control unit 8 including a thermostat for controlling the temperature of the apparatus is provided.
【0016】サンプルホルダ2は、図2にその詳細構造
を示すように金属製のホルダ本体9と蓋体10等をシー
ル部材11を介して合体してボルト12,ナット13に
より締結したものからなる。バリアフイルム1は図示の
ように多孔性のサポータ14により下から支えられた状
態でパッキング15を介してホルダ本体9と蓋10間に
挾持される。ホルダ9と蓋10との間には密閉空間が形
成され、該密閉空間はバリアフイルム1により上方密閉
空間16及び下方密閉空間17に隔てられる。なお、上
方密閉空間16には導入管18が連結され下方密閉空間
17には排出管19が連結される。また導入管18と排
出管19の連結は溶接又はコバールとガラスのシール
(金属とガラスの結合)により行われる。The sample holder 2 comprises a metal holder body 9 and a lid 10 which are joined together via a seal member 11 and fastened with bolts 12 and nuts 13 as shown in FIG. . The barrier film 1 is held between the holder body 9 and the lid 10 via a packing 15 while being supported from below by a porous supporter 14 as shown in the figure. A sealed space is formed between the holder 9 and the lid 10, and the sealed space is separated by the barrier film 1 into an upper sealed space 16 and a lower sealed space 17. In addition, an inlet pipe 18 is connected to the upper sealed space 16, and a discharge pipe 19 is connected to the lower sealed space 17. The connection between the introduction pipe 18 and the discharge pipe 19 is performed by welding or sealing between Kovar and glass (bonding of metal and glass).
【0017】ガス導入手段3は、分子半径の異なる複数
種類(a,b,c,d)のガス(例えば、ヘリウム,酸
素,窒素,アルゴン)を貯蔵したガス溜め20と、ガス
溜め20から選択された一種類のガスを選択するガス選
択部21とからなる。具体的にはガス選択部21は必要
な一種類のガスをガス溜め20から選択する切り替えロ
ータリバルブ等からなる。ガス導入手段3とサンプルホ
ルダ2間は導入管18により連結され、導入管18内に
は導入ガスのガス圧力を所定圧力に調節する調節弁22
と切り替え弁23,24が介設される。なお、調節弁2
2は導入ガスの圧力を0.1kg/cm2乃至10kg/cm2程
度(好ましくは数kg/cm2以下)に調整するものである。
ガス圧力の調節を行うのは、あまり高圧にするとサンプ
ルホルダ2に保持されるバリアフイルム1が破損するか
らである。The gas introducing means 3 is selected from a gas reservoir 20 storing a plurality of types (a, b, c, d) of gases (for example, helium, oxygen, nitrogen, and argon) having different molecular radii, and a gas reservoir 20. And a gas selecting section 21 for selecting one type of selected gas. Specifically, the gas selector 21 includes a switching rotary valve for selecting one kind of necessary gas from the gas reservoir 20. The gas introduction means 3 and the sample holder 2 are connected by an introduction pipe 18, and a control valve 22 for adjusting the gas pressure of the introduced gas to a predetermined pressure is provided in the introduction pipe 18.
And switching valves 23 and 24 are interposed. In addition, control valve 2
No. 2 adjusts the pressure of the introduced gas to about 0.1 kg / cm 2 to 10 kg / cm 2 (preferably several kg / cm 2 or less).
The reason why the gas pressure is adjusted is that if the pressure is too high, the barrier film 1 held by the sample holder 2 is damaged.
【0018】真空排気手段4は、拡散ポンプ25と、荒
引用のロータリポンプ26と大気開放管27等からな
り、切り替え弁28,29が図示のように配置される。
拡散ポンプ25に連結する吸引管30は排出管19側と
連結すると共に、吸引管30から切り替え弁31を介し
て分岐した分岐管32は導入管18側の切り替え弁24
に連結する。なお、真空排気手段4はサンプルホルダ2
の上方密閉空間16および下方密閉空間17を10-3乃
至10-4mmHg程度に真空にするものである。また、当然
ながらサンプルホルダ2は前記の真空圧力に十分に耐え
る構造のものからなる。The vacuum evacuation means 4 comprises a diffusion pump 25, a rotary pump 26 and a pipe 27 open to the atmosphere, and switching valves 28 and 29 are arranged as shown in the figure.
The suction pipe 30 connected to the diffusion pump 25 is connected to the discharge pipe 19 side, and the branch pipe 32 branched from the suction pipe 30 via the switching valve 31 is connected to the switching valve 24 on the introduction pipe 18 side.
Connect to In addition, the evacuation means 4 is the sample holder 2
The upper sealed space 16 and the lower sealed space 17 are evacuated to about 10 −3 to 10 −4 mmHg. Also, the sample holder 2 is of course of a structure that can sufficiently withstand the above-mentioned vacuum pressure.
【0019】圧力検出手段5は切り替え弁33を有する
排出管19を介してサンプルホルダの下方密閉空間17
に連通する。圧力検出手段5は下方密閉空間17内のガ
ス圧力を経時的に検出するもので、例えば、公知の隔膜
真空計が使用される。The pressure detecting means 5 is connected to the lower closed space 17 of the sample holder through a discharge pipe 19 having a switching valve 33.
Communicate with The pressure detecting means 5 detects the gas pressure in the lower sealed space 17 with time, and for example, a known diaphragm gauge is used.
【0020】演算手段6はパーソナルコンピュータ等か
らなり、圧力検出手段5の検出結果に応じデータメモリ
に格納された単位時間当りの圧力上昇値ΔP/Δtを基
にして透過係数Pを算出すると共に、各ガスの透過係数
Pの比(透過係数比)や、透過係数の温度依存性を表わ
す活性化エネルギEp(Kcal/mol)を求めるも
のである。The calculating means 6 comprises a personal computer or the like, and calculates the transmission coefficient P based on the pressure rise value ΔP / Δt per unit time stored in the data memory in accordance with the detection result of the pressure detecting means 5. The ratio of the permeation coefficient P of each gas (permeation coefficient ratio) and the activation energy Ep (Kcal / mol) representing the temperature dependence of the permeation coefficient are obtained.
【0021】欠陥判定手段7は、演算手段6で求めた透
過係数比又は活性化エネルギEpの値からバリアフイル
ム1の欠陥の有無を判定するものである。The defect judging means 7 judges the presence or absence of a defect in the barrier film 1 from the value of the transmission coefficient ratio or the activation energy Ep obtained by the calculating means 6.
【0022】制御部8は前記したように、サンプルホル
ダ2内のガスの温度をコントロールするもので、本発明
ではガスおよびフイルムが室温(例えば、20℃)から
60℃位の温度範囲でコントロールされる。The controller 8 controls the temperature of the gas in the sample holder 2 as described above. In the present invention, the gas and the film are controlled in a temperature range from room temperature (for example, 20 ° C.) to about 60 ° C. You.
【0023】以下の数式は本発明における透過係数を算
式するための理論式を示す。The following formula shows a theoretical formula for calculating the transmission coefficient in the present invention.
【0024】[0024]
【数1】 (Equation 1)
【0025】前式において、Pは透過係数,ΔP/Δt
は単位時間当りの圧力上昇値,pは導入ガス圧(cmH
g),Aは透過面積(cm2),dはバリアフイルムの厚さ
(cm),Tはサンプルホルダ内の温度,Vは低圧側の容
積(下部密閉空間間17の容積)(cm3)である。以上
において、A,p,d,T,Vは既知のためΔP/Δt
を求めることにより透過係数Pは算出される。In the above equation, P is a transmission coefficient, ΔP / Δt
Is the pressure rise value per unit time, p is the introduced gas pressure (cmH
g), A is the transmission area (cm 2 ), d is the thickness of the barrier film (cm), T is the temperature in the sample holder, V is the volume on the low pressure side (the volume of 17 between the lower enclosed spaces) (cm 3 ) It is. In the above, A, p, d, T, and V are known, so that ΔP / Δt
Is obtained, the transmission coefficient P is calculated.
【0026】次に、本発明の欠陥検出装置を用いたバリ
アフイルム1の欠陥検出方法を図1乃至図4を用いて説
明する。図3は請求項3に対応するものであり、図4は
請求項4に夫々対応するものである。Next, a method for detecting a defect in the barrier film 1 using the defect detection apparatus of the present invention will be described with reference to FIGS. FIG. 3 corresponds to claim 3, and FIG. 4 corresponds to claim 4 respectively.
【0027】まず、図1における切り替え弁23,3
3,29,を閉止し、切り替え弁24,31,28を開
放し、真空排気手段4のロータリポンプ26を作動しサ
ンプルホルダ2の上方密閉空間16と下方密閉空間17
を例えば、10-3乃至10-4mmHgの真空に均一に保持す
る。次に、真空排気を停止した後、ガス導入手段3から
の分子半径の異なる複数種類(n)のガスを1つずつ選
択し、切り替え弁23を開放し調整弁22でガス圧力を
例えば、0.1kg/cm2乃至数Kg/cm2に調整し、上方密閉
空間16内に導入する。なお、サンプルホルダ2の上方
密閉空間16および下方密閉空間17は制御部8により
所定の温度、例えば、30℃に調整される。First, the switching valves 23, 3 in FIG.
3 and 29 are closed, the switching valves 24, 31 and 28 are opened, and the rotary pump 26 of the evacuation means 4 is operated to operate the upper sealed space 16 and the lower sealed space 17 of the sample holder 2.
Is uniformly maintained in a vacuum of, for example, 10 −3 to 10 −4 mmHg. Next, after the evacuation is stopped, a plurality of types (n) of gases having different molecular radii from the gas introducing means 3 are selected one by one, the switching valve 23 is opened, and the gas pressure is set to, for example, 0 by the adjusting valve 22. .1kg / cm 2 to adjust the number Kg / cm 2, is introduced into the upper closed space 16. The upper sealed space 16 and the lower sealed space 17 of the sample holder 2 are adjusted to a predetermined temperature, for example, 30 ° C. by the control unit 8.
【0028】切り替え弁33を開放し、上方密閉空間1
6からバリアフイルム1を透過して下方密閉空間17に
入った複数種類のガス毎の単位時間当りの圧力上昇値Δ
P/Δtを圧力検出手段5を介して実測する。The switching valve 33 is opened, and the upper sealed space 1 is opened.
6, the pressure rise value Δ per unit time for each of a plurality of types of gases that have passed through the barrier film 1 and entered the lower sealed space 17.
P / Δt is actually measured via the pressure detecting means 5.
【0029】次に、演算手段6により前記のΔP/Δt
を基にして各ガスごとに前記の数式により透過係数Pを
求める。図3のステップ100はその手順を示す。Next, the calculation means 6 calculates ΔP / Δt.
, The transmission coefficient P is determined for each gas by the above formula. Step 100 in FIG. 3 shows the procedure.
【0030】導入ガスを例えば、窒素および酸素を選択
し、演算手段6により酸素と窒素の透過係数比を求める
(PO2/PN2)。図3のステップ101はこの手順を
示す。For example, nitrogen and oxygen are selected as the gas to be introduced, and the calculation means 6 determines the transmission coefficient ratio between oxygen and nitrogen (PO 2 / PN 2 ). Step 101 in FIG. 3 shows this procedure.
【0031】次に、比較判定手段7によりステップ10
1で求めた透過係数比と所定の基準値を比較し(図3の
ステップ102)、例えば、この値が1より小さい場合
には欠陥あり(図3のステップ103)とし、例え
ば、、3乃至8程度であれば欠陥のない正常品と判定す
る(図3のステップ104)。以上によりバリアフイル
ム1の欠陥の有無が自動的に判定されるる。Next, step 10 is performed by the comparison / determination means 7.
The transmission coefficient ratio obtained in step 1 is compared with a predetermined reference value (step 102 in FIG. 3). For example, if this value is smaller than 1, it is determined that there is a defect (step 103 in FIG. 3). If it is about 8, it is determined that there is no defect in the normal product (step 104 in FIG. 3). Thus, the presence or absence of a defect in the barrier film 1 is automatically determined.
【0032】次に、活性化エネルギEpによりバリアフ
イルム1の欠陥を判定する方法を説明する。この場合は
1種類のガスを選定し、圧力調整した後、サンプルホル
ダ2の上方密閉空間16内に導入する。ただし、上方密
閉空間間16の温度を段階的に変化させて複数回同様の
測定手順を繰返し行う。図4のステップ200に示すよ
うに、特定のガスの各温度ごとの透過係数を演算手段6
により求め、且つ温度依存性を表わす活性化エネルギE
pを図示の数式に従って求める(ステップ201)。次
に、比較手段7により前記のEpの値と基準値を比較し
(ステップ202)、例えば、Epの値が1よりも小さ
い場合はそのバリアフイルム1は欠陥ありとし(ステッ
プ203)、例えば、4より大きい場合は正常であると
判定する(ステップ204)。以上により前記の方法と
同様にバリアフイルム1の欠陥が自動的に判定される。Next, a method of determining a defect of the barrier film 1 based on the activation energy Ep will be described. In this case, one kind of gas is selected, and after adjusting the pressure, it is introduced into the upper sealed space 16 of the sample holder 2. However, the same measurement procedure is repeated a plurality of times while the temperature in the upper sealed space 16 is changed stepwise. As shown in step 200 of FIG. 4, the calculating means 6 calculates the permeation coefficient of each specific gas at each temperature.
Activation energy E, which is determined by
p is obtained in accordance with the illustrated equation (step 201). Next, the value of Ep is compared with the reference value by the comparing means 7 (step 202). For example, if the value of Ep is smaller than 1, the barrier film 1 is determined to be defective (step 203). If it is larger than 4, it is determined that it is normal (step 204). As described above, the defect of the barrier film 1 is automatically determined in the same manner as described above.
【0033】(実験例)表1は図3に示した手順による
欠陥検出方法の実験例を示すものである。この場合、バ
リアフイルム1としては製造メーカの異なるA,B,C
の3種類のものがサンプルとして選定された。これ等の
バリアフイルム1は12μmの厚みの二軸延伸ポリエス
テルフイルムからなる。使用ガスとしては酸素(O2)
と窒素(N2)を用いた。また温度条件は30℃に設定
した。(Experimental Example) Table 1 shows an experimental example of the defect detection method according to the procedure shown in FIG. In this case, as the barrier film 1, A, B, C of different manufacturers are used.
Were selected as samples. These barrier films 1 are made of a biaxially stretched polyester film having a thickness of 12 μm. The gas used is oxygen (O 2 )
And nitrogen (N 2 ). The temperature condition was set at 30 ° C.
【0034】[0034]
【表1】 [Table 1]
【0035】表1に示すように透過係数比PO2/PN2
はサンプルAは6.90でありサンプルCは8.67で
ありいずれもほぼ正常の範囲に入るがサンプルBは0.
97で1よりも小さい。よってサンプルBは欠陥のある
不良品と判定される。念のため、サンプルA,B,Cを
SEMによりランダムに夫々20ヵ所を観察したとこ
ろ、サンプルBには約10μmのピンホールがあること
が観察されたがサンプルA,Cにはピンホール等が観察
されなかった。As shown in Table 1, the transmission coefficient ratio PO 2 / PN 2
In Sample A, Sample A was 6.90 and Sample C was 8.67, all of which were within the normal range.
97 less than 1. Therefore, Sample B is determined to be defective with a defect. As a precautionary measure, when samples A, B, and C were randomly observed at 20 locations by SEM, respectively, it was observed that sample B had a pinhole of about 10 μm. Not observed.
【0036】(実験例)表2は図4に示した手順による
欠陥検出方法の実験例を示すものである。この場合、バ
リアフイルム1としては同じくA,B,Cの3種類のサ
ンプルが選定された。A,B,Cのバリアフイルム1は
いずれも12μm厚みの二軸延延ポリエステルフイルム
からなり、使用ガスとしては酸素(O2)と窒素(N2)
を用いた。また、温度条件としては30℃,40℃,5
0℃,60℃の4段階に設定し、夫々の温度条件の基で
同一の実験を行った。(Experimental Example) Table 2 shows an experimental example of the defect detection method according to the procedure shown in FIG. In this case, three types of samples A, B, and C were similarly selected as the barrier films 1. Each of the barrier films 1 of A, B, and C is made of a biaxially stretched polyester film having a thickness of 12 μm, and oxygen (O 2 ) and nitrogen (N 2 ) are used as gases.
Was used. The temperature conditions are 30 ° C., 40 ° C., 5 ° C.
The same experiment was carried out under four temperature settings of 0 ° C. and 60 ° C. under each temperature condition.
【0037】[0037]
【表2】 [Table 2]
【0038】表2に示すように、サンプルAの活性化エ
ネルギEpは6.7であり、サンプル℃も6.6である
が、サンプルBのEpの値は0.49と低い。以上によ
り、前記の実験例と同様にサンプルBに欠陥があること
が判定された。As shown in Table 2, the activation energy Ep of the sample A is 6.7 and the sample C is 6.6, but the Ep value of the sample B is as low as 0.49. From the above, it was determined that Sample B had a defect as in the above-described experimental example.
【0039】[0039]
【発明の効果】本発明によれば、次のような顕著な効果
を奏する。即ち、電子顕微鏡によっても欠陥を見つける
ことが難しいガス透過係数10-14乃至10-11cm3(S
TP)cm-2S-1cmHg-1のハイバリアフイルムの微小なピ
ンホールの有無が比較的簡単な構造と方法により自動的
に且つ確実に判定することができる。これにより、従来
にはない超薄膜フイルムやガス選択性フイルムのような
機能性素材の品質管理を行うことができる。According to the present invention, the following remarkable effects are obtained. That is, a gas permeability coefficient of 10 −14 to 10 −11 cm 3 (S
TP) The presence or absence of minute pinholes in the high barrier film of cm −2 S −1 cmHg −1 can be automatically and reliably determined by a relatively simple structure and method. As a result, it is possible to perform quality control of a functional material such as an ultra-thin film or a gas-selective film, which has not existed conventionally.
【図1】本発明のハイバリアフイルムの欠陥検出装置の
概要構成を示すブロック図。FIG. 1 is a block diagram showing a schematic configuration of a defect detection device for a high barrier film according to the present invention.
【図2】本発明におけるサンプルホルダの詳細構造を示
す断面図。FIG. 2 is a sectional view showing a detailed structure of a sample holder according to the present invention.
【図3】本発明のハイバリアフイルムの欠陥検出方法の
一例を説明するためのフローチャート。FIG. 3 is a flowchart illustrating an example of a method for detecting a defect in a high barrier film according to the present invention.
【図4】本発明のハイバリアフイルムの欠陥検出方法の
他の例を説明するためのフローチャート。FIG. 4 is a flowchart for explaining another example of the defect detection method of the high barrier film of the present invention.
1 バリアフイルム 2 サンプルホルダ 3 ガス導入手段 4 真空排気手段 5 圧力検出手段 6 演算手段 7 欠陥判定手段 8 制御部 9 本体 10 蓋体 11 シール部材 12 ボルト 13 ナット 14 サポータ 15 パッキング 16 上方密閉空間 17 下方密閉空間 18 導入管 19 排出管 20 ガス溜め 21 ガス選択部 22 調整弁 23 切り替え弁 24 切り替え弁 25 拡散ポンプ 26 ロータリポンプ 27 大気解放管 28 切り替え弁 29 切り替え弁 30 吸引管 31 切り替え弁 32 分岐管 33 切り替え弁 DESCRIPTION OF SYMBOLS 1 Barrier film 2 Sample holder 3 Gas introduction means 4 Evacuation means 5 Pressure detection means 6 Calculation means 7 Defect judgment means 8 Control part 9 Main body 10 Cover 11 Sealing member 12 Bolt 13 Nut 14 Supporter 15 Packing 16 Upper sealed space 17 Lower Sealed space 18 Inlet pipe 19 Discharge pipe 20 Gas reservoir 21 Gas selector 22 Adjusting valve 23 Switching valve 24 Switching valve 25 Diffusion pump 26 Rotary pump 27 Atmospheric release pipe 28 Switching valve 29 Switching valve 30 Suction pipe 31 Switching valve 32 Branch pipe 33 Switching valve
───────────────────────────────────────────────────── フロントページの続き (72)発明者 加納 満 東京都台東区台東1丁目5番1号 凸版 印刷株式会社内 (58)調査した分野(Int.Cl.7,DB名) G01N 15/08 B01D 65/10 G01M 3/00 - 3/40 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Mitsuru Kano 1-5-1, Taito, Taito-ku, Tokyo Toppan Printing Co., Ltd. (58) Field surveyed (Int. Cl. 7 , DB name) G01N 15/08 B01D 65/10 G01M 3/00-3/40
Claims (9)
(STP)cm-2S-1cmHg-1の範囲にあるバリアフイルム
の欠陥を検出する欠陥検出装置であって、前記バリアフ
イルムを介して隔てられた二つの密閉空間を形成するサ
ンプルホルダと、該サンプルホルダの二つの密閉空間を
真空にする真空排気手段と、前記密閉空間の一方側に異
なる分子半径を有する少なくとも二種類のガスを所定の
圧力に調整して一定の温度で選択的に導入するガス導入
手段と、前記密閉空間の他方側に連通して配置され、前
記バリアフイルムを透過して前記他方側の密閉空間に入
ったガスの単位時間当りの圧力上昇値を検出する圧力検
出手段と、前記圧力上昇値を基にして夫々のガスの透過
係数を算出すると共にこれらの透過係数比を求める演算
手段と、該透過係数比から前記バリアフイルムの欠陥を
判定する欠陥判定手段とを設けることを特徴とするハイ
バリアフイルムの欠陥検出装置。1. A gas permeability coefficient of 10 -14 to 10 -11 cm 3
(STP) A defect detector for detecting a defect of a barrier film in a range of cm −2 S −1 cmHg −1 , a sample holder forming two closed spaces separated by the barrier film, Vacuum evacuation means for evacuating two closed spaces of the sample holder, and selectively introducing at least two types of gases having different molecular radii to one side of the closed space at a predetermined pressure by adjusting the pressure to a predetermined value. Pressure detecting means disposed in communication with the other side of the closed space, and detecting a pressure increase value per unit time of gas permeating the barrier film and entering the closed space on the other side. Calculating means for calculating a transmission coefficient of each gas based on the pressure rise value and calculating a transmission coefficient ratio thereof; and a defect determination for determining a defect of the barrier film from the transmission coefficient ratio. Defect detecting apparatus of a high barrier film which is characterized by providing a stage.
(STP)cm-2S-1cmHg-1の範囲にあるバリアフイルム
の欠陥を検出する欠陥検出装置であって、前記バリアフ
イルムを介して隔てられた二つの密閉空間を形成するサ
ンプルホルダと、該サンプルホルダの二つの密閉空間を
真空にする真空排気手段と、前記密閉空間の一方側に任
意の分子半径を有する少なくとも一種類のガスを所定の
圧力に調整すると共に温度条件を変えて導入するガス導
入手段と、前記密閉空間の他方側に連通して配置され前
記バリアフイルムを透過して前記他方側の密閉空間に入
ったガスの単位時間当りの圧力上昇値を検出する圧力検
出手段と、前記圧力上昇値を基にして各温度における前
記ガスの透過係数を算出すると共に前記ガスの透過係数
の温度依存性から前記バリアフイルムの欠陥を判定する
欠陥判定手段とを設けることを特徴とするハイバリアフ
イルムの欠陥検出装置。2. A gas permeability coefficient of 10 -14 to 10 -11 cm 3
(STP) A defect detector for detecting a defect of a barrier film in a range of cm −2 S −1 cmHg −1 , a sample holder forming two closed spaces separated by the barrier film, Vacuum evacuation means for evacuating two closed spaces of the sample holder, and introducing at least one kind of gas having an arbitrary molecular radius to one side of the closed space at a predetermined pressure and changing temperature conditions. Gas introduction means, pressure detection means arranged to communicate with the other side of the closed space, and detecting a pressure rise value per unit time of gas permeating the barrier film and entering the closed space on the other side, Defect determining means for calculating a permeability coefficient of the gas at each temperature based on the pressure rise value and determining a defect of the barrier film from a temperature dependency of the permeability coefficient of the gas. Defect detecting apparatus of a high barrier film, wherein the kick.
(STP)cm-2S-1cmHg-1の範囲にあるバリアフイルム
の欠陥を検出する欠陥検出方法であって、前記バリアフ
イルムを介して隔てられた二つの密閉空間を真空排気す
る第1の手順と、前記密閉空間の一方側に異なる分子半
径を有する少なくとも二種類のガスを所定圧力下所定温
度で別々に導入する第2の手順と、前記バリアフイルム
を透過して他方側の前記密閉空間に導入された各ガスの
透過量に応じた単位時間当りの圧力上昇値を検出する第
3の手順と、前記圧力上昇値から各ガスの透過係数を算
出すると共にこれらの透過係数比を求める第4の手順
と、該透過係数比の大きさから前記バリアフイルムの欠
陥を判定する第5の手順とを順次行うことを特徴とする
ハイバリアフイルムの欠陥検出方法。3. A gas permeability coefficient of 10 -14 to 10 -11 cm 3
(STP) A defect detection method for detecting a defect of a barrier film in a range of cm −2 S −1 cmHg −1 , wherein a first closed space separated by the barrier film is evacuated. A second step of separately introducing at least two types of gases having different molecular radii at one side of the closed space at a predetermined temperature under a predetermined pressure, and a second step of transmitting the barrier film through the barrier film and the other side. A third procedure of detecting a pressure rise value per unit time in accordance with the permeation amount of each gas introduced into the second step; and calculating a transmission coefficient of each gas from the pressure rise value and calculating a transmission coefficient ratio of these gases. 4. A method of detecting defects in a high barrier film, comprising sequentially performing step 4 and a fifth step of determining a defect in the barrier film from the magnitude of the transmission coefficient ratio.
(STP)cm-2S-1cmHg-1の範囲にあるバリアフイルム
の欠陥を検出する欠陥検出方法であって、前記バリアフ
イルムを介して隔てられた二つの密閉空間を真空排気す
る第1の手順と、前記密閉空間の一方側に少なくとも一
種類のガスを所定圧力に保持しながら温度条件を変えて
導入する第2の手順と、前記バリアフイルムを透過して
他方側の密閉空間に導入された前記ガスの透過量に応じ
た単位時間当りの圧力上昇値を求める第3の手順と、前
記圧力上昇値から前記ガスの各温度ごとの透過係数を算
出する第4の手順と、温度に対する透過係数の傾きを求
める第5の手順と、該傾きの大きさから前記バリアフイ
ルムの欠陥を判定する第6の手順とを順次行うことを特
徴とするハイバリアフイルムの欠陥検出方法。4. A gas permeability coefficient of 10 -14 to 10 -11 cm 3
(STP) A defect detection method for detecting a defect of a barrier film in a range of cm −2 S −1 cmHg −1 , wherein a first closed space separated by the barrier film is evacuated. A second procedure of introducing at least one type of gas into one side of the sealed space while changing the temperature condition while maintaining the gas at a predetermined pressure, and introducing the gas into the closed space on the other side through the barrier film. A third procedure for obtaining a pressure rise value per unit time according to the permeation amount of the gas, a fourth procedure for calculating a permeability coefficient for each temperature of the gas from the pressure rise value, A method for detecting a defect in a high barrier film, comprising sequentially performing a fifth procedure for obtaining a coefficient gradient and a sixth procedure for determining a barrier film defect from the magnitude of the gradient.
素を用いることを特徴とする請求項1乃至4のいずれか
に記載のハイバリアフイルムの欠陥検出装置又は方法。5. The high barrier film defect detection apparatus or method according to claim 1, wherein at least standard nitrogen is used as a gas type.
酸素又はアルゴンから選択されたガスを用いることを特
徴とする請求項1又は3のいずれかに記載のハイバリア
フイルムの欠陥検出装置又は方法。6. In addition to nitrogen, helium,
4. The defect detecting apparatus or method for a high barrier film according to claim 1, wherein a gas selected from oxygen or argon is used.
の前記所定圧力が0.1kg/cm2乃至10kg/cm2である
ことを特徴とする請求項1乃至4のいずれかに記載のハ
イバリアフイルムの欠陥検出装置又は方法。7. The method according to claim 1, wherein the predetermined pressure of the gas introduced into the one closed space is 0.1 kg / cm 2 to 10 kg / cm 2 . An apparatus or method for detecting a defect of a high barrier film.
件が室温から60℃の範囲で段階的に設定することを特
徴とする請求項2又は4のいずれかに記載のハイバリア
フイルムの欠陥検出装置又は方法。8. The defect detection of a high barrier film according to claim 2, wherein a temperature condition of the gas introduced into the closed space is set stepwise within a range from room temperature to 60 ° C. Apparatus or method.
め10-3乃至10-4mmHgの範囲で真空引きすることを
特徴とする請求項1乃至4のいずれかに記載のハイバリ
アフイルムの欠陥検出装置又は方法。9. The defect of a high barrier film according to claim 1, wherein the enclosed space is evacuated in advance to a range of 10 −3 to 10 −4 mmHg before introducing the gas. Detection device or method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22799896A JP3300232B2 (en) | 1996-08-29 | 1996-08-29 | High barrier film defect detection apparatus and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22799896A JP3300232B2 (en) | 1996-08-29 | 1996-08-29 | High barrier film defect detection apparatus and method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1073527A JPH1073527A (en) | 1998-03-17 |
JP3300232B2 true JP3300232B2 (en) | 2002-07-08 |
Family
ID=16869583
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22799896A Expired - Fee Related JP3300232B2 (en) | 1996-08-29 | 1996-08-29 | High barrier film defect detection apparatus and method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3300232B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4570049B2 (en) * | 2006-01-26 | 2010-10-27 | 大日本印刷株式会社 | Defect detection method for transparent gas barrier film |
CN102175560B (en) * | 2011-01-19 | 2012-07-11 | 北京交通大学 | Experimental device for studying on magnetic liquid sealing mechanism |
JP5734109B2 (en) * | 2011-06-20 | 2015-06-10 | 株式会社住化分析センター | Measuring apparatus and measuring method |
JP6299751B2 (en) * | 2013-04-02 | 2018-03-28 | コニカミノルタ株式会社 | Method and system for evaluating water vapor permeability of gas barrier film and method for producing gas barrier film |
JP6489053B2 (en) * | 2016-03-29 | 2019-03-27 | 株式会社デンソー | Manufacturing method of drive mechanism |
-
1996
- 1996-08-29 JP JP22799896A patent/JP3300232B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH1073527A (en) | 1998-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6766682B2 (en) | Precise measurement system for barrier materials | |
JP4262989B2 (en) | Method and apparatus for measuring transmittance of barrier layer | |
Firpo et al. | Permeability thickness dependence of polydimethylsiloxane (PDMS) membranes | |
EP0218458B1 (en) | Method and apparatus for gross leak detection | |
US6598463B2 (en) | Method for determining gas accumulation rates | |
EP1631806B1 (en) | Methods and apparatus for detection of large leaks in sealed articles | |
EP3588056B1 (en) | Device for evaluating gas barrier properties and method for evaluating gas barrier properties | |
JPH03195935A (en) | Apparatus and method for detecting leakage | |
JP3930871B2 (en) | Moisture permeability / gas permeability measuring device and gas permeability measuring method | |
JP2000214069A (en) | Evaluation apparatus for gas permeation | |
JP3300232B2 (en) | High barrier film defect detection apparatus and method | |
KR100859343B1 (en) | Analyzer of Gas Permeation through Polymeric Membrane | |
US8388742B2 (en) | Apparatus to measure permeation of a gas through a membrane | |
CN111266015B (en) | Constant volume variable pressure method test system of gas transmittance | |
US7690244B2 (en) | Method for measuring for permeability to gases with rapid conditioning and installation for carrying out this method | |
Firpo et al. | High-vacuum setup for permeability and diffusivity measurements by membrane techniques | |
CN109708993B (en) | Method and device for measuring isothermal adsorption quantity of shale high-pressure gas | |
EP0877246A2 (en) | In situ monitoring of contaminants in semiconductor processing chambers | |
US6584829B1 (en) | Method for operating a film leak detector and film leak detector suitable for carrying out this method | |
Steriotis et al. | Novel design for high pressure, integral, differential, absolute, and relative multicomponent permeability measurements | |
Yasuda et al. | Special problems and methods in the study of water vapor transport in polymers | |
JPH1038746A (en) | Leak test method for film test piece by helium detector | |
JP2004157035A (en) | Gas permeation speed measuring device of barrier film-coated plastic container, gas permeation speed measuring method of barrier film-coated plastic container, gas permeation speed measuring device of barrier film-coated plastic sheet, and gas pearmeation speed measuring method of barrier film-coated plastic sheet | |
JP2004340723A (en) | Apparatus and method for detecting leak of bag-like object or hollow body | |
Huldy | Gas permeability apparatus for films and sheets |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080419 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090419 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100419 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100419 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110419 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110419 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120419 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120419 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130419 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130419 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140419 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |