JP3292863B2 - Machine reading method and machine reading device - Google Patents

Machine reading method and machine reading device

Info

Publication number
JP3292863B2
JP3292863B2 JP34202493A JP34202493A JP3292863B2 JP 3292863 B2 JP3292863 B2 JP 3292863B2 JP 34202493 A JP34202493 A JP 34202493A JP 34202493 A JP34202493 A JP 34202493A JP 3292863 B2 JP3292863 B2 JP 3292863B2
Authority
JP
Japan
Prior art keywords
waveform
region
ultraviolet
visible light
spectral reflectance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34202493A
Other languages
Japanese (ja)
Other versions
JPH08152359A (en
Inventor
浩美 内村
公也 高橋
Original Assignee
財務省印刷局長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財務省印刷局長 filed Critical 財務省印刷局長
Priority to JP34202493A priority Critical patent/JP3292863B2/en
Publication of JPH08152359A publication Critical patent/JPH08152359A/en
Application granted granted Critical
Publication of JP3292863B2 publication Critical patent/JP3292863B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Inspection Of Paper Currency And Valuable Securities (AREA)
  • Paper (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、機械識別機能を有する
用紙を印刷用紙として用い、前記印刷用紙に付与した情
報を、印刷面から光学的に読取る方法及び機械読取り装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for optically reading, from a printing surface, information given to a print sheet using a sheet having a machine identification function as a print sheet, and a machine reader.

【0002】[0002]

【従来の技術】銀行券、有価証券、入場券等の偽造防止
を必要とする印刷物に関しては、カラーコピーやカラー
スキャナー等による複製技術の進歩に伴い、一般流通過
程における真偽判別が、例えば、パール印刷、フォログ
ラム、すき入れ、線条、着色繊維、水玉繊維のような肉
眼でも容易に確保できる対策とともに、省力化を目的と
する機械読取り処理のための、真偽判別が確保できる対
策が重要になっている。特に機械読取り処理の対策は、
自動券売機や自動換金装置等の普及と相まって益々その
重要性を増している。
2. Description of the Related Art With respect to printed matter, such as banknotes, securities, and admission tickets, which require forgery prevention, with the progress of copy technology using color copying and color scanners, authenticity discrimination in the general distribution process is performed, for example. Measures that can be easily secured even with the naked eye, such as pearl printing, holograms, cuts, streaks, colored fibers, and polka dot fibers, and measures that can ensure authenticity determination for machine reading processing for labor saving are important. It has become. In particular, measures for machine reading
With the spread of automatic ticket vending machines and automatic cashing machines, their importance is increasing.

【0003】従来使われてきた機械読取りする媒体に
は、テレホンカードとして使われている磁気カード、P
OSシステムで使われるバーコード、特殊なインキを用
いた印刷物等があり、その真偽判別や情報の読取りには
それぞれの特性を生かした読取り手段が用いられてい
る。例えば、磁気カードはプラスチックカードに磁気記
録媒体を張り付けたもので、磁気ライターにより情報の
書込みができ、この磁気記録を磁気リーダーにより情報
の読出しができる。この磁気カードの特徴は再書込みす
ることで繰り返し使用できることである。また、バーコ
ードは線符号と呼ばれるバー(黒線)とスペース(白
線)の組合わせにより情報が書込まれており、バーコー
ドリーダによって情報が読取られる。バーコードリーダ
はLED光やレーザ光でバーコードを走査して線符号を
読取る。このバーコード方式の特徴は印刷により安価な
方法で大量に作ることができ、コストが極めて安いこと
であり、また読取りにはレーザ光等使用するため非接触
でデータの読取りができ、立体物等の複雑な形状物の読
取りが可能なことである。一方、特殊なインキを用いた
印刷物には、例えば蛍光インキを特定された位置に印刷
しておき、この蛍光発光を読取ることにより真偽判別に
関わる機能としているものがある。
[0003] Conventionally used machine-readable media include magnetic cards used as telephone cards, P cards.
There are barcodes used in the OS system, printed materials using special inks, and the like, and reading means utilizing their respective characteristics is used for authenticity determination and information reading. For example, a magnetic card is a plastic card on which a magnetic recording medium is stuck, and information can be written by a magnetic writer, and the magnetic recording can be read by a magnetic reader. The feature of this magnetic card is that it can be used repeatedly by rewriting. In the barcode, information is written by a combination of a bar (black line) and a space (white line) called a line code, and the information is read by a barcode reader. The bar code reader scans a bar code with LED light or laser light to read a line code. The feature of this barcode method is that it can be mass-produced by printing at a low cost, and the cost is extremely low. Also, since laser light is used for reading, data can be read without contact, Can read complicated shapes. On the other hand, some printed materials using a special ink have a function relating to authenticity discrimination by, for example, printing a fluorescent ink at a specified position and reading the fluorescence emission.

【0004】ところが、磁気カードの場合には、磁気記
録であるため熱、強磁界に対してデータの消滅の恐れが
あるという欠点がある。バーコードの場合には、レーザ
光等で直接反射光を読取るため、人間が容易に見える場
所にバーコードを配置する必要があり、線符号の意味を
知った人には容易にデータを解読できる欠点がある。ま
た、バーコードや特殊なインキを用いた印刷物の場合に
は、インキにどのような特性の物質を使用しているかが
分かれば、前述したカラーコピーやカラースキャナー等
による複製技術の進歩から偽造され易いという欠点があ
った。
[0004] However, the magnetic card has the disadvantage that data is lost due to heat and a strong magnetic field because of magnetic recording. In the case of a barcode, since the reflected light is read directly by a laser beam or the like, it is necessary to place the barcode in a place where humans can easily see it, and anyone who knows the meaning of the line code can easily decode the data. There are drawbacks. Also, in the case of printed materials using barcodes or special inks, if the characteristics of the substances used in the inks are known, they can be counterfeited by the advancement of the duplication technology using color copying and color scanners described above. There was a disadvantage that it was easy.

【0005】[0005]

【発明が解決しようとする課題】このような問題を解決
する対策として、例えば本件発明者が既に出願した、肉
眼(可視光域)では視認されず、紫外域又は近赤外域に
おいて検出可能な機能を有する機械識別用紙(特願平5
−267798号「機械識別用紙」)がある。この機械
識別用紙は可視光域では用紙の分光反射率とほぼ同値で
あるが、紫外域又は近赤外域の所定波長域では、用紙の
分光反射率と異なる分光反射率を有する物質を、用紙に
対し情報化して付与したことを特徴とした機械識別用紙
であり、該機械識別用紙自体が機械識別処理に対応でき
る機能を持った用紙である。したがって、前記機械識別
用紙を、例えば、銀行券、有価証券、秘密文書、回数
券、入場券等の偽造防止を必要とする印刷物の印刷用紙
として用いれば、前述の情報化して付与した前記機能を
有する物質の分光反射量を測定することによって、真偽
判別や種類判別などの必要な情報の機械読取りが可能で
ある。さらに、磁気カードの場合のように、熱、強磁界
によるデータの消滅がない。また、前記機械識別用紙に
は可視光域では視認できない物質を付与しているため、
バーコードの場合のように容易にデータ解読ができない
など、前述の従来の機械読取り媒体の欠点を解決した、
印刷物の媒体として極めて有効である。
As a countermeasure to solve such a problem, for example, a function which has already been filed by the present inventor and which can be detected in the ultraviolet or near-infrared region without being recognized by the naked eye (visible light region). Machine identification paper (Japanese Patent Application No. 5)
-267798 "Machine identification paper"). This machine identification paper has almost the same value as the spectral reflectance of the paper in the visible light range, but a substance having a spectral reflectance different from the spectral reflectance of the paper in the ultraviolet or near-infrared wavelength range is applied to the paper. On the other hand, it is a machine identification sheet characterized by being provided as information, and the machine identification sheet itself is a sheet having a function capable of coping with machine identification processing. Therefore, if the machine identification paper is used as a printing paper for printed matter which requires forgery prevention such as banknotes, securities, confidential documents, coupons, admission tickets, etc. By measuring the amount of spectral reflection of the substance possessed, it is possible to mechanically read necessary information such as true / false judgment and type judgment. Furthermore, there is no loss of data due to heat or a strong magnetic field as in the case of a magnetic card. In addition, since the machine identification paper is provided with a substance that cannot be viewed in the visible light range,
Solving the above-mentioned disadvantages of the conventional machine-readable media, such as the inability to easily decode data as in the case of barcodes,
It is extremely effective as a medium for printed matter.

【0006】しかし、前記機械識別用紙を用いた印刷物
の真偽判別や種類判別には、分光反射量を測定する装
置、例えば、分光光度計が用いられる。ところが、既製
の分光反射量を測定する装置による前記判別では、分光
反射量の測定に時間を要し、しかも前記印刷物の真偽判
別などは、人が分光反射量の測定結果を見て判断しなけ
ればならないため、前述した一般流通過程における肉眼
での真偽判別が容易に確保できる対策とならず、また、
前述のとおり分光反射量の測定に時間と人的労力を要す
るため、省力化を目的とする機械読取り処理のための真
偽判別が確保できる対策とはならない。
However, a device for measuring the amount of spectral reflection, for example, a spectrophotometer, is used to determine the authenticity or type of a printed material using the machine identification paper. However, in the above-described determination using a ready-made device for measuring the amount of spectral reflection, it takes time to measure the amount of spectral reflection, and furthermore, whether or not the printed matter is authentic is determined by looking at the measurement result of the amount of spectral reflection. Therefore, it is not a measure that can easily ensure the authenticity of the authenticity in the general distribution process described above,
As described above, the measurement of the amount of spectral reflection requires time and human labor, so that this is not a measure that can secure the authenticity determination for the machine reading processing for the purpose of labor saving.

【0007】本発明の目的は、前記機械識別用紙等の基
材を用いた印刷物を装置にセットすると、可視光域及び
紫外域並びに近赤外域の分光反射量を同時に測定し、前
記印刷物に用いた機械識別用紙等の基材に混抄又は上塗
りで付与した情報を解析する方法を用いて、前記印刷物
の真偽判別や種類判別を瞬時に行うことを特徴とする読
取り方法及び読取り装置を提供することである。
[0007] An object of the present invention is to set a printed material using a substrate such as the above-mentioned machine identification paper in an apparatus, and simultaneously measure the spectral reflection amounts in the visible light region, the ultraviolet region and the near-infrared region, and use it for the printed material. Mixed or overcoated base material such as machine identification paper
Using the method of analyzing Ride grant information is to provide a reading method and a reading device and performing authenticity discrimination or type judgment of said printed matter instantly.

【0008】[0008]

【課題を解決するための手段】本発明は上記目的を達成
するために、前記印刷物を搬送する搬送部と、可視光域
及び紫外域並びに近赤外域の所定の波長域の光を発光す
るランプと、前記印刷物から反射した可視光域及び紫外
域並びに近赤外域の所定の波長域の光を受光する受光セ
ンサーで、可視光域及び紫外域並びに近赤外域の所定の
波長域の分光反射量を検出する検出部と、前記検出部で
検出した可視光域及び紫外域並びに近赤外域の所定の波
長域の分光反射量の波形を、可視光域及び紫外域並びに
近赤外域それぞれの所定の基準レベルによって二値化し
た波形が、あらかじめ把握されている前記印刷物の真正
品の可視光域及び紫外域並びに近赤外域の所定の波長域
の分光反射量の波形を、可視光域及び紫外域並びに近赤
外域それぞれの所定の基準レベルによって二値化した波
形と、同じ波形であるか否かを瞬時に判別する判別部か
らなり、可視光域では用紙の分光反射率とほぼ同値であ
るが、紫外域又は近赤外域の所定の波長域では用紙の分
光反射率と異なる分光反射率を有する物質を、用紙に対
混抄又は上塗りで情報化して付与した機械識別用紙を
用いた印刷物の、真偽判別等の情報を光学的に識別する
機械読取り方法及び機械読取り装置を特徴とする。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a conveying section for conveying the printed matter, and a lamp for emitting light in a predetermined wavelength range of visible light, ultraviolet light, and near infrared light. And a light-receiving sensor that receives light in a predetermined wavelength range of visible light and ultraviolet and near-infrared reflected from the printed matter, and a spectral reflection amount in a predetermined wavelength range of visible light, ultraviolet and near-infrared. The detection unit, which detects the visible light region and the ultraviolet region detected by the detection unit and the waveform of the spectral reflection amount of the predetermined wavelength region of the near infrared region, the visible light region and the ultraviolet region and the predetermined region of the near infrared region, respectively. The waveform binarized by the reference level is a waveform of the spectral reflection amount in a predetermined wavelength range of the visible light range and the ultraviolet range and the near-infrared range of the genuine product of the printed matter, which is grasped in advance, and is converted into the visible light range and the ultraviolet range. And near infrared region It has a discriminating unit that instantaneously discriminates whether or not the waveform is the same as the binarized waveform according to the reference level. In the visible light range, the spectral reflectance is almost the same as that of the paper, but in the ultraviolet or near infrared range. In the specified wavelength range, a substance having a spectral reflectance different from the spectral reflectance of the paper is mixed and overcoated on the paper, and information such as true / false discrimination of the printed matter using the machine identification paper is optically obtained. The invention is characterized by a machine reading method and a machine reading device.

【0009】[0009]

【作用】上記構成の機械読取り装置は、前記機械識別用
紙を用いた真正な印刷物から、あらかじめ把握されてい
る可視光域及び紫外域並びに近赤外域の所定の波長域の
分光反射量の波形を、可視光域及び紫外域並びに近赤外
域それぞれの所定の基準レベルによって二値化した波形
と、前記構成の機械読取り装置によって得られた可視光
域及び紫外域並びに近赤外域の所定波長域の分光反射量
の波形を、可視光域及び紫外域並びに近赤外域それぞれ
の所定の基準レベルによって二値化した波形とが、同じ
波形であるか否かを瞬時に判定することができるので、
省力化を目的とする機械読取り処理のための真偽判別が
確保できる。更に、前記機械識別用紙や前記機械識別用
紙を用いた印刷物に、黒インキ等で紫外線又は赤外線の
吸収を得る方法による偽造品に対して、上記構成の機械
読取り装置は、あらかじめ把握している可視光域の分光
反射量の波形を、所定の基準レベルによって二値化した
波形と、機械識別用紙を用いた印刷物の可視光域での分
光反射量の波形を、所定の基準レベルによって二値化し
た波形とが、同じ波形であるか否かを判別する機能を有
しているため、黒インキ等で紫外線又は赤外線の吸収を
得る方法による偽造品に対する真偽判別にも有効に作用
する。
The machine reading apparatus having the above-mentioned structure converts a genuine printed matter using the above-mentioned machine identification paper into a waveform of a spectral reflection amount in a predetermined wavelength range of a visible light region, an ultraviolet region, and a near infrared region, which is grasped in advance. Waveforms binarized by predetermined reference levels in the visible light region, the ultraviolet region, and the near-infrared region, and the visible light region, the ultraviolet region, and the predetermined wavelength region in the near-infrared region obtained by the machine reader having the above-described configuration. Since it is possible to instantaneously determine whether or not the waveform of the spectral reflection amount and the waveform binarized by the predetermined reference level in each of the visible light region, the ultraviolet region, and the near infrared region are the same waveform,
True / false determination for machine reading processing for labor saving can be secured. Further, the machine reading device having the above-described configuration is capable of detecting a counterfeit product by a method of obtaining absorption of ultraviolet light or infrared light with black ink or the like on the machine identification paper or a printed material using the machine identification paper. The waveform of the spectral reflection amount in the optical region is binarized by a predetermined reference level, and the waveform of the spectral reflection amount in the visible light region of a printed material using machine identification paper is binarized by the predetermined reference level. Since it has a function of determining whether or not the obtained waveform is the same waveform, it also effectively works for authenticity determination of a counterfeit product by a method of absorbing ultraviolet or infrared rays with black ink or the like.

【0010】[0010]

【実施例】実施例によって本発明を更に詳細に説明する
が、本発明はこの実施例によってなんら限定されるもの
ではない。
EXAMPLES The present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0011】(実施例1) 図1は機械読取り装置の概略図である。(1)は前記特
願平5−267798号に記載した機械識別用紙、例え
ば、可視光域では用紙の分光反射率とほぼ同値であり、
実際に肉眼で観察しても視認できないが、紫外域の36
5nm付近では用紙の分光反射率と異なる分光反射率を
有する物質として、二酸化チタン等を用紙に対して付与
したことを特徴とした用紙であり、用紙自体が機械識別
処理に対応できる機能を持った印刷用紙を用いた印刷物
である。(2)は前記印刷物(1)を搬送する搬送部で
あり、可視光ランプ(3)は可視光域(400〜700
nm)波長透過フィルターを取付けたランプ、可視光セ
ンサー(4)は可視光域の波長の光を受光するセンサ
ー、紫外線ランプ(5)は365nm付近の波長の光を
発光するランプ、紫外線センサー(6)は365nm付
近の波長の光を受光するセンサー、近赤外線ランプ
(7)は950nm付近の波長の光を発光するランプ、
近赤外線センサー(8)は950nm付近の波長の光を
受光するセンサーで構成する検出部であり、(9)は前
記可視光センサー(4)及び前記紫外線センサー(6)
並びに前記近赤外線センサー(8)で受光した分光反射
量を波形に描き、その波形を真偽判別する判別部であ
る。遮蔽板(α)は可視光ランプ(3)と可視光センサ
ー(4)で構成する可視光部位と、紫外線ランプ(5)
と紫外線センサー(6)で構成する紫外光部位と、近赤
外線ランプ(7)と近赤外線センサー(8)で構成する
近赤外光部位との間で、各波長の光の混入がないように
遮蔽するものである。前記印刷物(1)の用紙に付与し
た情報を印刷面から光学的に読取るために、前述した搬
送部、検出部及び判別部から構成する機械読取り装置を
作製した。なお、判別方法については後述する。
FIG. 1 is a schematic view of a machine reading device. (1) is a machine identification paper described in the above-mentioned Japanese Patent Application No. 5-267798, for example, in the visible light region, has substantially the same value as the spectral reflectance of the paper;
Although it is not visible even when actually observed with the naked eye, 36
The paper is characterized in that titanium dioxide or the like is applied to the paper as a substance having a spectral reflectance different from that of the paper near 5 nm, and the paper itself has a function that can support machine identification processing. This is a printed matter using printing paper. (2) is a transport section for transporting the printed matter (1), and the visible light lamp (3) is in a visible light range (400 to 700).
nm) a lamp equipped with a wavelength transmission filter, a visible light sensor (4) is a sensor that receives light having a wavelength in the visible light range, an ultraviolet lamp (5) is a lamp that emits light having a wavelength near 365 nm, and an ultraviolet sensor (6). ) Is a sensor that receives light having a wavelength around 365 nm, a near-infrared lamp (7) is a lamp that emits light having a wavelength around 950 nm,
The near-infrared sensor (8) is a detection unit constituted by a sensor that receives light having a wavelength near 950 nm, and (9) is the visible light sensor (4) and the ultraviolet sensor (6).
And a determination unit that draws a spectral reflection amount received by the near-infrared sensor (8) on a waveform and determines the authenticity of the waveform. The shielding plate (α) is a visible light portion composed of a visible light lamp (3) and a visible light sensor (4), and an ultraviolet lamp (5).
Between the ultraviolet light portion constituted by the infrared sensor (6) and the near infrared light portion constituted by the near-infrared lamp (7) and the near-infrared sensor (8) so that light of each wavelength is not mixed. It shields. In order to optically read the information given to the paper of the printed matter (1) from the printing surface, the above-described machine reading device including the transport unit, the detection unit, and the determination unit was manufactured. The determination method will be described later.

【0012】前記機械読装置で読取る基材(1)は、
紙、フイルム、プラスチック等が考えられるが、本実施
例では基材を紙として説明する。図2は、例えば、二酸
化チタンを所要の位置に帯状に混抄して作製した前記印
刷用紙を用いた印刷物(1)の断面図である。(10)
は広葉樹漂白クラフトパルプ80部と針葉樹漂白クラフ
トパルプ20部に、少量の填料及び内添薬品を加えて完
成紙料とし、抄紙した用紙部分、(11)は前記完成紙
料に二酸化チタン5部を混合した紙料を、前記完成紙料
中に帯状に抄き込んだ部分(以下、二酸化チタン5部を
帯状に混抄した部分と言う。)、(12)は前記完成紙
料に二酸化チタン2部を混合した紙料を、前記完成紙料
中に帯状に抄き込んだ部分(以下、二酸化チタン2部を
帯状に混抄した部分と言う。)、(13)は前記用紙部
分(10)と前記二酸化チタン5部を帯状に混抄した部
分(11)と前記二酸化チタン2部を帯状に混抄した部
分(12)から構成した印刷用紙の表面に、市販のプロ
セス黒インキを網点面積25%でオフセット印刷した印
刷面であり、印刷用紙に付与した二酸化チタンの情報を
印刷面から光学的に読取るための印刷物を作製した。
The substrate (1) read by the machine reading device is:
Although paper, film, plastic, and the like are conceivable, in this embodiment, the base material is described as paper. FIG. 2 is a cross-sectional view of a printed matter (1) using the printing paper prepared by mixing titanium dioxide in a desired position in a belt shape. (10)
Is 80 parts of hardwood bleached kraft pulp and 20 parts of softwood bleached kraft pulp, and a small amount of filler and internal chemicals are added to make a furnish. A portion where the mixed stock is mixed into a strip in the above-mentioned furnish (hereinafter, referred to as a portion where 5 parts of titanium dioxide are mixed in a strip), (12) is 2 parts of titanium dioxide in the above-mentioned furnish. (13) is a part obtained by mixing the paper stock obtained by mixing the above with the paper part (hereinafter referred to as a part obtained by mixing two parts of titanium dioxide into a strip) in the above-mentioned finished paper stock. A commercially available process black ink is offset with a halftone dot area of 25% on the surface of printing paper composed of a portion (11) in which 5 parts of titanium dioxide are mixed in a strip and a portion (12) in which 2 parts of titanium dioxide are mixed in a strip. Printed surface is printed Printed materials for reading optically the information of the titanium dioxide was applied to the paper from the printed surface were prepared.

【0013】図3は印刷物(1)の表面の200〜80
0nmにおける分光反射率曲線であり、図3において
(14)、(15)及び(16)は、それぞれ図2にお
ける前記印刷面(13)、前記二酸化チタン5部を帯状
に混抄した部分(11)の印刷面及び二酸化チタン2部
を帯状に混抄した部分(12)の印刷面の分光反射率曲
線である。この図において、肉眼で物質を視認できる4
00〜700nmの可視光域では、前記印刷面の分光反
射率(14)、二酸化チタンを5部混抄した部分の印刷
面の分光反射率(15)及び二酸化チタンを2部混抄し
た部分の印刷面の分光反射率(16)の分光反射率はい
ずれも同じ値であるが、紫外域の365nmでは、前記
印刷面の分光反射率(14)は約35%であるのに対
し、二酸化チタンを5部混抄した部分の印刷面の分光反
射率(15)は約15%であり、二酸化チタンを2部混
抄した部分の印刷面の分光反射率(16)は約20%と
それぞれ印刷面に対して分光反射率に差が生じた。この
ような特徴を持った前記印刷用紙を用いた印刷物(1)
を図1の前記機械読取り装置に挿入すると、搬送部
(2)が始動し、前記印刷物(1)は機械読取り装置内
部に移動する。この時、可視光ランプ(3)から照射さ
れた可視光域の波長の光、及び紫外線ランプ(5)から
照射された365nm付近の波長の光、並びに近赤外線
ランプ(7)から照射された950nm付近の波長の光
は、前記印刷物(1)の表面で反射し、それぞれ可視光
域の波長を受光する可視光センサー(4)、及び365
nm付近の波長を受光する紫外線センサー(6)、並び
に950nm付近の波長を受光する近赤外線センサー
(8)に受光され、前記印刷物表面の横方向の可視光域
及び紫外域並びに近赤外域の分光反射量が測定される。
FIG. 3 shows 200 to 80 of the surface of the printed matter (1).
FIG. 3 is a spectral reflectance curve at 0 nm. In FIG. 3, (14), (15) and (16) show the printed surface (13) in FIG. 7 is a spectral reflectance curve of a printing surface of a printing surface of No. 2 and a printing surface of a portion (12) in which 2 parts of titanium dioxide are mixed in a belt shape. In this figure, the substance is visible with the naked eye.
In the visible light range of 00 to 700 nm, the spectral reflectance (14) of the printed surface, the spectral reflectance (15) of the printed surface where 5 parts of titanium dioxide are mixed, and the printed surface of the portion where 2 parts of titanium dioxide are mixed. Although the spectral reflectances of (16) and (16) have the same value, at 365 nm in the ultraviolet region, the spectral reflectance (14) of the printing surface is about 35%, whereas titanium dioxide is 5%. The spectral reflectance (15) of the printed surface of the partially mixed portion is about 15 %, and the spectral reflectance (16) of the printed surface of the portion mixed with two portions of titanium dioxide is approximately 20 %, each of which corresponds to the printed surface. There was a difference in spectral reflectance. Printed matter using the printing paper having such characteristics (1)
Is inserted into the machine reader of FIG. 1, the transport section (2) starts, and the printed matter (1) moves into the machine reader. At this time, light having a wavelength in the visible light range emitted from the visible light lamp (3), light having a wavelength around 365 nm emitted from the ultraviolet lamp (5), and 950 nm emitted from the near infrared lamp (7). Visible light sensors (4) and 365, each of which reflects light having a wavelength in the vicinity, are reflected on the surface of the printed matter (1), and each receive a wavelength in the visible light range.
An ultraviolet ray sensor (6) for receiving a wavelength of about 950 nm and a near-infrared sensor (8) for receiving a wavelength of about 950 nm, and the visible light, ultraviolet, and near-infrared light in the lateral direction of the surface of the printed material are separated. The amount of reflection is measured.

【0014】図4は図1の前記印刷物(1)の印刷面の
横方向を、前述した機械読取り装置で365nm付近の
波長の分光反射量を測定したときの波形を示す図であ
る。この図において、二酸化チタン5部を帯状に混抄し
た部分図2の(11)の印刷面に対応する波形(18)
及び二酸化チタン2部を帯状に混抄した部分図2の(1
2)の印刷面に対応する波形(19)は、前記印刷面図
2の(13)に対応する分光反射量の波形(17)より
低下することから、所定の基準レベル(x)で二値化す
ると、図5の(A)に示すような波形となり、”0”
と”1”で表すことができた。この二値化した波形を、
あらかじめ把握されている真正品の印刷面の横方向の3
65nm付近の波長の分光反射量の波形を、所定の基準
レベル(x)で二値化した波形(以下、真正品の365
nm付近を二値化した波形と言う。)と照合すること
で、前記印刷物(1)の真偽判別を行うことができる。
すなわち、図6の(B)は真正品の365nm付近を二
値化した波形であるが、これに前記図5の(A)の波形
を重ね合わせた際、基準レベル(a)と基準レベル
(b)間、基準レベル(e)と基準レベル(f)間、基
準レベル(j)と基準レベル(k)間が”1”であり、
かつ、基準レベル(c)と基準レベル(d)間、基準レ
ベル(g)と基準レベル(h)間が”0”である波形の
ものは真正品、そうでないものは偽造品と判別するよう
に設定した。なお、基準レベル(b)と基準レベル
(c)間、基準レベル(d)と基準レベル(e)間、基
準レベル(f)と基準レベル(g)間、基準レベル
(h)と基準レベル(j)間は波形のばらつきを許容す
る範囲として、この許容範囲では判別は行わないことと
した。こうした判定基準、すなわち、測定対象物表面の
横方向の365nm付近の波長の分光反射量を波形に描
き、所定の基準レベル(x)によって二値化した波形
と、真正品の365nm付近を二値化した波形が、同じ
波形であるか否かを判別する方法を図1の判別部(9)
に記憶させた。
FIG. 4 is a diagram showing a waveform when the spectral reflection amount of a wavelength near 365 nm is measured in the lateral direction of the printed surface of the printed matter (1) in FIG. In this figure, a waveform (18) corresponding to the printed surface of (11) in FIG.
And (2) of titanium dioxide mixed in a belt shape.
The waveform (19) corresponding to the printing surface of (2) is lower than the waveform (17) of the spectral reflection amount corresponding to (13) of FIG. In this case, the waveform becomes as shown in FIG.
And "1". This binarized waveform is
3 in the horizontal direction of the genuine product's printing surface that is known in advance
A waveform obtained by binarizing the waveform of the spectral reflection amount at a wavelength near 65 nm at a predetermined reference level (x) (hereinafter, a true product 365)
The vicinity of nm is called a binarized waveform. ), The authenticity of the printed matter (1) can be determined.
That is, FIG. 6B is a binarized waveform near 365 nm of the genuine product, and when the waveform of FIG. 5A is superimposed on the binarized waveform, the reference level (a) and the reference level ( b), between reference level (e) and reference level (f), between reference level (j) and reference level (k) are "1",
In addition, a waveform having a waveform between the reference level (c) and the reference level (d) and a waveform between the reference level (g) and the reference level (h) being "0" is determined to be a genuine product; Set to. The reference level (b) and the reference level (c), the reference level (d) and the reference level (e), the reference level (f) and the reference level (g), the reference level (h) and the reference level ( The range between j) is a range in which the variation of the waveform is allowed, and no determination is made in this allowable range. Such a criterion, that is, a spectral reflection amount at a wavelength near 365 nm in the horizontal direction of the surface of the object to be measured is drawn in a waveform, and a binarized waveform based on a predetermined reference level (x), and a binary value near 365 nm of a genuine product are binarized. A method for determining whether or not the converted waveforms are the same waveform is described by the determination unit (9) in FIG.
Was memorized.

【0015】このような設定条件で構成した前記図1の
機械読取り装置に、2種類の印刷物、すなわち、前述し
た図2のように、前記用紙部分(10)に前記二酸化チ
タン5部を帯状に混抄した部分(11)と前記二酸化チ
タン2部を帯状に混抄した部分(12)からなる印刷用
紙の表面に、市販のプロセス黒インキを網点面積25%
でオフセット印刷した前記印刷物(1)10枚と、蛍光
増白剤を含まない市販の印刷用紙の表面に、前記市販の
プロセス黒インキを網点面積25%でオフセット印刷し
た印刷物10枚を作製し、読取りを行った。その結果、
二酸化チタンを帯状に混抄した印刷用紙を用いた印刷物
は真正品、市販の印刷用紙を用いた印刷物は偽造品と瞬
時に真偽判別を行うことができ、誤判別はなかった。し
たがって、前記機械読取り装置は、前記印刷物(1)の
一般流通過程における省力化を目的とする機械読取り処
理のための真偽判別が容易に確保できることが確認でき
た。
In the machine reading apparatus of FIG. 1 configured under the above setting conditions, two types of printed matter, that is, as shown in FIG. 2 described above, 5 parts of the titanium dioxide are strip-shaped on the paper portion (10). A commercially available process black ink having a dot area of 25% was applied to the surface of the printing paper comprising the mixed portion (11) and the portion (12) in which 2 parts of the titanium dioxide were mixed in a belt shape.
And 10 prints obtained by offset printing the commercially available process black ink with a dot area of 25% on the surface of a commercially available printing paper containing no optical brightener and 10 prints obtained by offset printing in (1). And a reading was taken. as a result,
The printed matter using the printing paper in which titanium dioxide was mixed in a belt shape could be genuinely distinguished from the genuine product, and the printed matter using the commercially available printing paper could be instantaneously distinguished from the counterfeit one without erroneous determination. Therefore, it was confirmed that the machine reading device can easily secure the authenticity determination for the machine reading process for the purpose of labor saving in the general distribution process of the printed matter (1).

【0016】ところが、前述した紫外域だけの真偽判別
では、紫外線吸収特性を有する物質を付与した前記機械
識別用紙、例えば、二酸化チタンを付与した前記機械識
別用紙を用いた印刷物(1)においては、紫外線吸収特
性を有する物質をあらかじめ付与した用紙を用いなくて
も、黒インキ等で紫外線の吸収を得ることができるた
め、二酸化チタンを付与した部分の分光反射量の低下量
と同程度の分光反射量の低下量を、黒インキ等の印刷物
濃度で得ようとした前記印刷物(1)の模造品(以下、
黒インキ等による模造品と言う。)を真正品と誤判別す
る可能性がある。しかし、前記機械読取り装置は可視光
域の波形及び紫外域の波形並びに近赤外域の波形とを同
時に識別し、総合的に判定する判別方法を特徴とする装
置であるため、前記黒インキ等による模造品を紫外域の
真偽判別では真正品と判別しても、可視光域の真偽判別
では偽造品と判別するため、最終的に、前記黒インキ等
による模造品を偽造品と判定する。
However, in the above-described true / false determination of only the ultraviolet region, in the case of the printed matter (1) using the machine identification paper provided with a substance having an ultraviolet absorbing property, for example, the machine identification paper provided with titanium dioxide. Even without using a paper to which a substance having ultraviolet absorbing properties is applied in advance, the absorption of ultraviolet rays can be obtained with black ink or the like. The imitation of the printed matter (1) (hereinafter, referred to as the “printed matter”) in which the amount of decrease in the amount of reflection was intended to be obtained by the printed matter density such as black ink
It is called imitation with black ink. ) May be misidentified as genuine. However, since the machine reading device is a device characterized by a method of simultaneously discriminating a waveform in the visible light region, a waveform in the ultraviolet region, and a waveform in the near-infrared region and comprehensively determining the waveform, the machine reading device uses the black ink or the like. Even if the imitation product is determined to be genuine in the authenticity determination in the ultraviolet region, it is determined to be a fake product in the authenticity determination in the visible light range, so that the imitation product using the black ink or the like is finally determined to be a fake product. .

【0017】(実施例2) 蛍光増白剤を含まない市販の印刷用紙の表面に、前述し
た図2で二酸化チタンを付与した部分と同じ位置に、二
酸化チタンを付与した部分の分光反射量の低下量と同程
度の分光反射量の低下量となるような印刷物濃度で黒イ
ンキの印刷を行った後、実施例1での用紙表面への印刷
と同様、市販のプロセス黒インキを網点面積25%でオ
フセット印刷し、前記印刷物(1)の模造品(図示せ
ず)を作製した。この模造品と前記印刷物(1)をそれ
ぞれ前記機械読取り装置に読込ませ、真偽判別を行っ
た。その結果、紫外域での真偽判別では、前記印刷物
(1)の印刷面の横方向の365nm付近の分光反射量
の波形は、前述した図4に示す波形となるのに対し、黒
インキ等による模造品の印刷面の横方向の365nm付
近の分光反射量の波形は、図7に示すような波形とな
り、図4の波形と図7の波形の分光反射量の低下程度は
ほぼ同じであった。したがって、図4の波形及び図7の
波形を前記所定の基準レベル(x)で二値化した波形
は、それぞれ図5及び図8に示すような同じ波形とな
り、真正品の365nm付近を二値化した波形と照合し
た結果、前記印刷物(1)及び黒インキ等による模造品
を真正品と判別した。
(Example 2) On the surface of a commercially available printing paper containing no fluorescent whitening agent, the spectral reflection amount of the titanium dioxide-added portion was determined at the same position as the titanium dioxide-added portion in FIG. After printing the black ink at a print density such that the amount of the spectral reflection becomes as low as the amount of the reduction, a commercially available process black ink is used in the same manner as the printing on the paper surface in Example 1. Offset printing was performed at 25% to produce a copy (not shown) of the printed matter (1). The imitation product and the printed matter (1) were read into the machine reading device, respectively, to determine authenticity. As a result, in the true / false judgment in the ultraviolet region, the waveform of the spectral reflection amount near 365 nm in the horizontal direction of the printing surface of the printed matter (1) becomes the waveform shown in FIG. The waveform of the spectral reflection amount near 365 nm in the lateral direction of the imitation product printed surface becomes a waveform as shown in FIG. 7, and the waveform of FIG. 4 and the waveform of FIG. Was. Therefore, the waveforms obtained by binarizing the waveform of FIG. 4 and the waveform of FIG. 7 at the predetermined reference level (x) become the same waveforms as shown in FIG. 5 and FIG. 8, respectively. As a result of collating with the converted waveform, the imitation product of the printed matter (1) and the black ink or the like was determined to be a genuine product.

【0018】ところが、可視光域での真偽判別では、前
記印刷物(1)の印刷面の横方向の可視光域の分光反射
量の波形は、図9に示すような分光反射量の低下部分が
なく、図4の紫外域で測定した波形とは明らかに異なる
波形であるのに対し、黒インキ等による模造品の印刷面
の横方向の可視光域の分光反射量の波形は、図7の紫外
域で測定した波形と同様の分光反射量の低下部分のある
波形を示した。したがって、図9の波形及び図7の波形
を、前記所定の基準レベル(x)で二値化した波形で
は、前記印刷物(1)は図10に示すような”1”だけ
で表す波形となるのに対し、黒インキ等による模造品は
前記図8と同様、”0”と”1”で表す波形となり、図
10の波形及び図8の波形を、あらかじめ把握されてい
る真正品の横方向の可視光域の分光反射量の波形を所定
の基準レベル(x)で二値化した波形(以下、真正品の
可視光域を二値化した波形という。)と照合した結果、
前記印刷物(1)は真正品と判別したが、黒インキ等に
よる模造品は偽造品と判別した。以上の結果、前記機械
読取り装置は、紫外域での判別結果と可視光域での判別
結果から、最終的に、前記印刷物(1)は真正品、前記
黒インキ等による模造品は偽造品と瞬時に判定した。
However, in the true / false determination in the visible light region, the waveform of the spectral reflection amount in the visible light region in the lateral direction of the printing surface of the printed matter (1) shows a portion where the spectral reflection amount decreases as shown in FIG. 4, the waveform is clearly different from the waveform measured in the ultraviolet region in FIG. 4, whereas the waveform of the spectral reflection amount in the visible light region in the horizontal direction of the imitation product printed surface with black ink is shown in FIG. A waveform having a reduced portion of the spectral reflection amount similar to the waveform measured in the ultraviolet region of FIG. Therefore, in the waveform obtained by binarizing the waveform of FIG. 9 and the waveform of FIG. 7 at the predetermined reference level (x), the printed matter (1) is a waveform represented by only “1” as shown in FIG. On the other hand, the imitation product made of black ink or the like has waveforms represented by “0” and “1” as in FIG. 8, and the waveforms of FIG. 10 and FIG. The result of collating the waveform of the spectral reflection amount in the visible light region with a waveform binarized at a predetermined reference level (x) (hereinafter, referred to as a binarized waveform of the genuine visible light region):
The printed matter (1) was determined to be a genuine product, while the imitation product using black ink or the like was determined to be a fake product. As a result, the machine reading device finally determined that the printed matter (1) was a genuine product, and the imitation product of the black ink or the like was a fake product based on the determination result in the ultraviolet region and the determination result in the visible light region. Judged instantly.

【0019】また、図4の波形(18)と波形(19)
が示すように、二酸化チタンの付与量を変化させること
によって、二酸化チタンを混抄した部分の分光反射量の
低下量が相違することから、この特性を利用して、前記
の基準レベル(x)に、新たに一定の基準レベル(y)
を設定することによって、前記真偽判別の例に加えて、
より精度の高い真偽判定が可能である。例えば、図4の
分光反射量の波形を二値化する基準レベルを、前記基準
レベル(x)と前記基準レベル(y)で設定し、基準レ
ベル(x)と(y)の間に位置するものを”0”、基準
レベル(x)と(y)の間に位置しないものを”1”と
設定したときの二値化した波形図は、図11のとおりと
なる。二値化したときの波形で”0”が存在するものを
真正品、”0”が存在しないものを偽造品とすれば、分
光反射量の低下量の違いから基準レベルを複数設定する
ことによって、精度の高い真偽判定が可能である。
The waveforms (18) and (19) in FIG.
As shown by the above, since the amount of reduction in the spectral reflection amount of the portion where titanium dioxide is mixed is different by changing the amount of titanium dioxide applied, this characteristic is used to make the reference level (x) above. , A new constant reference level (y)
By setting, in addition to the example of the authenticity determination,
It is possible to determine the authenticity with higher accuracy. For example, a reference level for binarizing the waveform of the spectral reflection amount in FIG. 4 is set by the reference level (x) and the reference level (y), and is located between the reference levels (x) and (y). FIG. 11 shows a binarized waveform diagram when the signal is set to "0" and the signal not located between the reference levels (x) and (y) is set to "1". If the binarized waveform in which "0" is present is a genuine product and the non-existent waveform is a counterfeit product, a plurality of reference levels are set based on the difference in the amount of reduction in the spectral reflection amount. It is possible to perform highly accurate truth / false judgment.

【0020】更に、前記機械識別用紙の二酸化チタンの
付与量を変化させ、前述した図4の所定の基準レベル
(x)と(y)に加え、基準レベル(z)及び基準レベ
ル(w)を新たに設定することで、真偽判定基準に用い
る分光反射量と基準レベルの比較組み合わせは多様化
し、緻密な判定が可能となる。その前記多様化した組み
合わせを、例えば回数券等に、市場流通地域や製造履歴
などとして情報化し付与した前記機械識別用紙に印刷を
施した印刷物(1)を瞬時に機械読取りすることによっ
て、この印刷物(1)を用いた製品の、真偽判別及び情
報の識別が可能であり、印刷面の偽造、改ざんが発生し
た場合の追跡にも用いることができ、ひいては偽造、改
ざんの抑止効果が得られる。
Further, by changing the amount of titanium dioxide applied to the machine identification paper, the reference level (z) and the reference level (w) in addition to the predetermined reference levels (x) and (y) shown in FIG. With the new setting, the comparison combination of the spectral reflection amount and the reference level used for the authenticity judgment criterion is diversified, and precise judgment can be made. This diversified combination is printed on the machine identification paper, which is informationized and added to, for example, a coupon and the like as a market distribution area, a manufacturing history, and the like. It is possible to discriminate between authenticity and information and to identify information on products using (1), and it can also be used to track the occurrence of forgery or falsification of the printed surface, and thus the effect of suppressing forgery or falsification can be obtained. .

【0021】(実施例3) 図12は用紙に対して、二酸化チタン5部を帯状に混抄
した部分(11)、二酸化チタン2部を帯状に混抄した
部分(12)、炭酸カルシウム5部を帯状に上塗りした
部分(20)、アミニウム化合物約0.1部を帯状に
混抄した部分(21)の、付与本数と付与間隔を変えて
作製した前記印刷用紙(特願平5−267798号)の
表面に、前述した実施例1と同様に、市販のプロセス黒
インキを網点面積25%でオフセット印刷した印刷物
(22)(印刷模様は図示せず)の平面図であり、印刷
用紙に付与した紫外線吸収物質である二酸化チタン及び
紫外線反射物質である炭酸カルシウム並びに赤外線吸収
物質であるアミニウム化合物の情報を印刷面から光学
的に読取るための印刷物を作製した。図13は図12の
前記印刷物(22)の印刷面の横方向を、前述した機械
読取り装置で365nm付近の波長の分光反射量を測定
したときの波形を示す図である。この図において、二酸
化チタン5部を帯状に混抄した部分図12の(11)の
印刷面に対応する波形(18)、二酸化チタン2部を帯
状に混抄した部分図12の(12)の印刷面に対応する
波形(19)及び炭酸カルシウム5部を帯状に上塗りし
た部分図12の(20)の印刷面に対応する波形(2
3)は、前記印刷面図12の(13)に対応する分光反
射量の波形(17)より低下あるいは上昇することか
ら、所定の基準レベル(u)で二値化すると、図14に
示すような”0”の部分が2個在する波形となった。ま
た、基準レベルを図13の基準レベル(u’)と基準レ
ベル(t)に設定し、基準レベル(u’)より低い部分
あるいは基準レベル(t)より高い部分に位置する波形
を”0”、基準レベル(u)と(t)の間に位置する波
形を”1”となるように設定し二値化すると、図15に
示すような”0”の部分が4個在する波形となった。こ
のように、二値化する基準レベルの設定を変えることに
よって、二値化した波形の”0”の部分の存在数が異な
ることから、例えば、図14の”0”の部分が2個在す
る波形で真偽判別を行い、図15の”0”の部分が4個
在する波形で製造履歴等の情報とすることもできる。
(Example 3) FIG. 12 shows a portion (11) in which 5 parts of titanium dioxide are mixed in a belt shape, a portion (12) in which 2 parts of titanium dioxide are mixed in a belt shape, and 5 portions of calcium carbonate in a sheet. overcoated portion (20), moieties混抄about 0.1 parts a Le Miniumu compound strip (21), said printing paper prepared by changing the applied spacing and impart number (Japanese Patent Application No. 5-267798) Is a plan view of a printed matter (22) (printed pattern is not shown) obtained by offset printing the commercially available process black ink with a dot area of 25% on the surface of the printing paper in the same manner as in Example 1 described above. to prepare a printed matter for reading optically the information of calcium carbonate and an infrared-absorbing material is titanium dioxide and the UV-reflecting material is a Le Miniumu compound is an ultraviolet absorbing material from the printing surface. FIG. 13 is a diagram showing a waveform when the spectral reflection amount at a wavelength near 365 nm is measured in the lateral direction of the printed surface of the printed matter (22) in FIG. In this figure, a waveform (18) corresponding to the printed surface of (11) of FIG. 12 in which 5 parts of titanium dioxide are mixed in a belt shape, and a printed surface of (12) in FIG. 12 in which 2 parts of titanium dioxide are mixed in a belt shape (20) and a waveform (2) corresponding to the printed surface of (20) in FIG.
3) is lower or higher than the waveform (17) of the spectral reflection amount corresponding to (13) in FIG. 12 (13) of the printing surface, and is binarized at a predetermined reference level (u) as shown in FIG. The waveform has two "0" portions. Further, the reference level is set to the reference level (u ′) and the reference level (t) in FIG. 13, and the waveform located at a portion lower than the reference level (u ′) or a portion higher than the reference level (t) is “0”. When the waveform located between the reference levels (u) and (t) is set to be "1" and binarized, a waveform having four "0" portions as shown in FIG. Was. As described above, by changing the setting of the reference level to be binarized, the number of “0” portions in the binarized waveform is different. For example, two “0” portions in FIG. It is also possible to determine the authenticity with the waveform to be performed, and use the waveform having four “0” portions in FIG. 15 as information such as the manufacturing history.

【0022】さらに、二値化した波形の”0”の部分の
位置及び幅、並びに”1”の部分の位置及び幅について
みると、図13の365nm付近の波長の分光反射量を
基準レベル(u)で二値化した図14の波形では、基準
レベル(n)と基準レベル(v)の間は”1”の値だけ
であるが、図13の365nm付近の波長の分光反射量
を基準レベル(u’)と基準レベル(t)で二値化した
図15の波形では、基準レベル(n)と基準レベル
(v)の間に、基準レベル(p)と基準レベル(q)間
と、基準レベル(r)と基準レベル(s)間に”0”の
値の部分があり、”1”の値の部分は、基準レベル
(n)と基準レベル(p)間、基準レベル(q)と基準
レベル(r)間、及び基準レベル(s)と基準レベル
(v)間に分けられた。したがって、図15に示す基準
レベル(m)と基準レベル(n)の間隔、基準レベル
(m)と基準レベル(p)の間隔、同じく基準レベル
(m)と基準レベル(q)、基準レベル(m)と基準レ
ベル(r)、基準レベル(m)と基準レベル(s)、基
準レベル(m)と基準レベル(v)、基準レベル(m)
と基準レベル(i)の間隔とを照合することで、二値化
する基準レベルの設定を変えることによる、二値化した
波形の”0”の部分の位置及び幅、並びに”1”の部分
の位置及び幅の相違を識別して情報として読取ることも
できた。以上のように、前記印刷物(22)を所定の基
準レベルで二値化した波形を、真正品の365nm付近
を二値化した波形と照合することによって、前記印刷物
(22)の真偽判別を行うと同時に、紫外線吸収物質と
紫外線反射物質の種類、前記物質の付与本数及び前記物
質の付与量並びに前記物質の付与間隔を、二値化する基
準レベルの設定を変えることによって、”0”の部分の
存在数、”0”の部分の位置及び幅、並びに”1”の部
分の位置及び幅の組合せから、情報として読取ることが
できた。
Further, regarding the position and width of the "0" portion and the "1" portion of the binarized waveform, the spectral reflection amount at a wavelength near 365 nm in FIG. In the waveform of FIG. 14 binarized by u), only the value of “1” is between the reference level (n) and the reference level (v), but the spectral reflection amount at a wavelength near 365 nm in FIG. In the waveform of FIG. 15 binarized by the level (u ′) and the reference level (t), between the reference level (n) and the reference level (v), between the reference level (p) and the reference level (q), , There is a portion having a value of “0” between the reference level (r) and the reference level (s), and a portion having a value of “1” exists between the reference level (n) and the reference level (p) and the reference level (q). ) And reference level (r) and between reference level (s) and reference level (v). Therefore, the interval between the reference level (m) and the reference level (n), the interval between the reference level (m) and the reference level (p), the reference level (m) and the reference level (q), the reference level ( m) and reference level (r), reference level (m) and reference level (s), reference level (m) and reference level (v), reference level (m)
The position and width of the "0" portion and the "1" portion of the binarized waveform by changing the setting of the binarized reference level by comparing the interval of the binarized reference level with the reference level (i). Could be read as information by identifying the difference in position and width. As described above, the authenticity of the printed matter (22) is determined by comparing the binarized waveform of the printed matter (22) at a predetermined reference level with the binarized waveform around 365 nm of the genuine product. At the same time, the type of the ultraviolet absorbing substance and the ultraviolet reflecting substance, the number of the applied substances, the applied amount of the substance, and the interval between the applied substances are changed by changing the setting of the reference level to be binarized to “0”. Information could be read from the combination of the number of existing parts, the position and width of the “0” part, and the position and width of the “1” part.

【0023】図16は図12の前記印刷物(22)の印
刷面の横方向を、前述した機械読取り装置で950nm
付近の波長の分光反射量を測定したときの波形を示す図
である。この図において、アミニウム化合物約0.1
部を帯状に混抄した部分図12(21)に対応する波形
(24)は、前記用紙部分図12(13)に対応する分
光反射量の波形(25)より低下することから、前述し
た実施例1と同様、所定の基準レベル(u’)で二値化
すると、図17に示すような波形となり、真正品の95
0nm付近の分光反射量を二値化した波形と照合するこ
とによって、近赤外域においても前記印刷物(22)の
真偽判別を行うことができた。
FIG. 16 shows the horizontal direction of the printing surface of the printed matter (22) in FIG.
It is a figure showing a waveform when measuring the amount of spectral reflection of a nearby wavelength. In this figure, about A Le Miniumu compound 0.1
Since the waveform (24) corresponding to the partial view 12 (21) in which the portions are mixed in a band shape is lower than the waveform (25) of the spectral reflection amount corresponding to the paper partial view 12 (13), the above-described embodiment is used. Similarly to 1, when binarized at a predetermined reference level (u '), a waveform as shown in FIG. 17 is obtained.
By comparing the spectral reflection amount near 0 nm with the binarized waveform, the authenticity of the printed matter (22) could be determined even in the near infrared region.

【0024】このように、前述実施例2による真偽判定
の方法と前述実施例3による真偽判定の方法を併用した
前記機械読取り装置、すなわち、可視光域の波形及び紫
外域の波形並びに近赤外域の波形とを同時に識別し、総
合的に判定する判別方法を特徴とする装置は、偽造品に
対する真偽判別を確実に行うことができる。更に、紫外
線吸収物質、紫外線反射物質及び赤外線吸収物質の種
類、並びに前記物質を付与する本数、前記物質を付与す
る量、前記物質を付与する幅及び前記物質と前記物質の
付与する間隔を変えた前記印刷用紙に付与した情報は、
その組合せによって多用化するが、前記機械読取り装置
はこの情報を印刷面から瞬時に読取ることもでき、この
情報から印刷物の種類判別を行うこともできる。
As described above, the machine reading apparatus using both the authenticity determination method according to the second embodiment and the authenticity determination method according to the third embodiment, that is, the waveform in the visible light range, the waveform in the ultraviolet range, and the An apparatus characterized by a discrimination method of simultaneously discriminating a waveform in the infrared region and making a comprehensive judgment can surely perform authenticity discrimination for a counterfeit product. Further, the type of the ultraviolet absorbing substance, the ultraviolet reflecting substance and the infrared absorbing substance, and the number of the substances to be applied, the amount of the substance applied, the width of applying the substance, and the interval of applying the substance and the substance were changed. Information given to the printing paper,
The machine reading device can read this information instantaneously from the printing surface, and can also determine the type of the printed matter from this information, although the use is diversified by the combination.

【0025】[0025]

【発明の効果】本発明は以上説明したように、特願平5
−267798号「機械識別用紙」を印刷用紙として用
いた印刷物の、可視光域及び紫外域並びに近赤外域の所
定波長域での分光反射量をそれぞれ測定し、分光反射量
の波形をそれぞれ所定の基準レベルで二値化した波形
が、あらかじめ把握されている真正品の可視光域及び紫
外域並びに近赤外域をそれぞれ二値化した波形と、同じ
波形であるか否を同時に識別し、瞬時に判定できるの
で、前述した一般流通過程における省力化を目的とする
機械読取り処理のための真偽判別が確保でき、偽造品に
対する真偽判別も確実に行うことができる。さらに、所
定の基準レベルを複数設定することによって、印刷物の
印刷用紙に付与した情報を詳細に識別できるため、真偽
判別と同時に種類判別も可能である。このほか、紫外線
吸収物質、紫外線反射物質及び赤外線吸収物質の種類、
並びに前記物質を付与する本数、前記物質を付与する
量、前記物質を付与する幅及び前記物質と前記物質の付
与する間隔を変えた前記印刷用紙に付与した情報は、そ
の組合せによって多用化するが、これらの情報を印刷面
から瞬時に読取ることも可能である。以上の構成からな
る機械読取り装置は、前記機械識別用紙を用いた付加価
値の高い製品、例えば、銀行券、有価証券、秘密文書、
回数券、入場券等多様な製品の機械読取り装置に適用が
できる。
According to the present invention, as described above, Japanese Patent Application No.
-267798 No. "Machine identification paper" Measures the spectral reflection amount in a predetermined wavelength range of visible light region, ultraviolet region and near-infrared region of a printed matter using printing paper as a printing paper, and sets the waveform of the spectral reflection amount to a predetermined value. Simultaneously identify whether or not the binarized waveform at the reference level is the same as the previously identified binarized waveforms of the visible light region, ultraviolet region, and near-infrared region of the genuine product. Since the determination can be made, the authenticity determination for the machine reading process for the purpose of labor saving in the general distribution process described above can be secured, and the authenticity determination for the counterfeit product can be surely performed. Further, by setting a plurality of predetermined reference levels, the information given to the printing paper of the printed matter can be identified in detail, so that the type identification can be performed simultaneously with the authenticity determination. In addition, the type of UV absorbing material, UV reflecting material and
The number of the substance to be applied, the amount of the substance to be applied, the width of the substance to be applied, and the information applied to the printing paper in which the interval between the substance and the substance is changed are frequently used by the combination thereof. It is also possible to read these information instantly from the printing surface. The machine reading device having the above configuration is a high value-added product using the machine identification paper, for example, banknotes, securities, secret documents,
It can be applied to machine readers for various products such as coupons and admission tickets.

【図面の簡単な説明】[Brief description of the drawings]

【図1】機械読取り装置の概略図。FIG. 1 is a schematic diagram of a machine reader.

【図2】二酸化チタンを所要の位置に混抄した機械識別
用紙を用いた印刷物の断面図。
FIG. 2 is a cross-sectional view of a printed material using a machine identification paper in which titanium dioxide is mixed at a required position.

【図3】二酸化チタンを所要の位置に混抄した機械識別
用紙の分光反射率曲線を示す図。
FIG. 3 is a view showing a spectral reflectance curve of a machine identification paper in which titanium dioxide is mixed at a required position.

【図4】二酸化チタンを所要の位置に混抄した機械識別
用紙を用いた印刷物の365nm付近の分光反射量の波
形図。
FIG. 4 is a waveform diagram of a spectral reflection amount near 365 nm of a printed matter using a machine identification paper in which titanium dioxide is mixed at a required position.

【図5】二酸化チタンを所要の位置に混抄した機械識別
用紙を用いた印刷物の365nm付近の分光反射量の波
形を所定の基準レベルで二値化した波形図。
FIG. 5 is a waveform diagram obtained by binarizing a waveform of a spectral reflection amount near 365 nm at a predetermined reference level of a printed matter using a machine identification paper in which titanium dioxide is mixed at a required position.

【図6】判別方法を示す図。FIG. 6 is a diagram showing a determination method.

【図7】模造品の365nm付近の分光反射量の波形図
と可視光域の分光反射量の波形図。
FIG. 7 is a waveform diagram of the spectral reflection amount near 365 nm of the imitation product and a waveform diagram of the spectral reflection amount in the visible light region.

【図8】模造品の365nm付近の分光反射量の波形図
と可視光域の分光反射量の波形を所定の基準レベルで二
値化した波形図。
FIG. 8 is a waveform diagram of a spectral reflection amount near 365 nm of the imitation product and a waveform diagram obtained by binarizing the waveform of the spectral reflection amount in the visible light region at a predetermined reference level.

【図9】二酸化チタンを所要の位置に混抄した機械識別
用紙を用いた印刷物の可視光域の分光反射量の波形図。
FIG. 9 is a waveform diagram of a spectral reflection amount in a visible light region of a printed matter using a machine identification sheet in which titanium dioxide is mixed at a required position.

【図10】二酸化チタンを所要の位置に混抄した機械識
別用紙を用いた印刷物の可視光域の分光反射量の波形を
所定の基準レベルで二値化した波形図。
FIG. 10 is a waveform diagram obtained by binarizing a waveform of a spectral reflection amount in a visible light region of a printed matter using a machine identification sheet in which titanium dioxide is mixed at a predetermined position at a predetermined reference level.

【図11】二酸化チタンを所要の位置に混抄した機械識
別用紙を用いた印刷物の365nm付近の分光反射量の
波形を所定の基準レベルで二値化した波形図。
FIG. 11 is a waveform chart obtained by binarizing a waveform of a spectral reflection amount near 365 nm at a predetermined reference level of a printed matter using a machine identification paper in which titanium dioxide is mixed at a required position.

【図12】二酸化チタン、炭酸カルシウム及びアミニ
ウム化合物の付与本数及び付与間隔を変えた機械識別用
紙を用いた印刷物の平面図。
[12] Titanium dioxide, a plan view of a printed material using a machine identification paper of varying granted number and grant intervals calcium carbonate and A Le mini <br/> um compounds.

【図13】二酸化チタン、炭酸カルシウム及びアミニ
ウム化合物の付与本数及び付与間隔を変えた機械識別用
紙を用いた印刷物の365nm付近の分光反射量の波形
図。
[13] Titanium dioxide, a waveform diagram of a spectral reflectance of near 365nm prints using grant number and machine identification sheet with varied applied spacing calcium carbonate and A Le mini <br/> um compounds.

【図14】二酸化チタン、炭酸カルシウム及びアミニ
ウム化合物の付与本数及び付与間隔を変えた機械識別用
紙を用いた印刷物の365nm付近の分光反射量の波形
を所定の基準レベルで二値化した波形図。
[14] Titanium dioxide, a grant number and spectral reflection of the waveform in the vicinity of 365nm of the printed matter using a machine identification sheet with varied applied spacing calcium carbonate and A Le mini <br/> um compound at a predetermined reference level The binarized waveform diagram.

【図15】二酸化チタン、炭酸カルシウム及びアミニ
ウム化合物の付与本数及び付与間隔を変えた機械識別用
紙を用いた印刷物の365nm付近の分光反射量の波形
を所定の基準レベルで二値化した波形図。
[15] Titanium dioxide, a grant number and spectral reflection of the waveform in the vicinity of 365nm of the printed matter using a machine identification sheet with varied applied spacing calcium carbonate and A Le mini <br/> um compound at a predetermined reference level The binarized waveform diagram.

【図16】二酸化チタン、炭酸カルシウム及びアミニ
ウム化合物の付与本数及び付与間隔を変えた機械識別用
紙を用いた印刷物の950nm付近の分光反射量の波形
図。
[16] Titanium dioxide, a waveform diagram of a spectral reflectance of near 950nm prints with mechanical identification paper of varying granted number and grant intervals calcium carbonate and A Le mini <br/> um compounds.

【図17】二酸化チタン、炭酸カルシウム及びアミニ
ウム化合物の付与本数及び付与間隔を変えた機械識別用
紙を用いた印刷物の950nm付近の分光反射量の波形
を所定の基準レベルで二値化した波形図。
[17] Titanium dioxide, a spectral reflection of the waveform in the vicinity of 950nm of the printed matter using a machine identification paper of varying granted number and grant intervals calcium carbonate and A Le mini <br/> um compound at a predetermined reference level The binarized waveform diagram.

【符号の説明】[Explanation of symbols]

1:二酸化チタンを帯状に混抄した機械識別用紙に印刷
した印刷物。 2:搬送部。 3:可視光ランプ。 4:可視光センサー。 5:紫外線ランプ。 6:紫外線センサー。 7:近赤外線ランプ。 8:近赤外線センサー。 9:判別部。 10:完全紙料からなる用紙部分。 11,12:二酸化チタンを混抄した部分。 13:印刷面。 14:完全紙料からなる用紙部分の分光反射率曲線。 15,16:二酸化チタンを混抄した部分の分光反射率
曲線。 17:完全紙料からなる用紙部分の365nm付近の分
光反射量を示す波形。 18,19:二酸化チタンを混抄した部分の365nm
付近の分光反射量を示す波形。 20:炭酸カルシウムを上塗りした部分。 21:アミニウム化合物を混抄した部分。 22:二酸化チタン及びアミニウム化合物を帯状に混
抄し、炭酸カルシウムを上塗りした機械識別用紙に印刷
した印刷物。 23:炭酸カルシウムを上塗りした部分の365nm付
近の分光反射量を示す波形。 24:アミニウム化合物を混抄した部分の950nm
付近の分光反射量を示す波形。 25:完全紙料からなる用紙部分の950nm付近の分
光反射量を示す波形。 A,B:二値化した波形 a,b,c,d,e,f,g,h,i,j,k,x,
y,z,v,w,r,m,n,p,s,q,t,u,
u’:所定の基準レベル α:遮蔽板
1: Printed matter printed on machine identification paper mixed with titanium dioxide in a belt shape. 2: Transport unit. 3: Visible light lamp. 4: Visible light sensor. 5: UV lamp. 6: UV sensor. 7: Near infrared lamp. 8: Near infrared sensor. 9: discriminating unit. 10: Paper portion made of complete stock. 11 and 12: Parts mixed with titanium dioxide. 13: Printing surface. 14: Spectral reflectance curve of a paper portion composed of complete stock. 15, 16: Spectral reflectance curve of the portion where titanium dioxide was mixed. 17: Waveform indicating the spectral reflection amount near 365 nm of the paper portion made of complete stock. 18, 19: 365 nm of the portion where titanium dioxide was mixed
A waveform showing the amount of spectral reflection in the vicinity. 20: Portion coated with calcium carbonate. 21:混抄portion of A Le Miniumu compound. 22: printed material titanium dioxide and A Le Miniumu compound混抄the strip was printed in machine-identifiable paper overcoated with a calcium carbonate. 23: Waveform indicating the amount of spectral reflection around 365 nm of the portion overcoated with calcium carbonate. 24: 950 nm of the written混抄the A Le Miniumu compound
A waveform showing the amount of spectral reflection in the vicinity. 25: Waveform indicating the amount of spectral reflection around 950 nm of a paper portion made of complete stock. A, B: binarized waveforms a, b, c, d, e, f, g, h, i, j, k, x,
y, z, v, w, r, m, n, p, s, q, t, u,
u ': predetermined reference level α: shielding plate

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01J 1/00 - 1/60 G07D 7/00 - 7/20 D21H 11/00 - 27/42 ──────────────────────────────────────────────────続 き Continued on the front page (58) Fields investigated (Int. Cl. 7 , DB name) G01J 1/00-1/60 G07D 7 /00-7/20 D21H 11/00-27/42

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 可視光域では基材表面の分光反射率とほ
ぼ同値であるが、紫外域又は近赤外域の所定の波長域で
は、基材表面の分光反射率と異なる分光反射率を有する
物質を、基材に対して混抄又は上塗りで情報として付与
し、付与した情報は実際に肉眼で観察しても視認できな
いが、付与した情報を可視光域及び紫外域並びに近赤外
域の発光ランプと、可視光域及び紫外域並びに近赤外域
の受光センサーで印刷面から読取り、可視光域の波形及
び紫外域の波形並びに近赤外域の波形とを同時に識別
し、判定することを特徴とする機械読取り方法。
1. In the visible light region, the spectral reflectance is substantially the same as the spectral reflectance of the substrate surface, but in a predetermined wavelength region in the ultraviolet or near-infrared region, it has a spectral reflectance different from the spectral reflectance of the substrate surface. The substance is added to the base material as information by mixing or overcoating, and the added information is not visible even when actually observed with the naked eye.
However, the provided information is read from the printing surface with a visible light, ultraviolet, and near-infrared light-emitting lamp, and a visible light, ultraviolet, and near-infrared light-receiving sensor, and the visible light waveform and ultraviolet light are read. A machine reading method characterized in that a waveform and a waveform in the near infrared region are simultaneously identified and determined.
【請求項2】 可視光域では基材表面の分光反射率とほ
ぼ同値であるが、紫外域又は近赤外域の所定の波長域で
は、基材表面の分光反射率と異なる分光反射率を有する
物質を、基材に対して混抄又は上塗りで情報として付与
し、付与した情報は実際に肉眼で観察しても視認できな
いが、付与した情報を搬送部、検出部、判別部からなる
機械読取り装置で識別し、判定することにおいて、前記
検出部は可視光域及び紫外域並びに近赤外域の発光ラン
プと、可視光域及び紫外域並びに近赤外域の受光センサ
ーで構成され、前記検出部によって印刷面から読取り、
可視光域の波形及び紫外域の波形並びに近赤外域の波形
とを同時に識別し、判定することを特徴とする機械読取
り装置。
2. In the visible light region, the spectral reflectance is substantially the same as the spectral reflectance of the substrate surface, but in a predetermined wavelength region in the ultraviolet or near-infrared region, it has a spectral reflectance different from the spectral reflectance of the substrate surface. The substance is added to the base material as information by mixing or overcoating, and the added information is not visible even when actually observed with the naked eye.
However, in identifying and judging the added information by a machine reading device including a transport unit, a detection unit, and a determination unit, the detection unit includes a light-emitting lamp in a visible light range, an ultraviolet range, and a near-infrared range, and a visible light range. And light receiving sensors in the ultraviolet and near infrared regions, read from the printing surface by the detection unit,
A machine reader for simultaneously distinguishing and determining a visible light waveform, an ultraviolet light waveform, and a near infrared light waveform.
【請求項3】 可視光域では用紙の分光反射率とほぼ同
値であるが、紫外域又は近赤外域の所定の波長域では用
紙の分光反射率と異なる分光反射率を有する物質を、用
紙に対して混抄又は上塗りで情報として付与した機械識
別用紙を印刷用紙として用い、付与した情報は実際に肉
眼で観察しても視認できないが、その印刷用紙に付与し
た情報を、搬送部、検出部、判別部からなる機械読取り
装置で識別し、判定することにおいて、前記検出部は可
視光域及び紫外域並びに近赤外域の発光ランプと、可視
光域及び紫外域並びに近赤外域の受光センサーで構成さ
れ、前記検出部によって印刷面から読取り、可視光域の
波形及び紫外域の波形並びに近赤外域の波形とを同時に
識別し、判定することを特徴とする機械読取り装置。
3. A material having a spectral reflectance substantially equal to the spectral reflectance of the paper in a visible light region, but having a spectral reflectance different from the spectral reflectance of the paper in a predetermined wavelength region of an ultraviolet region or a near-infrared region. On the other hand, the machine identification paper provided as information by mixing or overcoating is used as printing paper, and the provided information is actually
Although not visually recognizable by observation with eyes, the information given to the printing paper is identified and determined by a machine reading device including a transport unit, a detection unit, and a determination unit. And a light-emitting lamp in the near-infrared region, and a light-receiving sensor in the visible light region, the ultraviolet region, and the near-infrared region, read from the printing surface by the detection unit, the waveform in the visible light region, the waveform in the ultraviolet region, and the near-infrared region. A machine reading device for simultaneously identifying and judging waveforms of the same.
JP34202493A 1993-12-14 1993-12-14 Machine reading method and machine reading device Expired - Lifetime JP3292863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34202493A JP3292863B2 (en) 1993-12-14 1993-12-14 Machine reading method and machine reading device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34202493A JP3292863B2 (en) 1993-12-14 1993-12-14 Machine reading method and machine reading device

Publications (2)

Publication Number Publication Date
JPH08152359A JPH08152359A (en) 1996-06-11
JP3292863B2 true JP3292863B2 (en) 2002-06-17

Family

ID=18350595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34202493A Expired - Lifetime JP3292863B2 (en) 1993-12-14 1993-12-14 Machine reading method and machine reading device

Country Status (1)

Country Link
JP (1) JP3292863B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6804459B2 (en) 2001-06-15 2004-10-12 Flow International Corporation Method and apparatus for changing the temperature of a pressurized fluid
CN106780966A (en) * 2017-02-17 2017-05-31 深圳怡化电脑股份有限公司 A kind of paper money discrimination method and device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4621329B2 (en) * 2000-03-23 2011-01-26 有限会社ノア Authenticity determination device for automobile driver's license
JP2003077025A (en) * 2001-09-05 2003-03-14 Toshiba Corp Paper sheet discriminating device and method
JP2005182582A (en) * 2003-12-22 2005-07-07 Toshiba Corp Print image verification device and print image verification method
US7259853B2 (en) * 2004-12-22 2007-08-21 Xerox Corporation Systems and methods for augmenting spectral range of an LED spectrophotometer
JP2015207154A (en) 2014-04-21 2015-11-19 沖電気工業株式会社 Linear light source, optical sensor, discrimination part, and automatic transaction device using the same
CN108711213B (en) * 2018-03-30 2020-01-14 深圳怡化电脑股份有限公司 Method and device for identifying black and white blocks of paper money zebra stripes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6804459B2 (en) 2001-06-15 2004-10-12 Flow International Corporation Method and apparatus for changing the temperature of a pressurized fluid
CN106780966A (en) * 2017-02-17 2017-05-31 深圳怡化电脑股份有限公司 A kind of paper money discrimination method and device
CN106780966B (en) * 2017-02-17 2019-10-11 深圳怡化电脑股份有限公司 A kind of paper money discrimination method and device

Also Published As

Publication number Publication date
JPH08152359A (en) 1996-06-11

Similar Documents

Publication Publication Date Title
EP1716003B1 (en) Apparatus and method for identifying an object having randomly distributed identification elements
US6047964A (en) Scratch card, and method and apparatus for validation of the same
US8121386B2 (en) Secure article, notably a security and/or valuable document
EP0485694B1 (en) High-speed document verification system
US20010010333A1 (en) Method and apparatus for patterning cards, instruments and documents
US20060131425A1 (en) Value document comprising a machine-readable authenticity mark
GB2355522A (en) Improvements in verifying printed security substrates
EP0728347A1 (en) Preventing unauthorized copying of documents
US5270526A (en) Card type recording medium and method of preventing a false use thereof
JPS593278B2 (en) It&#39;s hard to tell what&#39;s going on.
WO1994006102A1 (en) Security document inspection
EA019611B1 (en) Document of value, method of manufacture test feature and method of detecting soil or wear
JP3292863B2 (en) Machine reading method and machine reading device
EP3447740A1 (en) Invisible-feature detection device, sheet recognition device, sheet handling device, print inspection device, and invisible-feature detection method
JP3223730B2 (en) True / false judgment method of mark with invisible ink
US5231276A (en) System for preventing a false use of a card type recording medium and a method thereof
JP3736028B2 (en) Bill discrimination device
RU2523812C2 (en) Valuable document protected against forgery and method of determining its authenticity
JPH06203244A (en) Genuineness/counterfeit discriminating device for paper money or the like
AU759064B2 (en) Information carrier medium and reader for reading the information carrier medium
JP4264776B2 (en) Safety protection sheet, authenticity determination method thereof, and authenticity determination device thereof
JP2007136838A (en) Printed matter for certification and certifying method of the same
JPH041886A (en) Punched hole detecting system for magnetic card
JP2018060331A (en) Information code reader and system thereof and authenticity determination method of media
JP2000094865A (en) Optically reading sheet and its optical reader

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080405

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090405

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090405

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100405

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110405

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110405

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120405

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120405

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130405

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130405

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140405

Year of fee payment: 12

EXPY Cancellation because of completion of term