JP3293031B2 - Manufacturing method of grafted fiber by film sealing method - Google Patents

Manufacturing method of grafted fiber by film sealing method

Info

Publication number
JP3293031B2
JP3293031B2 JP37628699A JP37628699A JP3293031B2 JP 3293031 B2 JP3293031 B2 JP 3293031B2 JP 37628699 A JP37628699 A JP 37628699A JP 37628699 A JP37628699 A JP 37628699A JP 3293031 B2 JP3293031 B2 JP 3293031B2
Authority
JP
Japan
Prior art keywords
fiber
electron beam
polymerizable compound
graft
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP37628699A
Other languages
Japanese (ja)
Other versions
JP2001164467A (en
Inventor
孝司 宮崎
友紀 木村
照夫 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukui Prefecture
Original Assignee
Fukui Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukui Prefecture filed Critical Fukui Prefecture
Priority to JP37628699A priority Critical patent/JP3293031B2/en
Publication of JP2001164467A publication Critical patent/JP2001164467A/en
Application granted granted Critical
Publication of JP3293031B2 publication Critical patent/JP3293031B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,各種繊維に親水
性,吸放湿性,制電防止性,接着性,抗菌性等の機能を
耐久性よく付与するためのグラフト化繊維の製造法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing grafted fibers for imparting functions such as hydrophilicity, hygroscopicity, antistatic properties, adhesiveness and antibacterial properties to various fibers with good durability.

【0002】[0002]

【従来の技術】繊維に恒久的な機能性を付与する手段と
して,グラフト重合法は有用な方法である。これまで,
知られている主なグラフト重合法は過酸化物などの熱重
合性の開始剤を用いるケミカルグラフト重合法,低温プ
ラズマによるグラフト重合法,放射線グラフト重合法が
ある。ケミカルグラフト重合法では,綿やレーヨンなど
の繊維は容易にグラフト重合が起こるが,ポリエステ
ル,ポリオレフィン系等の化学的に安定な繊維では実用
的なグラフト重合が起こりにくく,環境に悪影響を及ぼ
す塩素系溶剤を膨潤剤として用いて,しかも,高温で反
応させる必要がある。また,低温プラズマにより繊維に
活性種を作りグラフト重合させる方法では真空中での処
理となり,工業的に不向きである。
BACKGROUND OF THE INVENTION Graft polymerization is a useful method for imparting permanent functionality to fibers. Until now,
The main known graft polymerization methods include a chemical graft polymerization method using a thermopolymerizable initiator such as a peroxide, a graft polymerization method using low-temperature plasma, and a radiation graft polymerization method. In the chemical graft polymerization method, fibers such as cotton and rayon easily undergo graft polymerization, but practically stable graft polymerization does not easily occur in chemically stable fibers such as polyesters and polyolefins, and chlorine-based fibers have an adverse effect on the environment. It is necessary to use a solvent as a swelling agent and to react at a high temperature. In addition, the method in which active species are produced on fibers by low-temperature plasma and graft polymerization is performed is a process in a vacuum, which is not industrially suitable.

【0003】また,放射線グラフト重合は繊維素材によ
らず,放射線照射で活性種が生成し,大気圧下で,容易
にグラフト重合が可能な方法である。しかし,ガンマ線
を用いる放射線グラフト重合法では,その線量率が低い
ことから照射に数十時間を要するという欠点があり,繊
維加工には不向きである。放射線のなかでも,電子線は
線量率が高く,照射は秒単位の時間でよく,繊維加工に
適した方法といえる。これまで,電子線照射により繊維
を改質しようとする方法は大きく分けると下記に示す2
つの方法が提案されている。
[0003] Radiation graft polymerization is a method in which active species are generated by irradiation with radiation, regardless of the fiber material, and the graft polymerization can be easily performed under atmospheric pressure. However, the radiation graft polymerization method using gamma rays has a drawback that irradiation requires several tens of hours due to its low dose rate, and is not suitable for fiber processing. Among radiations, electron beams have a high dose rate, and irradiation can be performed in seconds, which is a method suitable for fiber processing. Until now, methods for modifying fibers by electron beam irradiation can be broadly classified as follows.
Two methods have been proposed.

【0004】第一の方法は,前照射法と言われている重
合法で,酸素濃度の低い雰囲気で,繊維材料に先ず電子
線を照射し,繊維表面やその内部に活性種を作り,ラジ
カル重合性化合物溶液に浸漬することにより,グラフト
重合するものである。しかし,この方法では電子線照射
された繊維を空気にさらすと,生成した活性種が減衰す
るため,不活性雰囲気で冷却保存するか,直ちにグラフ
ト重合する必要がある。また,第二の方法は,同時照射
法と言われる重合法で,先ず,繊維材料にラジカル重合
性化合物を含浸させた後,次いで,酸素濃度の低い雰囲
気で,モノマーと繊維の共存下,開放系で電子線を照射
し,反応させる方法である。この方法は,前述の前照射
法に比べ,工業化し易い方法である。しかし,この方法
では,あらかじめ,繊維内部までラジカル重合性化合物
を含浸した後,電子線照射する必要がある。ラジカル重
合性化合物の含浸しにくい繊維,例えば,ポリエチレン
テレフタレート(ポリエステル)繊維では,その高い結
晶性から,ラジカル重合性化合物を繊維内部まで含浸さ
せるためには,事前に二塩化エチレンやクロロベンゼン
などハロゲン系溶剤やベンジルアルコールなどベンゼン
系溶剤等を使用して,繊維を膨潤させるか,ラジカル重
合性化合物にハロゲン系溶剤やベンゼン系溶剤等を添加
する必要がある。しかし,ハロゲン系溶剤やベンゼン系
溶剤は発ガン性や環境に悪影響を及ぼすことから,使用
できない環境となってきている。また,繊維内部までラ
ジカル重合性化合物を含浸させずに,電子線を照射する
と,高いグラフト率を得ることができないほか,繊維表
面に付着しているラジカル重合性化合物の局部的な揮散
によるホモポリマーの生成やグラフトむらが見られると
いう問題を有する。
[0004] The first method is a polymerization method called pre-irradiation method, in which a fiber material is first irradiated with an electron beam in an atmosphere having a low oxygen concentration to form active species on the fiber surface or inside thereof, and radicals are formed. By immersing in a polymerizable compound solution, graft polymerization is performed. However, in this method, when the fiber irradiated with the electron beam is exposed to air, the generated active species is attenuated. Therefore, it is necessary to store the fiber under cooling in an inert atmosphere or to carry out graft polymerization immediately. The second method is a polymerization method called a simultaneous irradiation method. First, a fiber material is impregnated with a radically polymerizable compound, and then the fiber material is opened in a low oxygen concentration atmosphere under the coexistence of a monomer and a fiber. It is a method of irradiating an electron beam in a system and reacting. This method is easier to industrialize than the above-mentioned pre-irradiation method. However, in this method, it is necessary to impregnate the inside of the fiber with the radical polymerizable compound in advance and then irradiate the fiber with an electron beam. Fibers that are hardly impregnated with radically polymerizable compounds, for example, polyethylene terephthalate (polyester) fibers, have a high crystallinity. It is necessary to use a solvent or a benzene-based solvent such as benzyl alcohol to swell the fibers, or to add a halogen-based solvent or a benzene-based solvent to the radically polymerizable compound. However, halogen-based solvents and benzene-based solvents are becoming unusable environments because they have a negative effect on carcinogenicity and the environment. In addition, if the electron beam is irradiated without impregnating the inside of the fiber with the radical polymerizable compound, a high graft ratio cannot be obtained, and the homopolymer due to the local volatilization of the radical polymerizable compound attached to the fiber surface can be obtained. And uneven grafting are observed.

【0005】[0005]

【発明が解決しようとする課題】従来の電子線を用いた
同時照射法では,ラジカル重合性化合物を繊維内部まで
含浸させなければ高いグラフト率の繊維は得られない。
ここで,高いグラフト率とはラジカル重合性化合物のグ
ラフト率で3%以上をいう。十分にラジカル重合性化合
物を含浸させるためには,ハロゲン系溶剤やベンゼン系
溶剤など環境に悪影響を及ぼす溶剤を使用する必要があ
り,好ましくない。また,水や低級アルコールなど環境
に対する影響の低い溶剤では繊維を十分に膨潤し,ラジ
カル重合性化合物を十分に含浸させることができず,電
子線を照射しても,高いグラフト率を得ることができな
いほか,繊維表面に付着しているラジカル重合性化合物
の局部的な揮散によるホモポリマーの生成やグラフトむ
らが見られるという問題を有する。本発明は上記のよう
な問題点を解消し,各種繊維材料にラジカル重合性化合
物を均一かつ繊維フィラメント内部までグラフト重合さ
せるための電子線を用いたグラフト化繊維の製造法を提
供することを目的としている。
In the conventional simultaneous irradiation method using an electron beam, a fiber having a high graft ratio cannot be obtained unless the radical polymerizable compound is impregnated into the inside of the fiber.
Here, a high graft ratio means a graft ratio of a radical polymerizable compound of 3% or more. In order to sufficiently impregnate the radical polymerizable compound, it is necessary to use a solvent having a bad influence on the environment, such as a halogen solvent or a benzene solvent, which is not preferable. In addition, solvents with low environmental impact, such as water and lower alcohols, swell the fiber sufficiently and cannot impregnate the radically polymerizable compound sufficiently. Even when irradiated with an electron beam, a high graft ratio can be obtained. In addition to this, there is a problem that a homopolymer is generated due to local volatilization of the radical polymerizable compound attached to the fiber surface and graft unevenness is observed. An object of the present invention is to solve the above-mentioned problems and to provide a method for producing a grafted fiber using an electron beam for uniformly and radically polymerizing a radical polymerizable compound onto various fiber materials to the inside of a fiber filament. And

【0006】[0006]

【課題を解決するための手段】本発明者等は,上記課題
を解決するために鋭意研究した結果,あらかじめ溶存酸
素を除去したラジカル重合性化合物溶液が付与された繊
維を2枚の高分子フィルムで被覆シールすることで密封
し,その高分子フィルム上から電子線を照射し,その
後,加熱重合させることにより,高いグラフト率を有す
る均一なグラフト化繊維が得られることを見出し,本発
明に到達した。すなわち,本発明は高分子フィルムを用
いて,繊維とラジカル重合性化合物をフィルム間に密封
させることでシールし,その高分子フィルム上から電子
線を照射するものである。このようにフィルムでシール
することによって,電子線照射時,繊維とラジカル重合
性化合物は空気中の酸素と遮断されるため,空気中の酸
素によるラジカルの失活が起こりにくくなる。また,同
時にラジカル重合性化合物の揮散を防ぐことができ,均
一にグラフト重合が開始される。繊維に対して膨潤性の
低いラジカル重合性化合物溶液を使用する場合において
も,電子線を照射することで,生成したポリマーラジカ
ルが繊維フィラメント表層のラジカル重合性化合物と反
応し,重合が開始される。このとき,電子線照射後のグ
ラフト状況は,繊維フィラメントの表層にグラフト層が
生成するだけで,繊維フィラメント内部までグラフト層
が十分成長していないものである。さらに,電子線照射
後に,照射試料を空気雰囲気において加熱処理すること
で後重合が容易に進行する。これは,フィルムでシール
されているため,空気中の酸素の進入およびラジカル重
合性化合物の揮散を抑えることから,後重合が可能なも
のである。この後重合によって,フィラメント表層に生
成したグラフト層に未反応のラジカル重合性化合物が拡
散浸透し,ラジカル重合性化合物は繊維内部に存在する
ポリマーラジカルと反応することで,グラフト層は繊維
フィラメント内部へ進行し,グラフト層の厚みが増加す
ることとなる。この方法により製造されたグラフト化繊
維は,ホモポリマーが容易に除去でき,繊維フィラメン
ト間の膠着も見られず,また,風合いも未処理繊維とほ
とんど変化のない状態である。この方法では,あらかじ
め,ラジカル重合性化合物を環境に悪影響を及ぼすよう
な溶剤を用いて繊維内部に含浸させる必要はなく,電子
線照射後の加熱処理で,繊維内部へのグラフト重合が可
能となるもので,機能化が可能な高いグラフト率を容易
に製造することができる。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, the fibers provided with the radical polymerizable compound solution from which dissolved oxygen has been removed in advance have been separated into two polymer films. The present inventors have found that uniform grafted fibers with a high graft ratio can be obtained by irradiating an electron beam from the polymer film and then polymerizing by heating, by covering and sealing with a polymer. did. That is, in the present invention, a fiber and a radical polymerizable compound are hermetically sealed between films using a polymer film, and an electron beam is irradiated from above the polymer film. By sealing with a film in this manner, the fiber and the radical polymerizable compound are shielded from oxygen in the air during electron beam irradiation, so that deactivation of radicals by oxygen in the air is less likely to occur. At the same time, volatilization of the radical polymerizable compound can be prevented, and the graft polymerization is started uniformly. Even when using a radical polymerizable compound solution with a low swelling property to the fiber, the irradiation of the electron beam causes the generated polymer radical to react with the radical polymerizable compound on the surface of the fiber filament and initiate polymerization. . At this time, the graft state after the electron beam irradiation is such that the graft layer is only formed on the surface layer of the fiber filament and the graft layer has not sufficiently grown to the inside of the fiber filament. Further, after the electron beam irradiation, the post-polymerization easily proceeds by heating the irradiated sample in an air atmosphere. Since it is sealed with a film, it suppresses the entry of oxygen in the air and the volatilization of the radically polymerizable compound, so that post-polymerization is possible. After this polymerization, unreacted radically polymerizable compound diffuses and penetrates into the graft layer formed on the filament surface layer, and the radically polymerizable compound reacts with polymer radicals present inside the fiber. As the process proceeds, the thickness of the graft layer increases. In the grafted fiber produced by this method, the homopolymer can be easily removed, there is no sticking between the fiber filaments, and the texture is almost unchanged from the untreated fiber. In this method, it is not necessary to previously impregnate the inside of the fiber with a solvent that adversely affects the environment with the radical polymerizable compound, and the graft polymerization into the fiber can be performed by heat treatment after electron beam irradiation. Therefore, a high graft ratio that can be functionalized can be easily produced.

【0007】以下,本発明を詳細に説明する。本発明に
おいて適応できる繊維とは,綿,絹などの天然繊維やポ
リエステル,ナイロン,ポリエチレン,ポリプロピレン
等の合成繊維であり,その形態は,糸,布帛(織編物,
不織布)等で,特に制限されるものではない。
Hereinafter, the present invention will be described in detail. The fibers applicable in the present invention are natural fibers such as cotton and silk, and synthetic fibers such as polyester, nylon, polyethylene, and polypropylene.
(Nonwoven fabric), etc., and is not particularly limited.

【0008】本発明で用いられるラジカル重合性化合物
は電子線照射により繊維に生成したポリマーラジカルと
結合を生じる化合物であり,具体的には,アクリル酸,
メタクリル酸,イタコン酸,メタクリルスルホン酸,ス
チレンスルホン酸などの酸性基を有する不飽和化合物や
これらのエステル,アクリルアミド,メタクリルアミド
などの不飽和カルボン酸アミド,末端にグリシジル基や
水酸基を有する不飽和化合物,ビニルホスホネート等の
不飽和有機燐酸エステル,第4,第3アンモニウム塩な
どの塩基性を有する(メタ)アクリル酸エステル,フル
オロアクリレート,アクリロニトリルなどを挙げること
ができ,これらに限られるものではない。これらは単独
又は2種以上混合して用いることができる。
[0008] The radical polymerizable compound used in the present invention is a compound which forms a bond with a polymer radical formed on a fiber by electron beam irradiation.
Unsaturated compounds having an acidic group such as methacrylic acid, itaconic acid, methacrylsulfonic acid, and styrene sulfonic acid, and unsaturated carboxylic acid amides such as esters thereof, acrylamide and methacrylamide, and unsaturated compounds having a glycidyl group or a hydroxyl group at a terminal. , Vinylphosphonate and other unsaturated organic phosphates, and basic (meth) acrylates such as quaternary and tertiary ammonium salts, fluoroacrylate, acrylonitrile, and the like, but are not limited thereto. These can be used alone or in combination of two or more.

【0009】上記のラジカル重合性化合物は,水,低級
アルコールのような有機溶剤またはこれらの混合溶液を
溶媒とした希釈溶液であっても何ら差し支えない。この
希釈溶液のラジカル重合性化合物の濃度は希望するグラ
フト率により変化するが,1〜70容量%で調製するこ
とができる。また,ホモポリマーの生成しやすいラジカ
ル重合性化合物を用いる場合は,ラジカル重合性化合物
の希釈溶液に,銅や鉄の金属塩を添加することで,ホモ
ポリマーの生成を抑制してもよい。
The above-mentioned radically polymerizable compound may be an organic solvent such as water or lower alcohol, or a dilute solution using a mixed solution thereof as a solvent. The concentration of the radically polymerizable compound in the diluted solution varies depending on the desired graft ratio, but can be adjusted to 1 to 70% by volume. When a radical polymerizable compound that easily forms a homopolymer is used, the formation of the homopolymer may be suppressed by adding a metal salt of copper or iron to a diluted solution of the radical polymerizable compound.

【0010】本発明で被覆に用いる高分子フィルムは酸
素の透過とラジカル重合性化合物の揮散を防ぐことがで
きるもので,かつ,耐熱性やフィルムから可塑剤などの
溶出がないもの,さらにはフィルム自身のグラフト重合
が起こりにくい素材であることが必要である。もし,ポ
リエチレンやテトラフルオロエチレンなどのフィルムで
は電子線を照射するとフィルム表面にもグラフト重合が
起こり,繊維とフィルムが強度に接着し,後の工程で,
繊維とフィルムを剥がすことが困難となる。上市されて
いるフィルムの中では,電子線照射でポリマーラジカル
の生成効率の低いまた酸素透過性の低いポリエチレンテ
レフタレートフィルムが最適である。また,その厚みは
柔軟性のある0.01ないし0.2mmがよい。0.0
1mm以下の極端に薄いフィルムでは,その取り扱い性
が悪く,また,0.2mm以上では,電子線の透過力を
妨げることから,グラフト反応が起こりにくくなる他,
経済性の点でも厚いフィルムを用いる必要性はない。次
に,フィルムを用いて繊維をシール方法について記す。
2つのロールから巻き出された2枚のフィルムを用い
て,ラジカル重合性化合物溶液を付与された繊維を上下
から挟み込むようにして,空気泡が残らないようにシー
ルするだけでよい。このとき,繊維の構造により,ラジ
カル重合性化合物溶液の付着量が少なく,フィルム全面
に液が満たされなければ,ラジカル重合性化合物溶液を
フィルム間に注入してもよい。また,フィルムの両サイ
ドは,袋状である必要はなく,カットされたシート形状
のフィルムのままでよい。この2枚のフィルムの間はラ
ジカル重合性化合物溶液で満たされており,言い換えれ
ば,水封された構造となっていることで,空気の進入を
抑えることができる。フィルムでシールされたラジカル
重合性化合物溶液を含む繊維である被照射物は薄く均一
に平らな形状であることが好ましい。なぜならば,ガン
マ線に比べると電子線はその透過力が低いことから,電
子線を照射する際に,電子線の放射される窓から被照射
物までの距離は均一に同じようでなければ,被照射物に
照射される線量に相違が生じ,グラフト重合のむらが生
じる。
[0010] The polymer film used for coating in the present invention is a film capable of preventing oxygen permeation and volatilization of the radical polymerizable compound, and having heat resistance and no elution of a plasticizer or the like from the film. It is necessary that the material does not easily undergo its own graft polymerization. If a film such as polyethylene or tetrafluoroethylene is irradiated with an electron beam, graft polymerization also occurs on the film surface, and the fiber and the film adhere strongly, and in a later step,
It becomes difficult to peel off the fiber and the film. Among the commercially available films, a polyethylene terephthalate film having low efficiency of generating polymer radicals by electron beam irradiation and low oxygen permeability is most suitable. The thickness is preferably 0.01 to 0.2 mm, which is flexible. 0.0
With an extremely thin film of 1 mm or less, the handleability is poor. On the other hand, with a thickness of 0.2 mm or more, the penetration of an electron beam is hindered, so that a graft reaction hardly occurs.
There is no need to use thick films in terms of economy. Next, the method of sealing fibers using a film is described.
Using two films unwound from two rolls, it is only necessary to sandwich the fiber provided with the radically polymerizable compound solution from above and below and seal it so that air bubbles do not remain. At this time, the radical polymerizable compound solution may be injected between the films if the amount of the radical polymerizable compound solution attached is small due to the fiber structure and the entire surface of the film is not filled with the solution. Also, both sides of the film need not be bag-shaped, but may be a cut sheet-shaped film. The space between the two films is filled with the radical polymerizable compound solution, in other words, the water-sealed structure can suppress the invasion of air. The irradiation target, which is a fiber containing a radical polymerizable compound solution sealed with a film, is preferably thin and uniformly flat. This is because electron beams have lower penetrating power than gamma rays. Therefore, when irradiating an electron beam, the distance from the window from which the electron beam is emitted to the object to be irradiated must be uniform. Differences occur in the dose applied to the irradiated object, resulting in uneven graft polymerization.

【0011】電子線照射装置の加速電圧は電子線の透過
力に比例することから,処理布と被覆に用いる高分子フ
ィルム,ラジカル重合性化合物溶液の合計の厚さによっ
て適宜決定すればよく,通常,加速電圧150〜800
キロボルト(以下「kV」と略記する。)程度が適当で
ある。また,電子線の照射線量は目的とする性能および
照射によって生ずる繊維の物性低下を考慮して,適宜決
定すればよく,通常10〜300キログレイ(以下「k
Gy」と略記する。)程度が適当であり,好ましくは5
0〜200kGyである。照射線量が10kGy未満で
は充分なグラフト重合量に必要な活性種の生成が起こら
ず,300kGyを越えると,放射線耐性のあるポリエ
ステル繊維においても主鎖の切断による物性低下が起こ
るので好ましくない。電子線照射時の雰囲気は,高分子
フィルムでシールされていることから,空気中または窒
素やヘリウムなど不活性ガス雰囲気のいずれでもよい。
照射雰囲気によるグラフト重合への影響はないことか
ら,経済性を考慮して,空気中照射が適当である。ま
た,
Since the accelerating voltage of the electron beam irradiator is proportional to the penetrating power of the electron beam, it can be appropriately determined by the total thickness of the treated cloth, the polymer film used for coating, and the radical polymerizable compound solution. , Acceleration voltage 150-800
A kilovolt (hereinafter abbreviated as “kV”) is appropriate. The irradiation dose of the electron beam may be appropriately determined in consideration of the desired performance and the deterioration of the physical properties of the fiber caused by the irradiation.
Gy ”. ) Is appropriate, preferably 5
0 to 200 kGy. If the irradiation dose is less than 10 kGy, the generation of active species necessary for a sufficient amount of graft polymerization does not occur. If the irradiation dose exceeds 300 kGy, the degradation of the physical properties of the radiation-resistant polyester fiber due to the cleavage of the main chain undesirably occurs. The atmosphere at the time of electron beam irradiation may be either air or an inert gas atmosphere such as nitrogen or helium, since the atmosphere is sealed with a polymer film.
Since there is no effect on the graft polymerization by the irradiation atmosphere, irradiation in air is appropriate in consideration of economic efficiency. Also,

【0012】本発明では電子線照射の後,加熱重合する
必要がある。この加熱重合とは電子線照射された高分子
フィルムでシールされている繊維をその状態で,任意の
温度で10分〜120分間,熱処理するものである。こ
の時の温度条件は好ましくは40〜80℃である。40
℃未満では,重合速度が遅く,十分なグラフト率が得ら
れない。また,80℃以上ではグラフト鎖同士の結合に
よる重合の停止反応が優先して起こる。なお,加熱重合
の温度と時間は目的とするグラフト率により,上記の範
囲内で,任意に設定すればよい。後重合の雰囲気は,空
気中で十分である。本発明では,繊維が高分子フィルム
で覆われており,空気中の酸素の繊維へ拡散およびラジ
カル重合性化合物の揮散が抑えられていることから,後
重合が可能となり,繊維内部にグラフト重合が進行し,
グラフト率が増大する。
In the present invention, it is necessary to carry out heat polymerization after electron beam irradiation. The heat polymerization is a process in which a fiber sealed with a polymer film irradiated with an electron beam is heat-treated at that temperature for 10 minutes to 120 minutes. The temperature condition at this time is preferably 40 to 80 ° C. 40
If the temperature is lower than ℃, the polymerization rate is too slow to obtain a sufficient graft ratio. At 80 ° C. or higher, the termination reaction of polymerization due to the bonding between the graft chains occurs preferentially. The temperature and time of the heat polymerization may be arbitrarily set within the above range according to the intended graft ratio. The atmosphere for post-polymerization is sufficient in air. In the present invention, since the fiber is covered with the polymer film and the diffusion of oxygen in the air to the fiber and the volatilization of the radical polymerizable compound are suppressed, post-polymerization becomes possible, and graft polymerization is performed inside the fiber. Progress,
Graft rate increases.

【0013】次に,本発明の製造工程について説明す
る。窒素ガスを通気することで溶存酸素を除去されたラ
ジカル重合性化合物溶液の槽に繊維を浸漬通過させるこ
とにより所定時間滞留させて,布帛にラジカル重合性化
合物を十分付与し,この溶液槽から取り出す時,ロール
から巻き出された2枚の高分子フィルムの間に,ラジカ
ル重合性化合物溶液と繊維を密封する。次に,この高分
子フィルムで密封された繊維に電子線を照射する。電子
線を照射された繊維は加熱処理工程で所定時間加熱し,
後重合を行う。後重合の終了した布帛は,高分子フィル
ムから分離され,洗浄槽,ドライヤーを経ることによ
り,グラフト化繊維が連続的に得られる。
Next, the manufacturing process of the present invention will be described. The fibers are immersed and passed through a tank of a radically polymerizable compound solution from which dissolved oxygen has been removed by aeration with nitrogen gas, so that the fibers are retained for a predetermined period of time, so that the radically polymerizable compound is sufficiently applied to the cloth and taken out of the solution tank. At this time, the radical polymerizable compound solution and the fiber are sealed between the two polymer films unwound from the roll. Next, the fiber sealed with the polymer film is irradiated with an electron beam. The fiber irradiated with the electron beam is heated for a predetermined time in a heat treatment step,
Post-polymerization is performed. The post-polymerized fabric is separated from the polymer film, and is passed through a washing tank and a dryer to continuously obtain grafted fibers.

【0014】[0014]

【発明の実施の形態】次に,本発明の実施の形態を実施
例によってさらに詳細に説明するが,実施例における繊
維の性能など測定,評価は下記の方法で実施した。 (1)グラフト率 ラジカル重合性化合物のグラフト率は反応前の繊維乾燥
重量(W1)とグラフト反応後の繊維乾燥重量(W2)
から以下のように算出した。 グラフト率=(W2−W1)/W1×100(%)
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the embodiments of the present invention will be described in more detail with reference to Examples. Measurements and evaluations such as the performance of fibers in the Examples were carried out by the following methods. (1) Graft ratio The graft ratio of the radical polymerizable compound is determined by the fiber dry weight before the reaction (W1) and the fiber dry weight after the graft reaction (W2).
Was calculated as follows. Graft rate = (W2-W1) / W1 × 100 (%)

【0015】(2)吸湿性(吸湿時水分率) 吸湿時水分率は試料加工布を真空乾燥機で50℃で2時
間乾燥して重量を測定する(W3)。次に試料を30
℃、95%RHの恒温恒湿器に60分入れておき、吸湿
した試料重量を測定する(W4)。以上の測定結果か
ら、次式により算出した。 吸湿時水分率(Abs)=(W4−W3)/W3×10
0(%) なお,アクリル酸グラフト化繊維は1%炭酸水素ナトリ
ウム水溶液で処理した試料を用いた。 (3)染色によるグラフト重合の均一性 アクリル酸をグラフト重合した繊維を対象に,グラフト
重合の均一性をカチオン性染料の染色により,目視で確
認した。染色方法を具体的に示せば,カヤクリルブリリ
アントピンク(B−ED)を繊維重量に対し3重量%,
酢酸ナトリウムと酢酸を含む浴で浴比1:120,80
℃で15分間染色した後,0.5%酢酸水溶液で洗浄
後,水洗し,乾燥した。
(2) Hygroscopicity (moisture content at the time of moisture absorption) The moisture content at the time of moisture absorption is determined by drying a sample cloth at 50 ° C. for 2 hours with a vacuum dryer (W3). Next, 30
The sample is put in a thermo-hygrostat at 95 ° C. and 95% RH for 60 minutes, and the weight of the absorbed sample is measured (W4). From the above measurement results, it was calculated by the following equation. Moisture content at the time of moisture absorption (Abs) = (W4−W3) / W3 × 10
0 (%) As the acrylic acid grafted fiber, a sample treated with a 1% aqueous sodium hydrogen carbonate solution was used. (3) Uniformity of Graft Polymerization by Dyeing The uniformity of the graft polymerization was visually confirmed by dyeing a cationic dye on the fibers grafted with acrylic acid. If the dyeing method is specifically shown, kayakyl brilliant pink (B-ED) is 3% by weight based on the fiber weight,
Bath ratio 1: 120,80 in a bath containing sodium acetate and acetic acid
After staining at 15 ° C. for 15 minutes, the mixture was washed with a 0.5% acetic acid aqueous solution, washed with water, and dried.

【0016】(実施例1) 0.003mol/リット
ルの濃度となるよう硫酸銅を添加した50%アクリル酸
水溶液(アクリル酸:水=50:50(体積比)の組
成)を調整し,窒素ガスを通気することで,溶存酸素を
除去した。この溶液にポリエステル繊維より成るタフタ
(タテ:75d/36f,110本/インチ,ヨコ:7
5d/36f,80本/インチ)を浸漬した後,2枚の
25μmポリエステルフィルムでシールした。このと
き,布帛(厚さ60μm),フィルムおよびアクリル酸
溶液層の被照射物合計の厚さは約150μmで,加速電
圧250kVでの電子線の透過力(約250μm程度)
の範囲内であった。そのフィルム上から,加速電圧25
0kV,照射線量100kGy,空気雰囲気中,室温で
電子線照射した。続いて,電子線照射された試料を空気
雰囲気,50℃で1時間処理することで,加熱重合を行
った。未反応のアクリル酸を除去するため,1%炭酸水
素ナトリウム水溶液中,1%酢酸水溶液中,温水で順
次,80℃で各30分間洗浄した後,熱風乾燥し,アク
リル酸グラフト布を得た。
Example 1 A 50% aqueous solution of acrylic acid (a composition of acrylic acid: water = 50: 50 (volume ratio)) to which copper sulfate was added so as to have a concentration of 0.003 mol / liter was prepared, and nitrogen gas was used. The dissolved oxygen was removed by aeration. A taffeta made of polyester fiber (vertical: 75d / 36f, 110 / inch, horizontal: 7)
(5d / 36f, 80 pieces / inch) and sealed with two 25 μm polyester films. At this time, the total thickness of the object to be irradiated of the cloth (thickness: 60 μm), the film and the acrylic acid solution layer is about 150 μm, and the electron beam transmission power at an acceleration voltage of 250 kV (about 250 μm)
Was within the range. An acceleration voltage of 25 from the film
Electron beam irradiation was performed at room temperature in an air atmosphere at 0 kV, irradiation dose of 100 kGy. Subsequently, the sample irradiated with the electron beam was treated at 50 ° C. for 1 hour in an air atmosphere to perform heat polymerization. In order to remove unreacted acrylic acid, each was washed with a 1% aqueous sodium hydrogen carbonate solution, a 1% aqueous acetic acid solution, and warm water at 80 ° C. for 30 minutes each and then dried with hot air to obtain an acrylic acid graft cloth.

【0017】(比較例1) 本発明との比較のため,高
分子フィルムを用いて,ポリエステル繊維をシールしな
かった他は実施例1と全く同じ条件で処理した。 (比較例2) 本発明との比較のため,電子線照射後,
50℃で1時間処理を行わない他は実施例1と全く同じ
条件で処理した。
(Comparative Example 1) For comparison with the present invention, treatment was carried out under exactly the same conditions as in Example 1 except that a polyester film was not sealed using a polymer film. (Comparative Example 2) For comparison with the present invention, after irradiation with an electron beam,
The treatment was performed under exactly the same conditions as in Example 1 except that the treatment was not performed at 50 ° C. for 1 hour.

【0018】本発明の実施例1そして比較例1および2
について,グラフト率,吸湿時水分,染色によるグラフ
ト重合の均一性の結果を表1に示した。表1より,比較
例1のフィルムでシールしなかった場合には,ほとんど
グラフトされていなかった。しかし,本発明による実施
例1では,非常に高いグラフト率を有するとともに染色
による均一性も良好で,高い吸湿性を発現することが認
められた。また,実施例1の電子線照射後の熱処理を実
施しなかった比較例2では,グラフト率は低いが,実施
例1に比較すると,やや薄い色調ではあるが,均一に染
色されていた。このことから,本発明の優位性が認めら
れた。
Example 1 of the present invention and Comparative Examples 1 and 2
Table 1 shows the results of the graft ratio, the moisture content during moisture absorption, and the uniformity of the graft polymerization by dyeing. According to Table 1, when the film was not sealed with the film of Comparative Example 1, almost no graft was obtained. However, in Example 1 according to the present invention, it was confirmed that the graft ratio was very high, the uniformity by dyeing was good, and high hygroscopicity was exhibited. In Comparative Example 2 in which the heat treatment after electron beam irradiation in Example 1 was not performed, the graft ratio was low, but compared with Example 1, although the color tone was slightly faint, it was dyed uniformly. From this, the superiority of the present invention was recognized.

【0019】[0019]

【表1】 [Table 1]

【0020】また,実施例1および比較例2の試料につ
いて,繊維フィラメント内部までアクリル酸ポリマーが
存在しているかを確認するため,グラフト化繊維を20
mM硝酸銀溶液に80℃で浸漬処理し,ポリアクリル酸
のカルボキシル基に銀イオンを吸着させ,X線マイクロ
アナライザーにより繊維フィラメント断面(直径約15
μm)における銀の分布を分析した。その結果を図1に
示す。比較例2の試料では,表層からフィラメント半径
の約10%の深さまでしかグラフトされていなかった
が,実施例1の試料では,フィラメント半径の約65%
の深さまで銀の存在が確認され,本発明の方法により,
繊維内部までアクリル酸がグラフトされていることが確
認された。
Further, in order to confirm whether the acrylic acid polymer was present inside the fiber filaments, the grafted fibers were used for the samples of Example 1 and Comparative Example 2.
A silver ion was adsorbed on the carboxyl group of polyacrylic acid by immersion treatment in a mM silver nitrate solution at 80 ° C.
μm) was analyzed. The result is shown in FIG. In the sample of Comparative Example 2, grafting was performed only from the surface to a depth of about 10% of the radius of the filament. In the sample of Example 1, about 65% of the radius of the filament was grafted.
The presence of silver was confirmed to the depth of
It was confirmed that acrylic acid was grafted to the inside of the fiber.

【0021】[0021]

【図1】FIG.

【0022】(実施例2)0.003mol/リットル
の濃度となるよう塩化銅を添加した30%グリシジルメ
タクリレート溶液(グリシジルメタクリレート:メタノ
ール=30:70(体積比)の組成)を調整し,窒素ガ
スを通気することで,溶存酸素を除去した。この溶液に
ポリプロピレン不織布(70g/m)を浸漬した後,
2枚の25μmポリエステルフィルムでシールした。こ
のとき,布帛(厚さ100μm),フィルムおよびアク
リル酸溶液層の被照射物合計の厚さは約200μmで,
加速電圧250kVでの電子線の透過力(約250μm
程度)の範囲内であった。そのフィルム上から,加速電
圧250kV,照射線量100kGy,空気雰囲気中,
室温で,電子線照射した。続いて,電子線照射された試
料を空気雰囲気,50℃で1時間処理することで,さら
に加熱重合を行った。未反応のグリシジルメタクリレー
トを除去するため,テトラヒドロフラン,メタノールで
順次,各30分間洗浄した後,熱風乾燥し,グラフト化
不織布を得た。次に,グリシジルメタクリレートをグラ
フトした不織布を,2規定硫酸水溶液中,70℃,2時
間処理することにより,グラフト鎖であるエポキサイド
基をジオール基に変換した。
Example 2 A 30% glycidyl methacrylate solution (composition of glycidyl methacrylate: methanol = 30: 70 (volume ratio)) to which copper chloride was added so as to have a concentration of 0.003 mol / liter was prepared. The dissolved oxygen was removed by aeration. After immersing a polypropylene non-woven fabric (70 g / m 2 ) in this solution,
Sealed with two 25 μm polyester films. At this time, the total thickness of the object to be irradiated of the cloth (thickness of 100 μm), the film and the acrylic acid solution layer was about 200 μm,
Electron beam penetration force at an acceleration voltage of 250 kV (about 250 μm
Degree). From above the film, accelerating voltage 250kV, irradiation dose 100kGy, in air atmosphere,
Electron beam irradiation was performed at room temperature. Subsequently, the sample irradiated with the electron beam was treated at 50 ° C. for 1 hour in an air atmosphere to further perform heat polymerization. In order to remove unreacted glycidyl methacrylate, each was washed sequentially with tetrahydrofuran and methanol for 30 minutes each and then dried with hot air to obtain a grafted nonwoven fabric. Next, the nonwoven fabric grafted with glycidyl methacrylate was treated in a 2N aqueous sulfuric acid solution at 70 ° C. for 2 hours to convert the epoxide group as a graft chain into a diol group.

【0023】(比較例3) 比較のため,ポリプロピレ
ン不織布を高分子フィルムでシールしなかった他は実施
例2と全く同じ条件で処理した。実施例2および比較例
3のグラフト率,水接触角(10cm×10cmの試料
の10ケ所を測定)を表2に示した。この結果から,実
施例2ではグリシジルメタクリレートにおいても容易に
グラフト重合が起こり,30%と高いグラフト率が得ら
れた。また,グラフト後の硫酸処理により,疎水性のポ
リプロピレン繊維が均一に親水化されることがわかる。
Comparative Example 3 For comparison, the same treatment as in Example 2 was performed except that the polypropylene nonwoven fabric was not sealed with a polymer film. Table 2 shows the graft ratio and the water contact angle (measured at 10 points of a 10 cm × 10 cm sample) of Example 2 and Comparative Example 3. From these results, in Example 2, graft polymerization easily occurred even with glycidyl methacrylate, and a high graft ratio of 30% was obtained. In addition, it can be seen that the hydrophobic treatment after the grafting makes the hydrophobic polypropylene fibers evenly hydrophilic.

【0024】[0024]

【表2】 [Table 2]

【0025】[0025]

【発明の効果】従来の電子線を用いた含浸による同時照
射法では,あらかじめ繊維内部までラジカル重合性化合
物を十分含浸させた後,窒素雰囲気下で電子線を照射す
る必要があった。しかし,本発明の方法では,ラジカル
重合性化合物の繊維への含浸が不十分な溶液系において
も,繊維とラジカル重合性化合物をフィルムでシール
し,電子線を照射した後,さらに加熱重合するという一
連の処理で,面方向に均一で,繊維内部までグラフトさ
れ,かつ高いグラフト率を有する繊維を容易に製造する
ことができる。このグラフト化繊維の機能性は恒久的
で,衣料,産業資材,フィルター素材などに応用するこ
とができるものである。
According to the conventional simultaneous irradiation method using impregnation using an electron beam, it is necessary to sufficiently impregnate the inside of the fiber with a radical polymerizable compound in advance and then irradiate the electron beam in a nitrogen atmosphere. However, in the method of the present invention, even in a solution system in which the fiber is not sufficiently impregnated with the radical polymerizable compound, the fiber and the radical polymerizable compound are sealed with a film, irradiated with an electron beam, and further heated and polymerized. Through a series of treatments, a fiber having a uniform graft in the surface direction, grafted to the inside of the fiber, and having a high graft ratio can be easily produced. The functionality of this grafted fiber is permanent and can be applied to clothing, industrial materials, filter materials, etc.

【0026】[0026]

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1および比較例2の試料について,繊維
フィラメント断面のアクリル酸ポリマーの存在を調べる
ため,銀イオンを吸着させ,X線マイクロアナライザー
により分析した結果をコンポーネント像で示したもので
ある。この図のフィラメントの白い部分が銀の存在を表
すことから,アクリル酸ポリマーの存在領域の確認がで
きるものである。
FIG. 1 is a component image showing the results of analyzing the samples of Example 1 and Comparative Example 2 with an X-ray microanalyzer in which silver ions were adsorbed to examine the presence of an acrylic acid polymer in the cross section of a fiber filament. is there. Since the white portion of the filament in this figure indicates the presence of silver, the region where the acrylic acid polymer is present can be confirmed.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) D06M 13/00 - 15/715 C08J 5/04 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) D06M 13/00-15/715 C08J 5/04

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ラジカル重合性化合物を付与した繊維
を,高分子フィルムの間に密封し,その高分子フィルム
上から電子線を照射し,その後,加熱重合を行うことを
特徴とするグラフト化繊維の製造法。
1. A grafted fiber, wherein a fiber provided with a radically polymerizable compound is sealed between polymer films, irradiated with an electron beam from above the polymer film, and then heated and polymerized. Manufacturing method.
【請求項2】 高分子フィルムが0.01ないし0.2
mmの厚みを有するポリエチレンテレフタレート製フィ
ルムであることを特徴とする請求項1記載のグラフト化
繊維の製造法。
2. The polymer film has a thickness of 0.01 to 0.2.
The method for producing a grafted fiber according to claim 1, wherein the film is a polyethylene terephthalate film having a thickness of 1 mm.
JP37628699A 1999-12-03 1999-12-03 Manufacturing method of grafted fiber by film sealing method Expired - Lifetime JP3293031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37628699A JP3293031B2 (en) 1999-12-03 1999-12-03 Manufacturing method of grafted fiber by film sealing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37628699A JP3293031B2 (en) 1999-12-03 1999-12-03 Manufacturing method of grafted fiber by film sealing method

Publications (2)

Publication Number Publication Date
JP2001164467A JP2001164467A (en) 2001-06-19
JP3293031B2 true JP3293031B2 (en) 2002-06-17

Family

ID=18506890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37628699A Expired - Lifetime JP3293031B2 (en) 1999-12-03 1999-12-03 Manufacturing method of grafted fiber by film sealing method

Country Status (1)

Country Link
JP (1) JP3293031B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6063135B2 (en) * 2012-03-19 2017-01-18 東洋紡Stc株式会社 Method for producing fiber structure having water and oil repellency
EP3498764A4 (en) 2016-08-10 2020-07-29 AGC Engineering Co., Ltd. Treatment method for base material sheet, production method for modified base material sheet, base material including graft polymer chain, and ion exchange membrane

Also Published As

Publication number Publication date
JP2001164467A (en) 2001-06-19

Similar Documents

Publication Publication Date Title
JP6697842B2 (en) Monomer-grafted fiber and its use
US3281263A (en) Method for modifying polymeric substances with high energy radiation
JP2011500894A (en) Hydrophilic porous substrate
US2998329A (en) Modification of cellulosic articles
WO2009096444A1 (en) Flame retardant processing method, and cellulosic fiber material imparted with flame retardancy
US4238193A (en) Method of treating synthetic fibers or synthetic fiber fabrics
US3962054A (en) Process for the treatment of cellulosic textile materials
JP3293031B2 (en) Manufacturing method of grafted fiber by film sealing method
JP6675713B2 (en) Method for producing grafted fiber
Shin et al. Functional finishing by using atmospheric pressure plasma: Grafting of PET nonwoven fabric
Ingram et al. Radiation grafting of vinyl monomers to wool. III. Location of the grafted polymer
US4211622A (en) Process for imparting durable flame retardancy to fabric, fibers and other materials and improved product produced thereby
US4212649A (en) Method for manufacturing heat-resistant and flame-retardant synthetic fiber
EP0668390B1 (en) Process of enhanced chemical bonding by electron beam radiation
JP2010144296A (en) Method for modifying yarn
JP2002371471A (en) Porous base material made of hydrophilicity-given polyolefin resin and method for producing the same
KR100465515B1 (en) A crease-resistant finish method of cotton fiber using Electron Beam Irradiation
JPH0261176A (en) Flame-retarding process for fiber
US3617457A (en) Process for the radiation grafting of 4-vinyl pyridine onto polyesters in the presence of a nonpolymerizable organic acid
JPH04309536A (en) Radiation grafting process and grafted product
JPH05163673A (en) Flame-proof finishing of fibers
US3592683A (en) Flame resistant materials and method of making same
JP3005796B1 (en) Manufacturing method of water-repellent, moisture-absorbing and treated cloth
JPH0135110B2 (en)
JPS5947751B2 (en) Method for producing flame-retardant synthetic fibers

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3293031

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090405

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100405

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110405

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120405

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130405

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140405

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term