JP3286970B2 - Radio source visualization device - Google Patents

Radio source visualization device

Info

Publication number
JP3286970B2
JP3286970B2 JP24676392A JP24676392A JP3286970B2 JP 3286970 B2 JP3286970 B2 JP 3286970B2 JP 24676392 A JP24676392 A JP 24676392A JP 24676392 A JP24676392 A JP 24676392A JP 3286970 B2 JP3286970 B2 JP 3286970B2
Authority
JP
Japan
Prior art keywords
radio
output
radio wave
antenna
receiving antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24676392A
Other languages
Japanese (ja)
Other versions
JPH0694763A (en
Inventor
均 北吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Priority to JP24676392A priority Critical patent/JP3286970B2/en
Publication of JPH0694763A publication Critical patent/JPH0694763A/en
Application granted granted Critical
Publication of JP3286970B2 publication Critical patent/JP3286970B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、例えばEMC(エレ
クトロ マグネティック コンパティビリティ)の測定
や、電波センシング、即ち反射、屈折、吸収などのパタ
ーン解析に利用され、電波源の位置の可視化を行う電波
源可視化装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used for, for example, measurement of EMC (Electro Magnetic Compatibility) and radio wave sensing, that is, pattern analysis of reflection, refraction, absorption, etc., for visualizing the position of a radio wave source. The present invention relates to a source visualization device.

【0002】[0002]

【従来の技術】図5に従来の電波源可視化装置を示す。
密着させて測定することができない電波発生源を含む被
測定体11に対し、これより距離zだけ離れ、その被測
定体11と平行に、サーチコイル12により線状走査、
あるいは二次元走査を手動または自動的に行い、そのサ
ーチコイル12の出力をデジタル信号にAD変換器15
により変換してパーソナルコンピュータよりなる制御表
示器14に取り込んで受信電波強度の分布図を作ってい
た。
2. Description of the Related Art FIG. 5 shows a conventional radio source visualization apparatus.
The object to be measured 11 including the radio wave generation source that cannot be measured in close contact with the object to be measured 11 is separated by a distance z from the object to be measured 11 in parallel with the object to be measured 11 by the search coil 12 for linear scanning.
Alternatively, two-dimensional scanning is performed manually or automatically, and the output of the search coil 12 is converted into a digital signal by the AD converter 15.
To obtain the distribution map of the received radio wave intensity by taking it into the control display 14 composed of a personal computer.

【0003】[0003]

【発明が解決しようとする課題】つまり従来においては
電波強度計やサーチコイルとスペクトラムアナライザの
組み合わせにより前記観測面を走査して受信電波強度分
布を得ている。しかし電波源から電界強度計に入射する
電波は直接波のみならず天井や床などからの反射波があ
り特に反射波の存在を知ることができない。
That is, in the prior art, the received radio wave intensity distribution is obtained by scanning the observation surface by using a radio wave intensity meter or a combination of a search coil and a spectrum analyzer. However, the radio wave incident on the electric field strength meter from the radio wave source includes not only a direct wave but also a reflected wave from a ceiling or a floor, and the presence of the reflected wave cannot be known.

【0004】また複数の電波源が存在する場合、その複
数の電波間で干渉が生じるため電波源の間隔lが電波源
の電波の波長λより大きくても、被測定体11、つまり
電波源と観測面13との間隔zが電波波長λより大きい
場合は電波源の像を得ることができない。さらに複数の
電波波面が合成されるため電波源の間隔lが電波波長λ
より小さい場合や距離zが電波波長より小さい場合にお
いても電波源の間隔lが距離zより小さい場合は電波源
の像の分離ができない。
When a plurality of radio sources exist, interference occurs between the plurality of radio waves. Therefore, even if the interval l between the radio sources is larger than the wavelength λ of the radio wave of the radio source, the DUT 11, ie, the radio source, When the distance z from the observation surface 13 is larger than the radio wave wavelength λ, an image of the radio wave source cannot be obtained. Further, since a plurality of radio wave fronts are synthesized, the distance l between the radio wave sources is
Even when the distance is smaller or the distance z is smaller than the wavelength of the radio wave, the separation of the image of the radio source cannot be performed if the interval l between the radio sources is smaller than the distance z.

【0005】また電波強度計を走査中に電波源より発生
する電波強度が変動すると、得られる電波像が歪んでし
まうなどの欠点があった。
Further, when the intensity of the radio wave generated from the radio wave source fluctuates while scanning the radio wave intensity meter, there is a disadvantage that the obtained radio wave image is distorted.

【0006】[0006]

【課題を解決するための手段】請求項1の発明によれ
ば、観測面近くに固定アンテナが設けられ、また観測面
を垂直偏波受信アンテナと水平偏波受信アンテナとを組
みにして移動させられ、その垂直偏波受信アンテナ及び
水平偏波受信アンテナの固定アンテナに対する各出力比
が取られる。これらの比について各受信点についての空
間伝搬関数との畳込み積分を行って受動ホログラム像の
再生演算を行う。これにより観測像から電波源像つまり
電波源分布が得られる。
According to the first aspect of the present invention, a fixed antenna is provided near an observation surface, and the observation surface is moved by combining a vertically polarized wave receiving antenna and a horizontally polarized wave receiving antenna. Then, respective output ratios of the vertically polarized wave receiving antenna and the horizontally polarized wave receiving antenna to the fixed antenna are obtained. Reconstruction of a passive hologram image is performed by performing convolution integration of these ratios with the spatial propagation function at each reception point. Thus, a radio source image, that is, a radio source distribution is obtained from the observation image.

【0007】請求項2の発明によれば、垂直偏波受信ア
ンテナ及び水平偏波受信アンテナを組みとして観測面が
走査され、その両アンテナの各測定受信位置における出
力振幅の比のアークタンジェントを求めて合成電波入射
角を演算し、この合成電波入射角のラプラシアン、つま
り空間二階微分をおこない、これを像として電波源分布
を得る。
According to the second aspect of the present invention, the observation surface is scanned with the vertically polarized wave receiving antenna and the horizontally polarized wave receiving antenna as a set, and the arc tangent of the ratio of the output amplitude at each measurement receiving position of both antennas is obtained. The Laplacian of the synthesized radio wave incident angle, that is, the second-order spatial differentiation, is performed, and the radio wave source distribution is obtained by using this as an image.

【0008】さらに請求項1または2の発明において各
測定点における垂直偏波受信アンテナ、水平偏波受信ア
ンテナの各出力の位相角を演算し、その位相角の差の状
況分布を求め、これにより直接波と反射波とのそんざい
割合の分布を求める。また請求項1または2の発明にお
いて、さらに受動ホログラム像を周波数を変えて二つ作
り、その二つの像の同一点(位置)における位相差を垂
直偏波成分、水平偏波成分について求め、これにより反
射波の直接波に対する遅れ時間が求まる。
Further, according to the first or second aspect of the present invention, the phase angle of each output of the vertical polarization receiving antenna and the horizontal polarization receiving antenna at each measurement point is calculated, and the situation distribution of the phase angle difference is obtained. The distribution of the ratio of the direct wave and the reflected wave is determined. Further, according to the first or second aspect of the present invention, two passive hologram images are formed by changing the frequency, and the phase difference at the same point (position) of the two images is obtained for the vertical polarization component and the horizontal polarization component. Thus, the delay time of the reflected wave with respect to the direct wave is obtained.

【0009】[0009]

【実施例】図1に請求項1の発明の実施例を示す。観測
面13の近くに固定アンテナ21が設けられる。この観
測面13の各点を移動走査することができるように水平
偏波受信アンテナ22、垂直偏波受信アンテナ23の組
が設けられる。つまりアンテナ22,23は移動アンテ
ナであり、この移動アンテナ22,23により観測面1
3を面走させて、その各点における受信電界強度を測定
する。これらアンテナ21,22,23の受信出力はそ
れぞれ帯域通過フィルタ24,25,26に通されて所
望帯域のみ取り出され、さらにそれぞれ増幅器27,2
8,29で増幅され、その増幅出力は局部発振器30か
らの信号により混合器31,32,33でそれぞれ周波
数変換され、それらの信号出力は低域通過ろ波器34,
35,36に通され、そのろ波出力は離散的フーリエ変
換器37,38,39によりそれぞれ離散的フーリエ変
換され、そのフーリエ変換された結果SR ,SH ,SV
がそれぞれ制御演算表示部41へ供給される。
FIG. 1 shows an embodiment of the present invention. A fixed antenna 21 is provided near the observation surface 13. A pair of a horizontally polarized wave receiving antenna 22 and a vertically polarized wave receiving antenna 23 is provided so that each point on the observation surface 13 can be moved and scanned. That is, the antennas 22 and 23 are mobile antennas, and the observation surface 1 is
3 is scanned, and the reception electric field strength at each point is measured. The reception outputs of these antennas 21, 22, 23 are respectively passed through band-pass filters 24, 25, 26 to extract only the desired band, and further amplifiers 27, 2 respectively.
The amplified output is converted by a signal from a local oscillator 30 in mixers 31, 32, and 33, respectively.
The filtered outputs are passed through discrete Fourier transformers 37, 38, and 39, respectively, and are subjected to discrete Fourier transforms. The resulting Fourier transforms S R , S H , and S V
Are supplied to the control calculation display section 41, respectively.

【0010】制御演算表示部41は移動アンテナ22,
23をそれぞれ同時にその姿勢を保持した状態で観測面
13の各点を順次移動させて観測面13を走査し、その
各点においてそれぞれ得られた信号、つまり観測面13
の座標位置(x,y)における離散的フーリエ変換の結
果SR (x,y),SH (x,y),SV (x,y)に
ついて固定アンテナ出力フーリエ変換SR (x,y)に
対する水平偏波受信アンテナ22の出力フーリエ変換S
H (x,y)の比hH (x,y)と垂直偏波受信アンテ
ナ23の出力フーリエ変換SV (x,y)の比h
V (x,y)を演算する。
The control calculation display section 41 includes a mobile antenna 22,
23 are simultaneously moved and each point of the observation surface 13 is sequentially moved to scan the observation surface 13, and signals obtained at each point, that is, the observation surface 13
Of the discrete Fourier transform S R (x, y), S H (x, y), and S V (x, y) at the coordinate position (x, y) of the fixed antenna output S R (x, y) ), The output Fourier transform S of the horizontally polarized receiving antenna 22
H (x, y) of the ratio h H (x, y) and the output Fourier transform S V (x, y) of the vertically polarized receive antenna 23 of the ratio h
Calculate V (x, y).

【0011】 hV (x,y)=SV (x,y)/SR (x,y) hH (x,y)=SH (x,y)/SR (x,y) …(1) この受信出力比の測定面13における状態は受動ホログ
ラム、つまり固定アンテナの出力に対する空間的な位相
分布、言い替えれば固定アンテナ出力と移動アンテナ出
力とを干渉させた相関スペクトルを表す。
H V (x, y) = S V (x, y) / S R (x, y) h H (x, y) = S H (x, y) / S R (x, y) (1) The state of the reception output ratio on the measurement surface 13 represents a passive hologram, that is, a spatial phase distribution with respect to the output of the fixed antenna, in other words, a correlation spectrum in which the output of the fixed antenna and the output of the moving antenna interfere with each other.

【0012】また各点におけるこの固定アンテナ出力に
対する比hH (x,y)の位相角とhV (x,y)の位
相角の差θH-V (x,y)をそれぞれ各測定点(x,
y)について演算する。 θH-V (x,y)=∠hH (x,y)−∠hV (x,y) …(2) この位相角度の差θH-V (x,y)は観測面13におけ
る直接波と反射波の存在の割合の分布を示すことにな
る。つまり反射波の有無を知ることができ、またどこの
部分が反射波が多いかを知ることができる。
The difference θ HV (x, y) between the phase angle of the ratio h H (x, y) and the phase angle of h V (x, y) with respect to the fixed antenna output at each point is determined at each measurement point (x ,
y) is calculated. θ HV (x, y) = ∠h H (x, y) −∠h V (x, y) (2) The phase angle difference θ HV (x, y) is a direct wave and a reflection on the observation surface 13. It will show the distribution of the proportion of the presence of waves. That is, it is possible to know the presence or absence of the reflected wave, and it is possible to know which part has a large amount of the reflected wave.

【0013】さらに各点(x,y)の固定アンテナ出力
に対する移動アンテナ出力の振幅の比のアークタンジェ
ントを求めることによって合成電波の入射角θ
H/V (x,y)の状態を得る。 θH/V (x,y)=tan-1(‖hH (x,y)‖/‖hV (x,y)‖) …(3) また各点における固定アンテナに対する出力比の強度M
(x,y)を求める。
Further, by calculating an arc tangent of a ratio of the amplitude of the output of the mobile antenna to the output of the fixed antenna at each point (x, y), the incident angle θ of the synthesized radio wave is obtained.
Get the state of H / V (x, y). θ H / V (x, y) = tan −1 ({ h H (x, y)} / {h V (x, y)}) (3) Also, the intensity M of the output ratio with respect to the fixed antenna at each point.
(X, y) is obtained.

【0014】 M(x,y)=√(‖hH (x,y)‖2 +‖hV (x,y)‖2 ) …(4) これにより各点(x,y)における電波強度が分かり、
観測面13における電波強度分布を知ることができる。
さらに電波源像を求めるため各点の合成電波入射角θ
H/V (x,y)のラプラシアン、つまり空間二階微分Δ
θH/V (x,y)を求める。この場合(4)式で得た電
波強度分布でその各ラプラシアン値に重み付けを行い、
受信電界強度が小さいところでの電波源像に対するθ
H/V (x,y)のラプラシアン値を小さくすることによ
り雑音の影響を小さくすることが望ましい。
M (x, y) = {({ h H (x, y)} 2 + {h V (x, y)} 2 ) (4) Thus, the radio field intensity at each point (x, y) Understand
The radio wave intensity distribution on the observation surface 13 can be known.
Further, the incident angle θ of the synthesized radio wave at each point to obtain the radio wave source image
Laplacian of H / V (x, y), that is, spatial second derivative Δ
Find θ H / V (x, y). In this case, each Laplacian value is weighted by the radio wave intensity distribution obtained by the equation (4),
Θ with respect to the radio source image where the received electric field strength is small
It is desirable to reduce the influence of noise by reducing the Laplacian value of H / V (x, y).

【0015】さらに電波源間隔lが電波波長λよりも大
きい場合や電波源と観測面との間の距離zが電波波長λ
より大きい場合、電波干渉像となるため固定アンテナ出
力に対する移動アンテナ出力の比する比hV (x,y)
及びhH (x,y)に対してホログラム再生演算を行い
V (x,y)、IH (x,y)を得る。 I(X′,Y′)=∬〔h(x,y)×{exp(−j2πR/λ)}/R〕 dxdy R=√{z2 +(x−x′)2 +(y−y′)2 } このようにホログラム再生演算を行った結果のI
v (x,y)とIH (x,y)を(2)式、(3)式、
(4)式におけるhV (x,y)、hH (x,y)の代
わりに用いてそれぞれ位相角差や合成入射角及び強度な
どを求める。
Further, when the radio wave source interval l is larger than the radio wave wavelength λ, or when the distance z between the radio wave source and the observation surface is the radio wave wavelength λ
If it is larger, a radio interference image is formed, so that the ratio h V (x, y) of the ratio of the output of the mobile antenna to the output of the fixed antenna is obtained.
And hologram reproduction operation is performed on h H (x, y) to obtain I V (x, y) and I H (x, y). I (X ′, Y ′) = {[h (x, y) × {exp (−j2πR / λ)} / R] dxdy R = {z 2 + (xx ′) 2 + (yy) ') 2 I The I of the result of performing the hologram reconstruction operation
v (x, y) and I H (x, y) are expressed by equations (2), (3),
The phase angle difference, the combined incident angle, the intensity, and the like are obtained by using instead of h V (x, y) and h H (x, y) in the equation (4).

【0016】また上述において、測定されたhV (x,
y)、hH (x,y)や演算されたΔθH/V (x,y)
に雑音が多く含まれるような場合には、それぞれに対し
て二次元空間低域通過フィルタを演算処理により作用さ
せるとよい。つまりf(x,y)に対する二次元空間低
域通過フィルタ作用は次式で表される。 F(x,y)=∬f{(x,y)×sin(λ-1×R)λ-1・R}dx ,dy R =(√{(x−x′)2 +(y−y′)2 })×2π λは光速を空間遮断周波数で割った値 ここでΔθH/V (x,y)の各点における値を求め、そ
の測定観測面上における状態を見ると、電波源像がz>
lでも得られることについて述べると、観測面で一点に
入射する電波の方向及び強さは複数の電波源から放射さ
れた電波のベクトル和である。従って電波源の間隔lに
対して観測面と電波源との距離zが大きくなればなるほ
ど合成電波の波面が滑らかに変化し、電波源の分離が難
しくなる。しかし観測面に対して電波源の方向が垂直に
なる位置、つまり電波源より観測面に対して垂線を降ろ
した位置ではこの両者間の距離zに関係なく合成電波の
入射角度が変曲し、即ちその角度の見る方向が逆とな
る。従って合成電波の入射角のアンテナ移動方向におけ
る二階微分ΔθH/V (x,y)のピークは観測面から垂
直に見た電波源の位置を与えることになる。
In the above description, the measured h V (x,
y), h H (x, y) and calculated Δθ H / V (x, y)
If the data contains a lot of noise, a two-dimensional spatial low-pass filter may be applied to each of them by arithmetic processing. That is, the two-dimensional spatial low-pass filter operation on f (x, y) is expressed by the following equation. F (x, y) = {f} (x, y) × sin (λ −1 × R) λ −1 · R} d x , d y R = (√ {(xx ′) 2 + (y −y ′) 2 }) × 2π λ is the value obtained by dividing the speed of light by the spatial cut-off frequency. Here, the value at each point of Δθ H / V (x, y) is obtained. Radio source image is z>
In terms of what can be obtained with l, the direction and intensity of a radio wave incident on one point on the observation surface are vector sums of radio waves radiated from a plurality of radio sources. Therefore, as the distance z between the observation surface and the radio wave source increases with respect to the distance l between the radio wave sources, the wave front of the synthesized radio wave changes more smoothly, and the separation of the radio wave sources becomes more difficult. However, at the position where the direction of the radio wave source is perpendicular to the observation surface, that is, at the position where the perpendicular is lowered from the radio wave source to the observation surface, the incident angle of the synthesized radio wave is inflected regardless of the distance z between them, That is, the viewing direction of the angle is reversed. Therefore, the peak of the second derivative Δθ H / V (x, y) in the direction of movement of the antenna at the angle of incidence of the synthesized radio wave gives the position of the radio wave source viewed perpendicularly from the observation surface.

【0017】この関係を図2及び図3に電波源間距離を
3.3メートルとし、移動アンテナ22,23を観測面
13に沿って10メートル移動させた場合における受信
アンテナの出力の合成振幅を曲線42として合成電波の
入射角を曲線43でそのラプラシアンを曲線44で示
す。図2Aは電波源と観測面との間の距離zが1メート
ル、図2Bはzが3メートル、図3Aはzが6メート
ル、図3Bはzが12メートルの場合である。これら曲
線からzが電波源間隔lより小さければ図2Aに示すよ
うに強度分布42、入射角分布43さらにそのラプラシ
アンの分布44においてもそれぞれ電波源位置において
大きなピークとなり、その電波源像を容易に求めること
ができる。しかし図2Bに示すようにzとlとがほぼ近
くなると強度分布42による電波源像を得ることは困難
であるが入射角分布43及びそのラプラシアン分布44
はまだ十分電波源像を得ることができる。図3Aに示す
ようにzが電波源間隔より倍程度大きくなると入射角の
分布43によっても像を知ることは困難であるが、その
ラプラシアン分布44においては明瞭なピークで電波源
を知ることができる。さらに図3Bに示すように電波源
間隔に対して距離zが相当大きくなっても入射角のラプ
ラシアン分布44のそのピーク値は小さくなるが、その
ピークは明らかに検出され、電波源の位置を知ることが
できる。
This relationship is shown in FIGS. 2 and 3 where the combined amplitude of the output of the receiving antenna when the distance between the radio sources is 3.3 meters and the moving antennas 22 and 23 are moved along the observation plane 10 by 10 meters. The curve 42 shows the incident angle of the synthesized radio wave as a curve 43 and the Laplacian thereof as a curve 44. 2A shows a case where the distance z between the radio wave source and the observation surface is 1 meter, FIG. 2B shows a case where z is 3 meters, FIG. 3A shows a case where z is 6 meters, and FIG. 3B shows a case where z is 12 meters. From these curves, if z is smaller than the radio source interval l, as shown in FIG. 2A, the intensity distribution 42, the incident angle distribution 43, and the Laplacian distribution 44 also have large peaks at the radio source position, and the radio source image can be easily obtained. You can ask. However, as shown in FIG. 2B, it is difficult to obtain a radio source image based on the intensity distribution 42 when z and l are substantially close to each other, but the incident angle distribution 43 and its Laplacian distribution 44
Can still obtain enough radio source images. As shown in FIG. 3A, when z is about twice as large as the radio source interval, it is difficult to know the image by the distribution 43 of the incident angle, but in the Laplacian distribution 44, the radio source can be known by a clear peak. . Further, as shown in FIG. 3B, the peak value of the Laplacian distribution 44 of the incident angle becomes small even if the distance z becomes considerably large with respect to the radio source interval, but the peak is clearly detected and the position of the radio source is known. be able to.

【0018】上述したように、ホログラムを再生しその
強度分布あるいは入射角のラプラシアン分布を求めても
これらが直接波により得られているのか、反射波により
得られているのかを分離することは困難である。これが
直接波か反射波によりその電波源が得られているかを知
るには(2)式で求めた位相角差の分布状態を求めれば
これにより区別することができる。
As described above, even if a hologram is reconstructed and its intensity distribution or Laplacian distribution of the incident angle is obtained, it is difficult to separate whether the hologram is obtained by a direct wave or a reflected wave. It is. In order to know whether the radio wave source is obtained by a direct wave or a reflected wave, if the distribution state of the phase angle difference obtained by the equation (2) is obtained, it can be distinguished by this.

【0019】発振器30の発振周波数f0 を変えてそれ
ぞれについて受動ホログラム像、つまり式(1)のhV
(x,y)、hH (x,y)の分布状態をその二つの再
生像の位相差を求めることによって反射波の直接波に対
する遅れ時間を求めることができる。即ち周波数f1
より求めたIV 1 (x,y)と周波数f2 により求め
たIV 2 (x,y)との位相差を求め、また同様にI
H 1 (x,y)とI H 2 (x,y)の位相差を求め
る。このようにすることによって水平偏波成分における
反射と垂直偏波成分における反射の仕方が異なり、直接
波に対する反射波の遅れを知ることができる。
The oscillation frequency f of the oscillator 300Change it
For each, a passive hologram image, that is, h in equation (1)V
(X, y), hHThe distribution state of (x, y) is
By calculating the phase difference of the raw image,
It is possible to determine the delay time. That is, the frequency f1To
I obtained fromVf1(X, y) and frequency fTwoAsked by
IVfTwoThe phase difference from (x, y) is obtained, and I
Hf1(X, y) and I HfTwoFind the phase difference of (x, y)
You. By doing so, the horizontal polarization component
The way of reflection is different from that of vertical polarization component.
The delay of the reflected wave with respect to the wave can be known.

【0020】上述において、離散的フーリエ変換器3
7,38,39の代わりに高速フーリエ変換器を用いて
もよい。さらに移動アンテナとしては垂直偏波成分、水
平偏波成分の2方向成分ではなく3方向成分をそれぞれ
各別に検出する3つのアンテナを用いてもよい。また一
つの電波源像を得る為に電波源に対する観測面の角度を
変えて2回測定して、電波像を立体的に得ることもでき
る。移動アンテナ22,23の出力を切り替えて一つの
スペクトル解析部に供給するようにしてもよい。
In the above, the discrete Fourier transformer 3
A fast Fourier transformer may be used instead of 7, 38, and 39. Further, as the moving antennas, three antennas for detecting three-directional components instead of the two-directional components of the vertical polarization component and the horizontal polarization component may be used. In addition, in order to obtain one radio source image, the measurement can be performed twice while changing the angle of the observation surface with respect to the radio source to obtain a radio image three-dimensionally. The outputs of the mobile antennas 22 and 23 may be switched and supplied to one spectrum analyzer.

【0021】請求項2の発明においては、固定アンテナ
21を省略して移動アンテナ22,23の出力のフーリ
エ変換SV (x,y),SH (x,y)をそれぞれ
(2)式、(3)式、(4)式におけるhV (x,
y),hH (x,y)の代わりに用いて上述したことを
実行するものである。次に測定データを示す。電波源間
隔l=10cmにおいて、測定周波数を200MHzと
し、観測面積を20cm×18cmにおいて、(4)式
で得た強度分布と入射角のラプラシアンとの状況を、z
を5、10、15、20、25、30、35センチにそ
れぞれ変えたばあいについてその大きさの値の分布状態
を観測面状に対応して図4に示した。この場合において
も合成振幅から分離不可能であった二つの電波源が入射
角のラプラシアンによって二つ斜線領域に明確に分離で
きるが、特にzが1より大においても斜線領域が二つあ
り、分離できることが分かる。また合成振幅と入射角の
ラプラシアンはともに距離zが大きくなるにつれて左側
にパターンが移動しているが、これは観測平面と電波面
平面の平衡ずれのためと考えられる。また入射角ラプラ
シアン像においても床、天井からの反射波イメージが確
認できることが分かる。
According to the second aspect of the present invention, the fixed antenna 21 is omitted, and the Fourier transforms S V (x, y) and S H (x, y) of the outputs of the mobile antennas 22 and 23 are expressed by the following equations (2), respectively. H V (x,
y), h H (x, y) are used in place of the above to perform the above. Next, the measurement data is shown. When the measurement frequency is 200 MHz and the observation area is 20 cm × 18 cm at a radio source interval 1 = 10 cm, the situation of the intensity distribution obtained by Expression (4) and the Laplacian of the incident angle is z
Is changed to 5, 10, 15, 20, 25, 30, and 35 cm, respectively, and the distribution of the size values is shown in FIG. 4 corresponding to the observation plane. In this case as well, the two radio sources that could not be separated from the combined amplitude can be clearly separated into two hatched areas by the Laplacian of the incident angle. In particular, even when z is larger than 1, there are two hatched areas. You can see what you can do. In addition, in both the Laplacian of the synthetic amplitude and the Laplacian of the incident angle, the pattern moves to the left as the distance z increases, which is considered to be due to a balance shift between the observation plane and the radio wave plane. It can also be seen that reflected wave images from the floor and ceiling can be confirmed in the incident angle Laplacian image.

【0022】[0022]

【発明の効果】以上述べた様に、この発明によれば電波
源間隔1が電波波長λよりも大きく、また観測面の距離
zが電波波長λより大きい場合やこれらが波長よりも小
さくても電波源間隔1よりも観測面間距離zが大きい場
合のいずれの場合においても入射角のラプラシアンを求
めることによって電波像を得ることができる。さらに各
垂直偏波受信アンテナと水平偏波受信アンテナとの出力
位相角の差の分布を求めることによって直接波と反射波
とを区別することができる。また電波源出力が変動して
も請求項1の発明では固定アンテナ出力で移動アンテナ
出力を基準化しているため影響を受けず電波像が歪む恐
れはない。
As described above, according to the present invention, even if the radio wave source interval 1 is larger than the radio wave wavelength λ and the distance z of the observation surface is larger than the radio wave wavelength λ or if they are smaller than the wavelength, In any case where the distance z between observation surfaces is larger than the radio source interval 1, a radio wave image can be obtained by obtaining the Laplacian of the incident angle. Further, the direct wave and the reflected wave can be distinguished by obtaining the distribution of the difference in the output phase angle between each vertically polarized wave receiving antenna and the horizontally polarized wave receiving antenna. Further, even if the output of the radio wave source fluctuates, the output of the mobile antenna is normalized by the output of the fixed antenna according to the first aspect of the present invention, so that the radio wave image is not affected and there is no possibility of distortion.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例を示すブロック図。FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】強度分布、入射角分布、そのラプラシアン分布
を示す図。
FIG. 2 is a diagram showing an intensity distribution, an incident angle distribution, and its Laplacian distribution.

【図3】強度分布、入射角分布、そのラプラシアン分布
を示す図。
FIG. 3 is a diagram showing an intensity distribution, an incident angle distribution, and its Laplacian distribution.

【図4】電波源から観測面までの距離を各種の状態とし
た場合に置ける強度の二次元像及びラプラシアンの二次
元像を示す図。
FIG. 4 is a diagram showing a two-dimensional image of intensity and a two-dimensional image of Laplacian at various distances from a radio wave source to an observation surface.

【図5】従来の電波像観測装置を示す図。FIG. 5 is a diagram showing a conventional radio wave image observation device.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 観測平面近くにおかれた固定アンテナ
と、 上記観測平面を移動可能な垂直偏波受信アンテナ及び水
平偏波受信アンテナと、 上記固定アンテナの出力に対する上記垂直偏波受信アン
テナの出力比及び上記水平偏波受信アンテナの出力比を
取る手段と、 これら両比に対し受動ホログラム像の再生演算を行う手
段と、 を具備する電波源可視化装置。
1. A fixed antenna placed near an observation plane, a vertically polarized reception antenna and a horizontally polarized reception antenna movable on the observation plane, and an output of the vertically polarized reception antenna with respect to an output of the fixed antenna. A radio source visualization apparatus comprising: means for obtaining a ratio and an output ratio of the horizontal polarized wave receiving antenna; and means for performing a reproduction operation of a passive hologram image with respect to both of these ratios.
【請求項2】 観測平面を移動可能に設けられた垂直偏
波受信アンテナ及び水平偏波受信アンテナと、 上記観測平面内における各同一位置において、上記両ア
ンテナよりの出力の振幅比のアークタンジェントを計算
して合成電波の入射角を演算する手段と、 その入射角のラプラシアンを演算して上記観測面上にお
けるラプラシアン像を得る手段と、 を具備する電波源可視化装置。
2. A vertically polarized wave receiving antenna and a horizontally polarized wave receiving antenna movably provided on an observation plane, and an arc tangent of an amplitude ratio of an output from both antennas at the same position in the observation plane. A radio wave source visualization device comprising: means for calculating an incident angle of a synthetic radio wave by calculating; and means for calculating a Laplacian of the incident angle to obtain a Laplacian image on the observation surface.
【請求項3】 同一地点における上記垂直偏波受信アン
テナ出力の位相角と上記水平偏波受信アンテナの出力の
位相角との分布を上記観測平面について演算する手段を
具備することを特徴とする請求項1または請求項2記載
の電波源可視化装置。
3. A means for calculating the distribution of the phase angle of the output of the vertical polarization receiving antenna and the phase angle of the output of the horizontal polarization receiving antenna at the same point on the observation plane. The radio wave source visualizing device according to claim 1 or 2.
【請求項4】 複素受動ホログラム再生像を周波数を変
えて二つ作り、その二つの像の位相差を求めその位相差
像を得る手段を具備することを特徴とする請求項1また
は2記載の電波源可視化装置。
4. The apparatus according to claim 1, further comprising means for forming two complex passive hologram reconstructed images at different frequencies, obtaining a phase difference between the two images, and obtaining the phase difference image. Radio source visualization device.
JP24676392A 1992-09-16 1992-09-16 Radio source visualization device Expired - Fee Related JP3286970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24676392A JP3286970B2 (en) 1992-09-16 1992-09-16 Radio source visualization device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24676392A JP3286970B2 (en) 1992-09-16 1992-09-16 Radio source visualization device

Publications (2)

Publication Number Publication Date
JPH0694763A JPH0694763A (en) 1994-04-08
JP3286970B2 true JP3286970B2 (en) 2002-05-27

Family

ID=17153304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24676392A Expired - Fee Related JP3286970B2 (en) 1992-09-16 1992-09-16 Radio source visualization device

Country Status (1)

Country Link
JP (1) JP3286970B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0829468A (en) * 1994-07-20 1996-02-02 Nec Gumma Ltd Electromagnetic field intensity measuring device
JPH1114680A (en) * 1997-06-26 1999-01-22 Fuji Xerox Co Ltd Apparatus, method for measuring radiation noise, method for displaying radiation noise and apparatus for detecting radiation noise
US9654232B2 (en) * 2015-07-09 2017-05-16 Cognitive Systems Corp. Radio frequency camera system

Also Published As

Publication number Publication date
JPH0694763A (en) 1994-04-08

Similar Documents

Publication Publication Date Title
US7626400B2 (en) Electromagnetic scanning imager
US20140043046A1 (en) Electromagnetic scanning imager
Gao et al. Implementation of the phase shift migration in MIMO-sidelooking imaging at terahertz band
US6140960A (en) Hologram observation method for three-dimensional wave source distribution, and stereoscopic directivity estimation method of antenna and wave distribution observation method based on hologram observation
JP3286970B2 (en) Radio source visualization device
KR101203269B1 (en) dual frequency underwater acoustic camera and it's operating method for precise underwater survey
Laviada et al. Broadband synthetic aperture scanning system for three-dimensional through-the-wall inspection
Nilsson et al. Radar interferometric measurements with a planar patch antenna array
JP5628857B2 (en) Two-dimensional image reconstruction method
CN109991600A (en) Single station planar array mm-wave imaging device and method
Miccinesi et al. A GPR Able to Detect Its Own Position Using Fixed Corner Reflectors on Surface
RU2304289C1 (en) Method for restoring radiolocation images of objects with stationary rotation center
Wang et al. Ground-based bistatic polarimetric interferometric synthetic aperture radar system
JPH10232252A (en) Hologram observation method of three-dimensional wave source distribution
JP3570571B2 (en) Wave field strength estimation method
Li et al. Performance evaluation of a passive millimeter-wave imager
JP3034675B2 (en) Measurement device of internal temperature distribution by microwave
JP3183480B2 (en) Holographic radar
Kitayoshi et al. Holographic imaging of microwave propagation
CN117538949A (en) Millimeter wave imaging device, security inspection device and security inspection method
JPS5817404B2 (en) Distance pattern measurement method using deconvolution
Zong et al. Accurate Reconstruction Algorithm of Millimeter Wave Holography
Wilby The advantages, challenges and practical implementation of an interferometric swath bathymetry system
Muir et al. Signal processing aspects of nonlinear acoustics
Mudassar et al. Band pass active aperture synthesis using spatial frequency heterodyning

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020129

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080315

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090315

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees