JP3296376B2 - Mold additive - Google Patents

Mold additive

Info

Publication number
JP3296376B2
JP3296376B2 JP19282793A JP19282793A JP3296376B2 JP 3296376 B2 JP3296376 B2 JP 3296376B2 JP 19282793 A JP19282793 A JP 19282793A JP 19282793 A JP19282793 A JP 19282793A JP 3296376 B2 JP3296376 B2 JP 3296376B2
Authority
JP
Japan
Prior art keywords
additive
mold
weight
concentration
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19282793A
Other languages
Japanese (ja)
Other versions
JPH0716716A (en
Inventor
滋 大尻
Original Assignee
日本サーモケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本サーモケミカル株式会社 filed Critical 日本サーモケミカル株式会社
Priority to JP19282793A priority Critical patent/JP3296376B2/en
Publication of JPH0716716A publication Critical patent/JPH0716716A/en
Application granted granted Critical
Publication of JP3296376B2 publication Critical patent/JP3296376B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は鋳造時に鋼湯表面に添加
して用いる鋳型添加剤に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mold additive to be added to the surface of steel melt during casting.

【0002】[0002]

【従来の技術】近年、鋳型に溶鋼を注入して鋼の鋳造を
行うに際し、鋼湯表面に鋳型添加剤を添加して鋳造す
る、所謂パウダーキャスティング法が広く採用されてい
る。鋳型添加剤は鋼湯面を覆って保温するとともに、鋼
湯表面に浮上してくる非金属介在物を吸収する。また、
溶鋼の熱で溶かされた添加剤のスラグは鋳型と鋳片との
間に入り、鋳型と鋳片との間の潤滑の作用を果たす。ま
た溶鋼表面をスラグが覆って鋼の酸化を防止するととも
に凝固シェルを徐冷し、これらの作用によって鋼塊表面
の欠陥発生が防止される。
2. Description of the Related Art In recent years, when casting molten steel by injecting molten steel into a mold, a so-called powder casting method in which a mold additive is added to the surface of a molten steel to perform casting is widely used. The mold additive covers the surface of the steel and keeps heat, and absorbs nonmetallic inclusions floating on the surface of the steel. Also,
The slag of the additive melted by the heat of the molten steel enters between the mold and the slab and performs a lubricating action between the mold and the slab. In addition, the slag covers the surface of the molten steel to prevent oxidation of the steel and gradually cool the solidified shell. These actions prevent the occurrence of defects on the surface of the steel ingot.

【0003】上記鋳型添加剤として、CaO、SiO2
等を母材とし、これに、NaCO3、NaF、Na3
lF6 、CaF2 、Li2 CO3 等のフラックスや、コ
ークス等の骨材を添加したものが広く用いられている。
パウダーキャスティング法によって鋳造される鋼塊表面
の状態は、鋳型添加剤の性状に大きく左右されるため、
鋳型添加剤の配合組成について種々の研究が行われてい
る。
[0003] CaO, SiO 2
Is used as a base material, and NaCO 3 , NaF, Na 3 A
lF 6, CaF 2, or Li 2 CO 3 or the like of the flux, a material obtained by adding the aggregate coke and the like are widely used.
Since the state of the surface of the steel ingot cast by the powder casting method is greatly affected by the properties of the mold additive,
Various studies have been conducted on the composition of the template additive.

【0004】[0004]

【発明が解決しようとする課題】鋳型に注入された溶鋼
は、鋳型壁面と接する面(実際には溶鋼と鋳型壁面との
間に溶融した鋳型添加剤のスラグ層が介在する。)が冷
却されて当該表面に凝固シェルを生じながら冷却される
が、溶鋼を急冷すると凝固シェル生成時の収縮によって
鋼塊表面に割れを生じるため、鋼塊表面の割れやへこみ
発生を防止する上からは溶鋼を徐冷することが必要とさ
れている。
The molten steel injected into the mold is cooled on the surface in contact with the mold wall surface (actually, a slag layer of the molten mold additive is interposed between the molten steel and the mold wall surface). The surface is cooled while forming a solidified shell on the surface, but when the molten steel is quenched, the surface of the steel ingot cracks due to shrinkage during the formation of the solidified shell. Slow cooling is required.

【0005】従来、溶鋼の冷却効率には、鋳型添加剤の
粘度の大小が大きく影響すると考えられていたが、近年
は鋳型添加剤の凝固温度が溶鋼の冷却効率に大きく影響
し、凝固温度の低い鋳型添加剤を用いると溶鋼が急冷さ
れ易く、鋼塊表面に割れやへこみが生じ易いというのが
一般的な知見である。このため近年は割れ等の感受性の
高い鋼種には凝固温度の高い鋳型添加剤を用いるのが一
般的である。
Conventionally, it was thought that the cooling efficiency of molten steel was greatly affected by the magnitude of the viscosity of the mold additive. However, in recent years, the solidification temperature of the mold additive has a large effect on the cooling efficiency of molten steel, and the solidification temperature of the molten steel has been greatly reduced. It is general knowledge that when a low mold additive is used, the molten steel is easily quenched and cracks and dents are easily generated on the surface of the steel ingot. For this reason, in recent years, a mold additive having a high solidification temperature is generally used for steel types having high susceptibility to cracking or the like.

【0006】しかしながら使用する鋳型添加剤の凝固温
度が高くなる程、添加剤が溶融して生じたスラグが鋳型
壁面で再固化し易く、この結果、鋳型壁と凝固シェルと
の間に存在する液体スラグ層の厚みが薄くなって鋳型内
における潤滑性が低下し、この結果鋳造工程中で凝固シ
ェルが破断して未凝固状態にある溶鋼が凝固シェル表面
に流れ出る、所謂ブレーク・アウトが生じ易くなるとい
う問題があった。上記ブレーク・アウトは、鋳型添加剤
の凝固温度が低くなるほど生じ難いが、凝固温度の低い
鋳型添加剤を用いた場合には、前記したように鋳型添加
剤の凝固温度を低くするほど鋼塊表面に割れやへこみが
生じ易くなるという問題があった。
[0006] However, as the solidification temperature of the mold additive used increases, the slag generated by melting of the additive is more likely to be re-solidified on the mold wall surface. As a result, the liquid existing between the mold wall and the solidified shell is formed. The thickness of the slag layer is reduced, and the lubricity in the mold is reduced. As a result, during the casting process, the solidified shell is broken and molten steel in an unsolidified state flows out to the surface of the solidified shell. There was a problem. The break-out is less likely to occur as the solidification temperature of the mold additive is lower, but when a mold additive having a lower solidification temperature is used, as described above, the lower the solidification temperature of the mold additive, the more the surface of the steel ingot becomes. There is a problem that cracks and dents are liable to occur.

【0007】このように鋼塊表面の割れや、鋳造時のブ
レーク・アウトの発生を防止するため、鋳型添加剤には
溶鋼の徐冷作用と、潤滑作用の2つの要件が必要とされ
るが、鋳型添加剤の凝固温度にのみ着目してこれらの2
つの要件を満足することは不可能であった。
As described above, in order to prevent cracks on the surface of the steel ingot and break-out during casting, there are two requirements for the mold additive, namely the slow cooling action of the molten steel and the lubrication action. Focusing only on the solidification temperature of the mold additive, these 2
It was impossible to satisfy the two requirements.

【0008】本発明者は上記課題を解決すべく鋭意研究
した結果、一旦溶融した鋳型添加剤が冷却されて凝固す
るまでの間に、球状乃至略球状の結晶が、溶融液体状態
の添加剤中に分散した固−液共存状態が存在する溶融挙
動を有する添加剤が、添加剤の凝固温度を低くした場合
でも、溶鋼の徐冷効果に優れていることを見出し、本発
明を完成するに至った。
The inventor of the present invention has conducted intensive studies to solve the above-mentioned problems. As a result, during the time when the molten mold additive is cooled and solidified, spherical or substantially spherical crystals are formed in the molten liquid additive. The present inventors have found that an additive having a melting behavior in which a solid-liquid coexisting state is dispersed therein is excellent in the slow cooling effect of molten steel even when the solidification temperature of the additive is lowered, leading to the completion of the present invention. Was.

【0009】[0009]

【課題を解決するための手段】即ち本発明は、鋳造時に
鋼湯表面に添加する鋳型添加剤であって、該添加剤中に
おけるCaOの濃度(重量%)とSiO の濃度(重量
%)との比が下記(1)式を満たすとともに、ナトリウ
ム成分の濃度(重量%)とフッ素成分の濃度(重量%)
との比が下記(2)式を満たし、一旦加熱溶融した後、
再び冷却して固化するまでの間に、球状乃至略球状の結
晶が、溶融液体状態の添加剤中に分散した固−液共存状
態が存在する溶融挙動を有することを特徴とする。
SUMMARY OF THE INVENTION Namely, the present invention provides a mold additive to be added to the steel hot surface during casting, while the additive
CaO concentration (% by weight) and SiO 2 concentration (weight
%) And the following formula (1) is satisfied.
Concentration of fluorine component (% by weight) and concentration of fluorine component (% by weight)
And satisfy the following formula (2) , and after heating and melting,
Until cooled and solidified again, the spherical or substantially spherical crystals have a melting behavior in which a solid-liquid coexisting state dispersed in an additive in a molten liquid state exists.

【数3】(Equation 3) 0.5≦CaO/SiO0.5 ≦ CaO / SiO 2 ≦2.0 (1)≦ 2.0 (1)

【数4】(Equation 4) 1.1≦Na/F≦4.5 (2)1.1 ≦ Na / F ≦ 4.5 (2)

【0010】本発明の鋳型添加剤は、母材、フラック
ス、骨材その他の添加物を、上記数2で示す関係を満足
するように配合することにより得られる。母材としては
CaO、SiO2 、MgO、BaO、TiO2 、Fe2
3 、Al2 3 等が用いられる。これら母材は粒径が
100μ以下、特に10〜50μであることが好まし
い。
The mold additive of the present invention can be obtained by blending a base material, a flux, an aggregate, and other additives so as to satisfy the relationship shown in the above equation (2). As the base material, CaO, SiO 2 , MgO, BaO, TiO 2 , Fe 2
O 3 and Al 2 O 3 are used. These base materials preferably have a particle size of 100 μm or less, particularly preferably 10 to 50 μm.

【0011】フラックスは本発明の鋳型添加剤における
ナトリウム成分源、フッ素成分源である。ナトリウム成
分源、フッ素成分源となり得るフラックスとしては、C
aF2 、LiF、AlF3 、NaF、Na2 CO3 、N
3 AlF6 、Na2 SiF6 等のフラックスが挙げら
れる。上記フラックス以外のフラックスとして、Li2
CO3 、K2 CO3 等を含有していても良い。フラック
スは、粒径150μ以下、特に10〜100μであるこ
とが好ましい。
The flux is a source of a sodium component and a source of a fluorine component in the template additive of the present invention. The flux that can be a sodium component source and a fluorine component source includes C
aF 2 , LiF, AlF 3 , NaF, Na 2 CO 3 , N
fluxes such as a 3 AlF 6 and Na 2 SiF 6 . As a flux other than the above flux, Li 2
CO 3 , K 2 CO 3 and the like may be contained. The flux preferably has a particle size of 150 μm or less, particularly 10 to 100 μm.

【0012】骨材としては、カーボンブラック、コーク
ス粉末、黒鉛粉等が挙げられる。骨材は、粒径が20m
μ〜50μが好ましい。本発明の鋳型添加剤に含有する
ことができる他の添加剤としては、カルシウム−シリコ
ン合金、NaNO3 、KNO3 、MnO2 、KMnO4
等が挙げられる。これら各種添加剤は、粒径が50〜1
50μが好ましい。
Examples of the aggregate include carbon black, coke powder, graphite powder and the like. The aggregate has a particle size of 20m
μ-50 μm is preferred. Other additives which can be contained in the mold additive of the present invention, calcium - silicon alloy, NaNO 3, KNO 3, MnO 2, KMnO 4
And the like. These various additives have a particle size of 50 to 1
50μ is preferred.

【0013】鋳型添加剤は、溶鋼表面に添加されると溶
鋼の熱によって溶融して溶融スラグとなり、鋳型壁と凝
固シェル間に流入し、この液体スラグ層を介して凝固シ
ェルの熱を徐々に奪ってシェルを冷却しながら、自らも
冷却されて再び固化する。本発明の鋳型添加剤は、一旦
溶融してから再び固化するまでの間(以下、溶融−凝固
過程と呼ぶ。)に、球状乃至略球状の結晶が、溶融液体
状態の添加剤中に分散した固−液共存状態が存在する溶
融挙動を有することが従来の鋳型添加剤と大きく異なる
点である。
When the mold additive is added to the molten steel surface, it is melted by the heat of the molten steel to form molten slag, flows between the mold wall and the solidified shell, and gradually reduces the heat of the solidified shell through the liquid slag layer. While robbing and cooling the shell, it cools itself and solidifies again. In the mold additive of the present invention, spherical or substantially spherical crystals are dispersed in the molten liquid additive during a period from once melting to solidifying again (hereinafter referred to as a melt-solidification process). The fact that it has a melting behavior in which a solid-liquid coexistence state exists is a major difference from conventional mold additives.

【0014】従来の鋳型添加剤は、本発明の鋳型添加剤
とは異なる溶融挙動を示し、従来の添加剤では溶融−凝
固過程において、固−液共存状態が実質的に存在しない
か、固−液共存状態が存在しても、固−液共存状態が存
在する温度幅が狭く、このような温度幅の狭い固−液共
存状態にいて存在する結晶は球状や略球状ではなく、針
状等の形態を有している。このような溶融挙動を示す従
来の添加剤では、本発明の添加剤のような効果を得るこ
とはできない。
The conventional mold additive exhibits a melting behavior different from that of the mold additive of the present invention. In the conventional additive, there is substantially no solid-liquid coexistence state or no solid-liquid coexistence in the melt-solidification process. Even when a liquid coexisting state exists, the temperature range in which the solid-liquid coexisting state exists is narrow, and the crystals existing in such a solid-liquid coexisting state having such a narrow temperature range are not spherical or nearly spherical, but needle-like. It has the form of. The conventional additive exhibiting such a melting behavior cannot obtain the effect as the additive of the present invention.

【0015】上記の如き溶融挙動を有する本発明の鋳型
添加剤は、鋳型添加剤中におけるCaOの濃度(重量
%)とSiOの濃度(重量%)との比が下記(1)式
で示す関係を満足するとともに、ナトリウム成分の濃度
(重量%)と、フッ素成分の濃度(重量%)との比が、
下記(2)式で示す関係を満足するように前記母材、フ
ラックス、骨材及びその他の各種添加剤を配合すること
により得られる。
The mold additive of the present invention having the melting behavior as described above has a ratio between the CaO concentration (% by weight) and the SiO 2 concentration (% by weight) in the template additive represented by the following formula (1). And the ratio of the concentration of the sodium component (% by weight) to the concentration of the fluorine component (% by weight)
It is obtained by blending the above-mentioned base material, flux, aggregate and other various additives so as to satisfy the relationship shown by the following formula (2) .

【0016】[0016]

【数5】 0.5≦CaO/SiO≦2.0 (1) 0.5 ≦ CaO / SiO 2 ≦ 2.0 (1)

【0017】[0017]

【数6】 1.1≦Na/F≦4.5 (2) [Expression 6] 1.1 ≦ Na / F ≦ 4.5 (2)

【0018】上記、(1)式、(2)式において、Ca
O、SiOの割合は、実際に配合したCaO、SiO
の割合を意味するものではなく、鋳型添加剤中に含有
される全カルシウム量、全珪素量、全酸素量からCa
O、SiOの量に換算した値を意味するものである。
In the above formulas (1) and (2) , Ca
The proportions of O and SiO 2 are based on the amounts of CaO and SiO actually mixed.
2 does not mean the ratio of the total amount of calcium, total silicon, and total oxygen contained in the template additive.
It means a value converted into the amount of O and SiO 2 .

【0019】本発明の添加剤は、特に固−液共存状態が
存在する温度幅が40〜200℃、であるものが好まし
い。固−液共存状態が存在する温度幅が40〜200℃
であるものは、本発明の効果が特に顕著である。また本
発明の所期の効果を発現する上で、本発明鋳型添加剤は
凝固温度が1250℃以下、特に1050〜1200℃
のものが好ましい。
The additive of the present invention preferably has a temperature range of 40 to 200 ° C. in which the solid-liquid coexistence state exists. Temperature range where solid-liquid coexistence exists is 40-200 ° C
The effect of the present invention is particularly remarkable. In order to exhibit the desired effect of the present invention, the mold additive of the present invention has a solidification temperature of 1250 ° C. or less, particularly 1050 to 1200 ° C.
Are preferred.

【0020】[0020]

【実施例】以下、実施例を挙げて本発明を更に詳細に説
明する。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples.

【0021】実施例1〜2、比較例1〜2 表1に凝固温度及び各成分の配合割合(重量%)を示す
鋳型添加剤を用い、C含有量0.12重量%、Si含有量
0.14重量%、Mn含有量0.3重量%、Al含有量0.0
3重量%の溶鋼を連続鋳造法により鋳造した。実施例1
〜2の鋳型添加剤を使用した場合、ブレークアウトを生
じることなく操業ができ、得られた鋳塊表面に縦割れが
殆ど認められなかった。一方、比較例1の添加剤を使用
した場合に途中でブレークアウトが生じて操業中止を余
儀なくされた。また比較例2の添加剤を使用した場合に
は、ブレークアウトは生じなかったが、得られた鋳塊表
面に多くの縦割れが認められた。尚、表1に示す各成分
の配合率は、実際に配合した化合物の配合率を意味する
ものではなく、添加剤の蛍光X線分析結果から、対応す
る酸化物の量に換算したものである。
Examples 1-2, Comparative Examples 1-2 Using a mold additive whose solidification temperature and blending ratio (% by weight) of each component are shown in Table 1, C content 0.12% by weight, Si content
0.14% by weight, Mn content 0.3% by weight, Al content 0.0
3% by weight of molten steel was cast by a continuous casting method. Example 1
When the mold additives of Nos. 2 and 3 were used, the operation could be performed without causing breakout, and almost no vertical cracks were observed on the surface of the obtained ingot. On the other hand, when the additive of Comparative Example 1 was used, a breakout occurred on the way, and the operation had to be stopped. When the additive of Comparative Example 2 was used, no breakout occurred, but many vertical cracks were observed on the surface of the obtained ingot. The compounding ratio of each component shown in Table 1 does not mean the compounding ratio of the compound actually compounded, but is converted into the amount of the corresponding oxide from the result of the fluorescent X-ray analysis of the additive. .

【0022】また実施例1〜2、比較例1〜2の各鋳型
添加剤を、凝固温度以上に加熱して一旦添加剤を完全に
溶融した後、徐冷して再び添加剤が完全に固化するまで
の溶融−凝固過程にある間に、急冷して溶融−凝固過程
における結晶の存在の有無を顕微鏡で確認した。その結
果、実施例1〜2の添加剤も、比較例1〜2の添加剤
も、溶融−凝固過程に結晶が存在する固−液共存状態が
存在することは認められたが、実施例1〜3の各添加剤
では、固−液共存状態において存在する結晶の形状が球
状乃至略球状であったのに対し、比較例1〜2の添加剤
では結晶の形状はは球状乃至略球状ではなく、針状であ
った。各添加剤の溶融温度及び固−液共存状態が存在す
る温度幅を表1にあわせて示した。
The mold additives of Examples 1 and 2 and Comparative Examples 1 and 2 were heated to a temperature higher than the solidification temperature to completely melt the additives, and then gradually cooled to completely solidify the additives again. During the melt-solidification process, the mixture was rapidly cooled and the presence or absence of crystals in the melt-solidification process was confirmed with a microscope. As a result, both the additives of Examples 1 and 2 and the additives of Comparative Examples 1 and 2 were found to have a solid-liquid coexistence state in which crystals exist in the melt-solidification process. In each of the additives 3 to 3, the shape of the crystals existing in the solid-liquid coexistence state was spherical or substantially spherical, whereas in the additives of Comparative Examples 1 and 2, the shape of the crystals was spherical or substantially spherical. But without needles. Table 1 also shows the melting temperature of each additive and the temperature range in which the solid-liquid coexistence state exists.

【0023】[0023]

【表1】 [Table 1]

【0024】実施例3、比較例3 実施例3は表1に凝固温度及び各成分の配合割合(重量
%)を示す鋳型添加剤を用い、比較例3は比較例2と同
様の配合の鋳型添加剤を用いて、C含有量0.21重量
%、Si含有量0.54重量%、Mn含有量1.44重量
%、P含有量0.02重量%、S含有量0.03重量%の溶
鋼を連続鋳造法により鋳造した。具体的な温度の数値は
得られなかったが、実施例3では鋳型下端近傍での鋳片
の色が、比較例3の場合に比して均一であり、緩冷却が
なされていることを示す高温度の色を呈し、表面欠陥の
無い鋳片が得られたが、比較例3の場合には鋳片にへこ
みの発生が認められた。
Example 3 and Comparative Example 3 In Example 3, a mold additive having the solidification temperature and the mixing ratio (% by weight) of each component shown in Table 1 was used. Using additives, C content 0.21% by weight, Si content 0.54% by weight, Mn content 1.44% by weight, P content 0.02% by weight, S content 0.03% by weight. Was cast by a continuous casting method. Although a specific temperature value was not obtained, in Example 3, the color of the slab near the lower end of the mold was more uniform than in Comparative Example 3, indicating that slow cooling was performed. A slab having a high temperature color and having no surface defects was obtained, but in the case of Comparative Example 3, dents were observed in the slab.

【0025】実施例4 実施例2と同様の組成の添加剤を用い、C含有量0.05
重量%、Si含有量0.5重量%、Mn含有量1.5重量
%、Ni含有量9.00重量%、Cr含有量19.00重量
%の溶鋼を連続鋳造法により鋳造した。ブレークアウト
を生じることなく操業を行うことができ、表面欠陥の無
い鋳片が得られた。
Example 4 Using an additive having the same composition as in Example 2, the C content was 0.05.
A molten steel having a content of 0.5% by weight, a content of 0.5% by weight of Si, a content of 1.5% by weight of Mn, a content of 9.00% by weight of Ni, and a content of 19.00% by weight of Cr was cast by a continuous casting method. The operation could be performed without causing a breakout, and a slab without surface defects was obtained.

【0026】[0026]

【発明の効果】本発明の鋳型添加剤は、添加剤を一旦加
熱溶融した後、再び冷却して固化するまでの間に、球状
乃至略球状の結晶が、溶融液体状態の添加剤中に分散し
た固−液共存状態が存在する溶融挙動を有することによ
り、本発明の鋳型添加剤を用いて鋳造を行った場合、鋳
型内の溶鋼は充分に徐冷されるために鋼塊の表面割れ発
生を防止することができる。また凝固温度を高くするこ
とによって溶鋼の徐冷効果を高める従来の鋳型添加剤と
は異なり、溶鋼の徐冷効果に優れるとともに鋳型内の溶
鋼の潤滑生にも優れ、ブレーク・アウトの発生も防止で
きる等の優れた効果を有するものである。また、中でも
固−液共存状態が存在する温度範囲が40〜200℃の
ものは、本発明の効果が特に顕著である。
According to the mold additive of the present invention, the spherical or substantially spherical crystals are dispersed in the molten liquid state of the additive after the additive is once heated and melted, and then cooled and solidified again. When the casting is carried out using the mold additive of the present invention, the molten steel in the mold is sufficiently cooled slowly, so that surface cracking of the steel ingot occurs due to the melting behavior in which the solid-liquid coexistence state exists. Can be prevented. Also, unlike conventional mold additives that increase the slow cooling effect of molten steel by increasing the solidification temperature, it is excellent in the slow cooling effect of molten steel and also excellent in lubrication of molten steel in the mold, preventing breakout It has excellent effects such as being possible. The effect of the present invention is particularly remarkable when the temperature range in which the solid-liquid coexistence state exists is 40 to 200 ° C.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B22D 11/108 B22D 11/07 B22D 11/16 C21C 7/076 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) B22D 11/108 B22D 11/07 B22D 11/16 C21C 7/076

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 鋳造時に鋼湯表面に添加する鋳型添加剤
であって、該添加剤中におけるCaOの濃度(重量%)
とSiO の濃度(重量%)との比が下記(1)式を満
たすとともに、ナトリウム成分の濃度(重量%)とフッ
素成分の濃度(重量%)との比が下記(2)式を満た
し、一旦加熱溶融した後、再び冷却して固化するまでの
間に、球状乃至略球状の結晶が、溶融液体状態の添加剤
中に分散した固−液共存状態が存在する溶融挙動を有す
ることを特徴とする鋳型添加剤。【数1】 0.5≦CaO/SiO ≦2.0 (1) 【数2】 1.1≦Na/F≦4.5 (2)
1. A mold additive to be added to the surface of a steel melt at the time of casting, wherein the concentration of CaO in the additive (% by weight)
And the ratio of SiO 2 concentration (% by weight) satisfy the following expression (1).
Add the sodium component concentration (% by weight) and
The ratio to the concentration (wt%) of the elemental component satisfies the following equation (2).
In addition, after being heated and melted once, before cooling and solidifying again, the spherical or substantially spherical crystal has a melting behavior in which a solid-liquid coexisting state dispersed in a molten liquid additive exists. A mold additive. [Number 1] 0.5 ≦ CaO / SiO 2 ≦ 2.0 (1) Equation 2] 1.1 ≦ Na / F ≦ 4.5 ( 2)
【請求項2】 固−液共存状態が存在する温度幅が40
〜200℃である請求項1記載の鋳型添加剤。
2. The temperature range in which the solid-liquid coexistence state exists is 40.
The mold additive according to claim 1, wherein the temperature is from -200C.
JP19282793A 1993-07-07 1993-07-07 Mold additive Expired - Lifetime JP3296376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19282793A JP3296376B2 (en) 1993-07-07 1993-07-07 Mold additive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19282793A JP3296376B2 (en) 1993-07-07 1993-07-07 Mold additive

Publications (2)

Publication Number Publication Date
JPH0716716A JPH0716716A (en) 1995-01-20
JP3296376B2 true JP3296376B2 (en) 2002-06-24

Family

ID=16297642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19282793A Expired - Lifetime JP3296376B2 (en) 1993-07-07 1993-07-07 Mold additive

Country Status (1)

Country Link
JP (1) JP3296376B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19782030T1 (en) 1996-10-03 1999-08-12 Komatsu Mfg Co Ltd Bending method and device for a bending machine
SG11202101465PA (en) * 2018-08-14 2021-03-30 Econcrete Tech Ltd Cast mold forming compositions and uses thereof

Also Published As

Publication number Publication date
JPH0716716A (en) 1995-01-20

Similar Documents

Publication Publication Date Title
KR102277782B1 (en) Casting powder, casting slag and method for casting steel
JP4337748B2 (en) Mold powder for continuous casting of steel
JP3427804B2 (en) Mold powder and continuous casting method
JP3296376B2 (en) Mold additive
JP3523173B2 (en) Mold powder for continuous casting
JP3141187B2 (en) Powder for continuous casting of steel
JP3179358B2 (en) Mold powder for continuous casting
JPH1034301A (en) Mold powder at initial stage for continuous casting
JP2002239693A (en) Mold powder for continuous casting
CA1228235A (en) Mold additives for use in continuous casting
JPH11254109A (en) Continuous casting mold powder of high manganese round slab
CN111604484B (en) Super high drawing speed thin slab continuous casting covering slag for low carbon steel
KR100252483B1 (en) Mold powder for continuous casting of molten steel
JP4554120B2 (en) Mold powder for continuous casting
JP3107739B2 (en) Premelt flux of powder for continuous casting of steel
JP2855070B2 (en) Mold powder for continuous casting of steel
JP3004657B2 (en) Powder and casting method for casting high aluminum content steel
JP2004001017A (en) Mold powder for continuous casting of steel
JP2000158105A (en) Mold powder for continuous steel casting and continuous casting method
JP3319404B2 (en) Steel continuous casting method
JPS60180655A (en) Molten metal surface protective agent for continuous casting of steel
JP3256148B2 (en) Continuous casting method of steel with large shrinkage during solidification process
JP3519992B2 (en) Continuous casting flux
JPH0985402A (en) Molding powder for continuous casting
JPH10314907A (en) Additive for mold and coating agent for wall surface of mold

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090412

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090412

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100412

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110412

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120412

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120412

Year of fee payment: 10

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130412

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140412

Year of fee payment: 12

EXPY Cancellation because of completion of term