JP3292504B2 - High carbon steel wire with good workability - Google Patents
High carbon steel wire with good workabilityInfo
- Publication number
- JP3292504B2 JP3292504B2 JP17984992A JP17984992A JP3292504B2 JP 3292504 B2 JP3292504 B2 JP 3292504B2 JP 17984992 A JP17984992 A JP 17984992A JP 17984992 A JP17984992 A JP 17984992A JP 3292504 B2 JP3292504 B2 JP 3292504B2
- Authority
- JP
- Japan
- Prior art keywords
- wire
- steel
- ferrite
- strength
- steel wire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Description
【0001】[0001]
【産業上の利用分野】この発明は、スチールコード、ビ
ードワイヤー、PC鋼線等のような高強度鋼線の素材と
して好適な、高炭素鋼線材に関し、特に良好な加工性を
有する線材を提案しようとするものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high carbon steel wire suitable as a material for a high strength steel wire such as a steel cord, a bead wire, a PC steel wire, etc., and particularly to a wire having good workability. What you want to do.
【0002】[0002]
【従来の技術】高炭素鋼線材は、PC鋼線、ワイヤロー
プ、ビードワイヤー、タイヤコード等、高い強度が必要
とされる種々の用途に供されている。近年、これらの鋼
線は、コストダウンあるいは生産性向上のために、高速
伸線技術や伸線途中のパテンティングを省略する技術が
実用化されつつある。その一方において、鋼線の高張力
化のニーズも年々強くなっていて、例えば極細線に関し
て特開平2-197524 号公報には、所定の合金元素を添加
した素材に大きな加工歪みを付与して、高張力化を図る
方法が開示されている。この方法は、特定合金元素の添
加と熱処理条件との組み合わせにより、パーライト組織
の微細化と整列化を図ってじん性の高い高強度鋼線と
し、さらに冷間伸線加工歪みを大きくとって最終強度を
高めようというものである。2. Description of the Related Art High carbon steel wires are used for various applications requiring high strength, such as PC steel wires, wire ropes, bead wires, and tire cords. In recent years, for these steel wires, in order to reduce costs or improve productivity, a high-speed drawing technique and a technique of omitting patenting during drawing have been put to practical use. On the other hand, the need for higher tensile strength of steel wire has been increasing year by year. For example, Japanese Patent Application Laid-Open No. 2-197524 discloses a method of imparting a large working strain to a material to which a predetermined alloy element has been added for an ultrafine wire. A method for increasing the tension is disclosed. This method combines the addition of a specific alloying element and the heat treatment conditions to achieve a finer and more ordered pearlite structure to produce a high-strength steel wire with high toughness, and further increases the cold-drawing strain to achieve the final It is to increase the strength.
【0003】[0003]
【発明が解決しようとする課題】一般に鋼線の最終強度
は、加工歪に大きく依存し、加工歪が大きいほど強度も
高くなる。その反面、強度が高くなるほど延性が劣化す
る傾向にある。すなわち加工歪を付与するための伸線時
には、鋼線中心部がダイス内で高い引張応力を受けるた
めにマイクロクラックが生成し易く、この鋼線中心部の
マイクロクラックが断線に至らないまでも鋼線の延性や
疲労特性の低下の原因となる。また、鋼線中心部にC、
Mn、P等の偏析が存在すると、上述の現象をさらに助長
して、延性が低下し、破断に至る場合もしばしば見受け
られる。これらの現象は、高加工度になればなるほど顕
在化するものと考えられる。In general, the final strength of a steel wire largely depends on the processing strain, and the higher the processing strain, the higher the strength. On the other hand, as the strength increases, the ductility tends to deteriorate. That is, at the time of wire drawing for imparting processing strain, microcracks tend to be generated because the central portion of the steel wire receives high tensile stress in the die, and even if the microcracks at the central portion of the steel wire do not lead to disconnection, the steel wire may be broken. This causes the wire ductility and fatigue characteristics to decrease. In addition, C,
The presence of segregation of Mn, P, and the like further promotes the above-mentioned phenomenon, resulting in a decrease in ductility and breakage. It is considered that these phenomena become more apparent as the degree of processing increases.
【0004】したがって、熱処理後の強度、延性を調整
し、高加工度を付与して高い強度の鋼線を得るには、鋼
線中心部のミクロ組織の制御、換言すれば素材である鋼
材中心部のミクロ組織の制御が極めて重要である。この
発明は、線材中心部のミクロ組織と伸線加工性の関係に
かかる研究開発の成果により、上述の問題を解決して伸
線加工後に高い強度と延性とを保持することのできる、
加工性の良好な高炭素鋼線材を提案することを目的とす
る。[0004] Therefore, in order to obtain a high strength steel wire by adjusting the strength and ductility after heat treatment and imparting a high workability, it is necessary to control the microstructure at the center of the steel wire, in other words, to control the steel material as the material. Control of the microstructure of the part is very important. The present invention can solve the above-described problems and maintain high strength and ductility after drawing by solving the results of research and development on the relationship between the microstructure of the wire center and the drawability.
An object is to propose a high-carbon steel wire rod with good workability.
【0005】[0005]
【課題を解決するための手段】この発明は、C含有量が
0.75wt%以上の高炭素鋼線材であって、該線材の軸心に
直交する断面の中心部にフェライト面積率が0.5 〜10%
である領域をそなえ、かつこの領域が、全断面積の1〜
5%であることを特徴とする加工性が良好な高炭素鋼線
材である。According to the present invention, the C content is reduced.
A 0.75 wt% or more of the high carbon steel wire rod, the axis of該線material
Ferrite area ratio of 0.5 to 10% at the center of cross section orthogonal
And this region is 1 to 1 of the total cross-sectional area.
It is a high-carbon steel wire with good workability characterized by being 5%.
【0006】[0006]
【作用】まず、この発明における成分組成について説明
する。Cは、最終伸線加工後に所望の強度を得るために
重要な成分であり、その効果を十分に発揮させるために
は、0.75wt%以上の含有を必要とする。その含有量の上
限は特に限定するものではないが、含有量を高めるほど
高強度鋼線を得ることができる。しかし過剰に高める
と、網状セメンタイト等の影響から鋼線がぜい化してく
るので、1.0 %程度が上限となる。First, the component composition of the present invention will be described. C is an important component for obtaining a desired strength after the final wire drawing, and in order to exert its effect sufficiently, the content of 0.75 wt% or more is required. The upper limit of the content is not particularly limited, but the higher the content, the higher the strength of the steel wire. However, if it is excessively increased, the steel wire becomes brittle due to the influence of reticulated cementite and the like, so the upper limit is about 1.0%.
【0007】また合金成分の含有が必要な場合には、S
i、Mn、Cr、V等を適宜含有させてもよい。その場合に
含有量は、Si:0.1 〜1.5 wt%程度、Mn:0.3 〜1.5 wt
%程度、Cr:0.1 〜0.5 wt%程度、V:0.05〜0.30wt%
程度である。さらに延性劣化を防止する観点から、不純
物成分のP、Sは、それぞれ0.010wt%以下に抑制する
ことが好ましく、またOは、介在物量の低減を考慮する
と、30 ppm以下が望ましい。[0007] When the alloy component needs to be contained,
i, Mn, Cr, V and the like may be appropriately contained. In this case, the content is as follows: Si: about 0.1 to 1.5 wt%, Mn: 0.3 to 1.5 wt%
%, Cr: 0.1 to 0.5 wt%, V: 0.05 to 0.30 wt%
It is about. Further, from the viewpoint of preventing ductility deterioration, P and S of the impurity components are preferably suppressed to 0.010 wt% or less, respectively, and O is desirably 30 ppm or less in consideration of a reduction in the amount of inclusions.
【0008】次に線材中心部のミクロ組織につき、この
発明の基礎となった実験結果とともに説明する。C含有
量が0.75wt%以上の場合には、熱間圧延後又は伸線途中
のパテンティング後のミクロ組織は、Fe−C系状態図か
らみてもそのほとんどがパーライト組織からなり、フェ
ライト組織はほとんど析出していない。しかもC、Mn等
は中心部で偏析し、例えばCの場合、1.1 〜1.3 倍の濃
度になるから、中心部はマトリックスに比べてより微細
なパーライト組織からなる。一方、C含有量が0.75wt%
未満の場合には、フェライトとパーライトとの混合組織
からなり、C含有量が低くなるほどフェライト分率が増
加し、パーライト分率が減少する。Next, the microstructure at the center of the wire rod will be described together with the experimental results on which the present invention is based. When the C content is 0.75 wt% or more, most of the microstructure after hot rolling or patenting during wire drawing is a pearlite structure even from the Fe-C phase diagram, and the ferrite structure is Almost no precipitation. In addition, C, Mn and the like segregate at the center, and for example, in the case of C, the concentration becomes 1.1 to 1.3 times, so that the center has a finer pearlite structure than the matrix. On the other hand, C content is 0.75wt%
When the content is less than the above, it is composed of a mixed structure of ferrite and pearlite, and the lower the C content, the higher the ferrite fraction and the lower the pearlite fraction.
【0009】このようにC含有量によってミクロ組織が
変化することは従来から明らかであるが、このようなミ
クロ組織の変化に伴う伸線加工性の影響について詳細に
検討してみた。供試鋼にはフェライト割合を種々に異な
らせるためにC量を0.5 〜0.97wt%の範囲でに変化さ
せ、Mn量は0.55wt%と一定にした真空溶製の100 kg鋼塊
としたものを用い、これらの鋼を熱間圧延により5.5 mm
φの線材に圧延した。圧延条件はいずれも同一であり、
冷却の際には、ステルモア調整冷却を行った。得られた
各種線材を用いて、ダイス半角を通常よりも大きくした
アプローチ角20°のダイスを用いる加速伸線を施した。Although it is clear that the microstructure changes depending on the C content as described above, the effect of the wire drawing workability accompanying such a change in the microstructure was examined in detail. In the test steel, the amount of C was changed in the range of 0.5 to 0.97 wt% in order to make the ratio of ferrite various, and the amount of Mn was made into a 100 kg ingot made by vacuum melting with a constant amount of 0.55 wt%. 5.5 mm by hot rolling
It was rolled to φ wire. The rolling conditions are all the same,
At the time of cooling, steermore adjusted cooling was performed. Using the obtained various wires, accelerated drawing was performed using a die having an approach angle of 20 ° with a half angle of the die larger than usual.
【0010】その際の伸線限界加工度(断線発生歪み)
により加工性を評価し、フェライト面積率との関係で図
1に示す。ここにフェライト面積率は、5.5 mmφの断面
内で任意に10視野ずつSEM観察し、その後、画像解析
装置で測定したものある。図1から明らかなように、フ
ェライト面積率が高いほど加工限界が高くなる傾向を示
し、0.7 %程度のフェライト面積率でもフェライト面積
率が0%の試料に比べて加工限界が大幅に高くなり、フ
ェライト面積率の増加に連れて加工限界は漸増してい
る。この理由については、フェライトはパーライトに比
べ変形能が高いため、ごく少量のフェライトが存在して
も絞りが改善されることによると考えられる。[0010] At that time, the limit of wire drawing (disconnection generation strain)
The workability was evaluated by the following formula, and the relationship with the ferrite area ratio is shown in FIG. Here, the ferrite area ratio is obtained by arbitrarily observing 10 fields of view in a cross section of 5.5 mmφ by SEM, and then measuring with an image analyzer. As is evident from FIG. 1, the processing limit tends to increase as the ferrite area ratio increases. Even at a ferrite area ratio of about 0.7%, the processing limit greatly increases as compared with a sample having a ferrite area ratio of 0%. The processing limit gradually increases as the ferrite area ratio increases. It is considered that the reason for this is that, since ferrite has higher deformability than pearlite, even if a very small amount of ferrite is present, the drawing is improved.
【0011】ところで鋼材中心部にこのようなフェライ
ト組織が存在していれば、線材全体として良好な加工性
が得られる。したがって、線材の軸心に直交する断面の
中心部(以下、単に線材中心部という)におけるフェラ
イト面積率の下限は、良好な加工性が得られる最低の量
として0.5 %とした。一方、フェライト量が増えると、
強度が低下してくるので、フェライト面積率の上限は10
%とした。By the way, if such a ferrite structure exists in the central part of the steel material, good workability can be obtained as a whole wire. Therefore, the lower limit of the ferrite area ratio at the center of the cross section orthogonal to the axis of the wire (hereinafter, simply referred to as the center of the wire) is set to 0.5% as the minimum amount for obtaining good workability. On the other hand, when the amount of ferrite increases,
Since the strength decreases, the upper limit of the ferrite area ratio is 10
%.
【0012】この強度に関しては、線材中心部のフェラ
イト面積率とそのフェライト面積率を有する領域が全体
に占める割合(占有率)の両者が影響すると考えられる
ので、次に上記した所定のフェライト面積率を有する領
域の占有率(以下、単にフェライト占有率という)の影
響を調べる実験を以下のとおり行った。素地のC量が0.
85wt%の150 mm角材を用意し、この角材の中心部に、フ
ェライト面積率を7〜8%にすべくC量を調整した丸棒
を、角材の全断面積に占める面積を種々に変化させて埋
め込み、5.5 mmφにまで熱間圧延することで5.5 mmφ線
材の中心部にフェライト占有率が種々に異なる試料を多
数準備した。なお圧延ままでは長手方向あるいは線径の
影響が強度に現れるので、線材の径を5.5 mmφから5.0
mmφにまで伸線して線径を揃え、その後、920 ℃、10分
のオーステナイト化後、空冷して引張試験を行った。そ
の結果を図2に示す。[0012] For this intensity, it is considered that both the proportion occupied in the entire area having the area ratio of ferrite and its ferrite area ratio of the wire center (occupancy) affects, then predetermined ferrite area ratio described above Territory with
An experiment for examining the effect of the area occupancy (hereinafter, simply referred to as ferrite occupancy) was performed as follows. The amount of C in the substrate is 0.
Prepare a 150mm square bar of 85wt%, and in the center of this square bar, adjust the amount of C to adjust the ferrite area ratio to 7 ~ 8%, and change the area occupying the entire cross-sectional area of the square bar in various ways. By hot-rolling to 5.5 mmφ, many samples with various ferrite occupancy ratios are placed in the center of the 5.5 mmφ wire.
I prepared a few . In addition, since the effect of the longitudinal direction or the wire diameter appears on the strength as it is rolled, the diameter of the wire rod is increased from 5.5 mmφ to 5.0 mm.
The wire was drawn to mmφ to make the wire diameter uniform, then austenitized at 920 ° C. for 10 minutes, and air-cooled to conduct a tensile test. The result is shown in FIG.
【0013】図2に示したとおり、フェライト占有率が
0〜5%の範囲では強度の変化はほとんどなく、5%を
超えると強度が低下してくる。したがって、加工限界も
考慮して、フェライト占有率の下限は1%とし、上限は
強度低下のない5%とした。As shown in FIG. 2, when the ferrite occupancy is in the range of 0 to 5%, the strength hardly changes, and when the ferrite occupancy exceeds 5%, the strength decreases. Therefore, in consideration of the processing limit, the lower limit of the ferrite occupancy is set to 1%, and the upper limit is set to 5% at which the strength does not decrease.
【0014】この発明の高炭素鋼線材を製造するには、
一例として、好適成分組成になる溶鋼を連続鋳造するに
際し、鋳片の内部溶鋼が凝固を完了するクレータエンド
近傍にて鍛圧加工を施して、鋼材中心部のC濃度を調整
する方法が挙げられる。なおこの発明の鋼材の製造方法
は、上記の例に限定されるものではない。要するに、鋼
材中心部にフェライト組織を所定割合で有する領域が得
られれば、どのような製造方法でもよい。To produce the high carbon steel wire of the present invention,
As an example, there is a method in which, when continuously casting molten steel having a suitable component composition, forging is performed in the vicinity of a crater end where internal molten steel of a slab completes solidification to adjust the C concentration in the central portion of the steel material. The method for producing a steel material according to the present invention is not limited to the above example. In short, any manufacturing method may be used as long as a region having a ferrite structure at a predetermined ratio in the center of the steel material can be obtained.
【0015】[0015]
【実施例】表1に示す化学成分組成になる高炭素鋼の溶
鋼を調製した。EXAMPLE A molten steel of high carbon steel having the chemical composition shown in Table 1 was prepared.
【0016】[0016]
【表1】 [Table 1]
【0017】この溶鋼を、連続鋳造にて400 mm×560 mm
角の鋳片とし、その際、凝固末期に金型により大圧下
(最大圧下量150 mm)し、鋳片中心部の濃化溶鋼を未凝
固側(反鋳込み方向側)に排出して凝固完了点を形成さ
せた。なお鋳込み速度の調整による圧下時の未凝固厚さ
制御及び圧下量の制御により、鋳片中心部の組成と領域
とを種々に調整した。これらの鋳片を、熱間圧延して15
0 mm角のビレットを経て10mmφの線材とし、いずれも92
0 ℃で巻き取り、その後はステルモア冷却を施した。か
くして得られた10mmφの線材から、連続20本ずつのサン
プルについて機械的性質を調べ、その結果を表2に示
す。This molten steel is subjected to continuous casting by 400 mm × 560 mm.
At the end of solidification, a large pressure reduction (maximum reduction amount of 150 mm) is performed by a die at the end of solidification, and the concentrated molten steel at the center of the slab is discharged to the non-solidified side (anti-casting direction side) to complete solidification. A point was formed. The composition and region of the central portion of the slab were variously adjusted by controlling the unsolidified thickness and the amount of reduction during rolling by adjusting the casting speed. These slabs are hot-rolled to 15
After passing through a 0 mm square billet, it was turned into a wire of 10 mmφ.
The film was wound at 0 ° C., and then subjected to stealmore cooling. From the 10 mmφ wire thus obtained, the mechanical properties of 20 consecutive samples were examined, and the results are shown in Table 2.
【0018】[0018]
【表2】 [Table 2]
【0019】表2中、記号A,B及びCは、本発明鋼で
ある。またDは、従来どおりの鋳込み条件(圧下は加え
ていない)のため,フェライト面積率、占有率とも皆無
で、逆に正偏析を生じているもの、Eはフェライト面積
率が10%を超えたもの、Fは、フェライト占有率が5%
を超えたもの、Gは、フェライト面積率及び占有率のい
ずれもこの発明の上限を外れたものである。In Table 2, symbols A, B and C are steels of the present invention. D is the same as the conventional casting condition (no reduction was applied), so there was no ferrite area ratio and occupancy, and conversely, positive segregation occurred. E: Ferrite area ratio exceeded 10% , F is 5% ferrite occupancy
G exceeds the upper limit of the present invention in both of the ferrite area ratio and the occupancy.
【0020】表2から明らかなように、本発明鋼は、強
度が120 kgf/mm2 以上で、しかも絞りも40%という高い
値を示している。これに対して比較鋼Dは、強度レベル
は本発明鋼と変わらないものの、絞りが33%と低い。こ
れは、中心部に正偏析があり、網状のセメンタイトを析
出しているためである。またE,F及びGは、絞り値は
高いもののいずれも強度が本発明鋼に比べ4〜5kgf/mm
2 低い。As is clear from Table 2, the steel of the present invention has a strength of 120 kgf / mm 2 or more and a high drawing value of 40%. On the other hand, Comparative Steel D has the same strength level as the steel of the present invention, but has a low drawing of 33%. This is because there is positive segregation in the center, and network cementite is precipitated. E, F and G have a higher aperture value, but all have a strength of 4 to 5 kgf / mm compared with the steel of the present invention.
2 low.
【0021】次に、表2に示した本発明鋼A〜C、比較
鋼D〜Gの圧延ままの鋼材を、酸洗、前処理後8パスで
冷間伸線し、その後ブルーイング処理した後、撚り線工
程を施して、実験的にJIS G3536 に規定されるPC鋼よ
り線(SWPR 7B ,7本より12.7mm)を製造した。表3に
伸線後の4.2 mmφの鋼線の機械的性質及びそのリラクゼ
ーション値を示す。なおリラクゼーション試験は、常温
にて、0.2 %永久伸びに対する荷重の最小値の80%に相
当する荷重をかけ、その後10時間つかみ間隔をそのまま
保持して、荷重の減少を測定したものであり、3%以下
を規格内とする。Next, the as-rolled steel materials of the present invention steels A to C and comparative steels D to G shown in Table 2 were pickled, pre-treated, cold-drawn in 8 passes, and then subjected to blueing treatment. Thereafter, a stranded wire process was performed to experimentally produce a PC steel stranded wire (SWPR 7B, 12.7 mm from seven wires) specified in JIS G3536. Table 3 shows the mechanical properties and relaxation values of the 4.2 mmφ steel wire after drawing. In the relaxation test, a load corresponding to 80% of the minimum value of the load with respect to the 0.2% permanent elongation was applied at room temperature, and thereafter, the reduction of the load was measured by holding the grip for 10 hours. % Or less shall be within the standard.
【0022】[0022]
【表3】 [Table 3]
【0023】表3から明らかなように、本発明鋼を用い
たA,B及びCは、強度、延性は十分に高くしかもリラ
クゼーション値も十分に低く、優れた特性を示してい
る。一方、比較鋼を用いたDは、強度は十分なものの延
性がやはり低く、網状セメンタイトのため伸線途中にカ
ッピー断線を1回生じた。また比較鋼を用いたE,F及
びGは、線材の特性を受け継ぎ、延性は良いものの強度
が低い。さらにリラクゼーション値は規格内ではある
が、高めの値を示し、全長にわたって安定した品質を得
るうえでは懸念が残る。As is evident from Table 3, A, B and C using the steel of the present invention have sufficiently high strength and ductility, and also have sufficiently low relaxation values, showing excellent properties. On the other hand, D using the comparative steel had sufficient strength but also low ductility, and suffered one cutpy break during wire drawing due to network cementite. E, F and G using the comparative steels inherit the properties of the wire and have good ductility but low strength. Furthermore, although the relaxation value is within the standard, it shows a higher value, and concerns remain in obtaining stable quality over the entire length.
【0024】以上のことから、本発明鋼では伸線前のパ
テンティングを省略しても規格値以上の優れた性質を得
ることができるが、比較鋼では伸線前のパテンティング
を行って、網状セメンタイトの析出防止と強度アップを
図る必要がある。なお本発明鋼にパテンティング処理を
行えば、従来鋼以上の高強度、高延性が得られることは
自明である。From the above, the steel of the present invention can obtain excellent properties not less than the specified value even if the patenting before drawing is omitted, but the comparative steel performs patenting before drawing, It is necessary to prevent precipitation of reticulated cementite and increase strength. It is obvious that if the steel of the present invention is subjected to a patenting treatment, higher strength and higher ductility than conventional steels can be obtained.
【0025】[0025]
【発明の効果】この発明の線材は、高炭素鋼線材の中心
部のミクロ組織を制御することにより、圧延ままで強度
を保持し、かつ延性を高めることができることから、高
い伸線加工性を有する。また伸線前あるいは用途によっ
ては伸線途中の熱処理を省略することも可能になり、製
造コストを大幅に削減できるという効果もある。According to the wire rod of the present invention, by controlling the microstructure of the central part of the high carbon steel wire rod, the strength can be maintained as it is rolled and the ductility can be increased. Have. In addition, it is also possible to omit the heat treatment before drawing or during the drawing depending on the use, and there is an effect that the manufacturing cost can be greatly reduced.
【図1】図1は伸線限界加工度に及ぼすフェライト面積
率の影響を示すグラフである。FIG. 1 is a graph showing an influence of a ferrite area ratio on a limit of wire drawing workability.
【図2】図2は、引張強度に及ぼすフェライト占有率の
影響を示すグラフである。FIG. 2 is a graph showing the effect of ferrite occupancy on tensile strength.
Claims (1)
であって、該線材の軸心に直交する断面の中心部にフェ
ライト面積率が0.5 〜10%である領域をそなえ、かつこ
の領域が、全断面積の1〜5%であることを特徴とする
加工性が良好な高炭素鋼線材。1. A high carbon steel wire having a C content of 0.75% by weight or more, comprising a region having a ferrite area ratio of 0.5 to 10% at a center portion of a cross section orthogonal to an axis of the wire, and This region is 1 to 5% of the total cross-sectional area, and a high-carbon steel wire with good workability,
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17984992A JP3292504B2 (en) | 1992-07-07 | 1992-07-07 | High carbon steel wire with good workability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17984992A JP3292504B2 (en) | 1992-07-07 | 1992-07-07 | High carbon steel wire with good workability |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0625796A JPH0625796A (en) | 1994-02-01 |
JP3292504B2 true JP3292504B2 (en) | 2002-06-17 |
Family
ID=16072988
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17984992A Expired - Fee Related JP3292504B2 (en) | 1992-07-07 | 1992-07-07 | High carbon steel wire with good workability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3292504B2 (en) |
-
1992
- 1992-07-07 JP JP17984992A patent/JP3292504B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0625796A (en) | 1994-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3954338B2 (en) | High-strength steel wire excellent in strain aging embrittlement resistance and longitudinal crack resistance and method for producing the same | |
KR100194431B1 (en) | Excellent high strength steel wire and high strength steel wire with fatigue characteristics | |
JP3997867B2 (en) | Steel wire, method for producing the same, and method for producing steel wire using the steel wire | |
EP1277846B1 (en) | High-carbon steel wire rod with superior drawability and method for production thereof | |
JP4638602B2 (en) | High fatigue strength wire for steel wire, steel wire and manufacturing method thereof | |
JP2609387B2 (en) | High-strength high-toughness ultrafine steel wire wire, high-strength high-toughness ultrafine steel wire, twisted product using the ultrafine steel wire, and method for producing the ultrafine steel wire | |
JP4646850B2 (en) | High carbon steel wire rod with excellent resistance to breakage of copper | |
JP3601388B2 (en) | Method of manufacturing steel wire and steel for steel wire | |
JP5945196B2 (en) | High strength steel wire | |
JP3283332B2 (en) | High-strength ultrafine steel wire with excellent stranded wire workability and method for producing the same | |
JP3237305B2 (en) | High carbon steel wire for high strength and high ductility steel wire | |
JP3277878B2 (en) | Wire drawing reinforced high-strength steel wire and method of manufacturing the same | |
JPH06271937A (en) | Production of high strength and high toughness hyper-eutectoid steel wire | |
JP3292504B2 (en) | High carbon steel wire with good workability | |
JP3984393B2 (en) | High-strength steel wire without delamination and method for producing the same | |
JPH07179994A (en) | Hyper-eutectoid steel wire having high strength and high toughness and ductility and its production | |
JP4392093B2 (en) | High-strength direct patenting wire and method for producing the same | |
JPH06145895A (en) | High sterength and high toughness steel wire rod, extra fine steel wire using the same steel wire rod, production therefor and straded steel wire | |
JP3061918B2 (en) | Method of manufacturing steel cord with excellent fatigue properties | |
JP6501036B2 (en) | Steel wire | |
JP3428502B2 (en) | Steel wire, extra fine steel wire and twisted steel wire | |
JP2000063987A (en) | High carbon steel wire rod excellent in wire drawability | |
JP2927823B2 (en) | Method of manufacturing hot-rolled material for high carbon steel wire rod with high workability | |
JP3139560B2 (en) | Manufacturing method of high strength and high toughness ultrafine wire | |
KR100230523B1 (en) | High strength steel wire with excellent in fatigue |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080329 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090329 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100329 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100329 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110329 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120329 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |