JP3286485B2 - Compression metal hydride heat pump - Google Patents

Compression metal hydride heat pump

Info

Publication number
JP3286485B2
JP3286485B2 JP00051895A JP51895A JP3286485B2 JP 3286485 B2 JP3286485 B2 JP 3286485B2 JP 00051895 A JP00051895 A JP 00051895A JP 51895 A JP51895 A JP 51895A JP 3286485 B2 JP3286485 B2 JP 3286485B2
Authority
JP
Japan
Prior art keywords
hydrogen gas
heat
period
cooling
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00051895A
Other languages
Japanese (ja)
Other versions
JPH08189721A (en
Inventor
秀人 久保
正芳 三浦
信雄 藤田
博史 青木
宏之 三井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Industries Corp
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp, Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Industries Corp
Priority to JP00051895A priority Critical patent/JP3286485B2/en
Publication of JPH08189721A publication Critical patent/JPH08189721A/en
Application granted granted Critical
Publication of JP3286485B2 publication Critical patent/JP3286485B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は金属水素化物を利用する
圧縮機駆動水素吸蔵式のヒートポンプシステムに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compressor driven hydrogen storage type heat pump system utilizing metal hydride.

【0002】[0002]

【従来の技術】特公平3−16594号公報の圧縮式金
属水素化物ヒートポンプを図7に示す。この装置は、金
属水素化物を収蔵して複数種類の熱媒と順次に熱授受す
る複数の金属水素化物槽を水素ガス放出動作(吸熱動
作)モードと水素ガス吸蔵動作(発熱動作)モードを順
次交互に切り換えるバッチ運転方式を採用するものであ
って、熱交換器(図示せず)が付設されるとともに金属
水素化物を収蔵する3個以上の金属水素化物槽MH1〜
MH3と、水素ガスを圧縮する圧縮機100と、それぞ
れ弁Vを介して各金属水素化物槽MH1〜MH3と圧縮
機100の吸入側とを水素ガス移送可能に連結する吸入
側移送管路104と、それぞれ弁Vを介して各金属水素
化物槽MH1〜MH3と圧縮機100の吐出側とを水素
ガス移送可能に連結する吐出側移送管路105と、各弁
Vを順次に開閉制御して各金属水素化物槽MH1〜MH
3と両管路104,105のどちらかとの連通を順次切
替える制御手段106とを備えている。 図8はこの装
置の弁切替えタイミングを示し、図9は起動後の冷房出
力の変化を示す。図8において、サイクル1は金属水素
化物槽MH1の水素放出(吸熱)動作期間を示し、サイ
クル2は金属水素化物槽MH2の水素放出(吸熱)動作
期間を示し、サイクル3は金属水素化物槽MH3の水素
放出(吸熱)動作期間を示す。
2. Description of the Related Art FIG. 7 shows a compression type metal hydride heat pump disclosed in Japanese Patent Publication No. 3-16594. In this apparatus, a plurality of metal hydride tanks that store metal hydrides and sequentially exchange heat with a plurality of types of heat medium are sequentially operated in a hydrogen gas release operation (heat absorption operation) mode and a hydrogen gas storage operation (heat generation operation) mode. It employs a batch operation system in which the metal hydrides are alternately switched, and is provided with a heat exchanger (not shown) and has three or more metal hydride tanks MH1 to MH1 for storing metal hydrides.
MH3, a compressor 100 for compressing hydrogen gas, and a suction-side transfer conduit 104 for connecting the metal hydride tanks MH1 to MH3 and the suction side of the compressor 100 via a valve V so as to transfer hydrogen gas, respectively. A discharge side transfer pipe line 105 for connecting the metal hydride tanks MH1 to MH3 and the discharge side of the compressor 100 via a valve V so as to transfer hydrogen gas, and controlling each valve V sequentially to open and close. Metal hydride tanks MH1 to MH
3 and a control means 106 for sequentially switching the communication between one of the two pipelines 104 and 105. FIG. 8 shows the valve switching timing of this device, and FIG. 9 shows the change in the cooling output after startup. In FIG. 8, cycle 1 indicates a hydrogen releasing (endothermic) operation period of the metal hydride tank MH1, cycle 2 indicates a hydrogen releasing (endothermic) operation period of the metal hydride tank MH2, and cycle 3 indicates a metal hydride tank MH3. 3 shows a hydrogen release (endothermic) operation period of FIG.

【0003】各金属水素化物槽MH1〜MH3は図8に
示すように、1サイクル期間の水素放出(吸熱)動作を
終了した後、0.5サイクル期間休止し、その後、1サ
イクル期間の水素吸蔵(発熱)動作を実施し、その後、
0.5サイクル期間休止する。そして、各金属水素化物
槽MH1〜MH3の運転モードは1サイクル期間づつ位
相がずれている。
As shown in FIG. 8, each of the metal hydride tanks MH1 to MH3 terminates the hydrogen releasing (endothermic) operation for one cycle period, pauses for 0.5 cycle period, and then stores hydrogen for one cycle period. (Heat generation) operation, and then
Pause for 0.5 cycle period. The operation modes of the metal hydride tanks MH1 to MH3 are shifted in phase by one cycle period.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記し
た従来の装置では、冷房動作時に外気温度が高くなると
吸蔵側金属水素化物槽の圧力が増大してしまい、それに
合わせて耐圧強度を増大する必要がある。また、吸蔵側
金属水素化物槽の圧力を最適な値(例えば10kg/c
2 未満)とすれば外気温度が高い場合に吸蔵側金属水
素化物槽の内外温度差が縮小してその熱輸送能力が制限
され、このために冷房能力が低く制限されてしまう。
However, in the conventional apparatus described above, if the outside air temperature increases during the cooling operation, the pressure in the metal hydride storage tank increases, and it is necessary to increase the pressure resistance accordingly. is there. Further, the pressure of the metal hydride tank on the storage side is adjusted to an optimal value (for example, 10 kg / c).
If m less than 2) Tosureba outside air temperature is high and reduced internal and external temperature difference absorbing side metal hydride tank is the heat transport capacity is limited to, cooling capacity is limited low for this.

【0005】反対に暖房動作には、外気温度が低くなる
と放出側金属水素化物槽の圧力が低下して負圧となって
しまい、外部から装置内に空気が侵入する可能性が生じ
てしまう。また、放出側金属水素化物槽の圧力を正圧に
維持すると、外気温度が低い場合に放出側金属水素化物
槽の内外温度差が縮小してその熱輸送能力が制限され、
このために暖房能力が低く制限されてしまう。
On the other hand, in the heating operation, when the outside air temperature decreases, the pressure of the metal hydride tank on the discharge side decreases to a negative pressure, and there is a possibility that air may enter the apparatus from the outside. Also, if the pressure of the discharge-side metal hydride tank is maintained at a positive pressure, when the outside air temperature is low, the temperature difference between the inside and outside of the discharge-side metal hydride tank is reduced, and its heat transport capacity is limited,
This limits the heating capacity to a low level.

【0006】本発明は上記問題点に鑑みなされたもので
あり、好ましい圧力範囲で運転するにもかかららず、熱
輸送能力の向上を実現可能な圧縮式金属水素化物ヒート
ポンプを提供することを、その目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object of the present invention is to provide a compression metal hydride heat pump capable of realizing an improvement in heat transport capacity despite operating in a preferable pressure range. , Its purpose.

【0007】[0007]

【課題を解決するための手段】本発明の第1の構成は、
金属水素化物を収蔵して複数種類の熱媒と順次に熱授受
する3個以上の熱交換器と、水素ガスを圧縮する圧縮機
と、水素ガス放出モードの前記熱交換器から放出された
低圧水素ガスを低圧弁を介して前記圧縮機に導入する低
圧管路と、前記圧縮機から吐出された高圧水素ガスを高
圧弁を介して水素ガス吸蔵モードの前記熱交換器に吸蔵
させる高圧管路と、前記各弁の順次開閉により前記熱交
換器の前記両モードを交互に切り換えて前記各熱交換器
に水素ガス吸蔵期間及び水素ガス放出期間を交互に設定
する制御手段とを備える圧縮式金属水素化物ヒートポン
プにおいて、前記制御手段は、冷房動作時において前記
水素ガス吸蔵モードの前記熱交換器の個数を前記水素ガ
ス放出モードの前記熱交換器の個数より多く設定する冷
房時ガス圧設定動作と、暖房動作時において前記水素ガ
ス放出モードの前記熱交換器の個数を前記水素ガス吸蔵
モードの前記熱交換器の個数より多く設定する暖房時ガ
ス圧設定動作との少なくとも一方を実施するものである
ことを特徴とする圧縮式金属水素化物ヒートポンプであ
る。
According to a first aspect of the present invention, there is provided:
Three or more heat exchangers for storing metal hydrides and sequentially exchanging heat with a plurality of types of heat medium, a compressor for compressing hydrogen gas, and a low pressure discharged from the heat exchanger in a hydrogen gas release mode A low-pressure pipe for introducing hydrogen gas into the compressor through a low-pressure valve, and a high-pressure pipe for storing high-pressure hydrogen gas discharged from the compressor in the heat exchanger in a hydrogen gas storage mode via a high-pressure valve And a control means for alternately switching between the two modes of the heat exchanger by sequentially opening and closing the respective valves to alternately set a hydrogen gas storage period and a hydrogen gas release period in the heat exchangers. In the hydride heat pump, the control unit is configured to set a cooling gas pressure setting operation to set the number of the heat exchangers in the hydrogen gas storage mode to be greater than the number of the heat exchangers in the hydrogen gas release mode during a cooling operation. And at least one of a heating gas pressure setting operation of setting the number of the heat exchangers in the hydrogen gas release mode to be larger than the number of the heat exchangers in the hydrogen gas storage mode during the heating operation. A compression-type metal hydride heat pump.

【0008】本発明の第2の構成は、上記第1の構成に
おいて更に、前記制御手段が、冷房動作時における前記
水素ガス吸蔵モードの前記熱交換器の個数を前記水素ガ
ス放出モードの前記熱交換器の個数より多く設定し、か
つ、暖房動作時における前記水素ガス放出モードの前記
熱交換器の個数を前記水素ガス吸蔵モードの前記熱交換
器の個数より多く設定するものであることを特徴として
いる。
[0008] In a second configuration of the present invention, in the first configuration, the control means may further include: the number of the heat exchangers in the hydrogen gas occlusion mode during the cooling operation, the heat exchanger in the hydrogen gas release mode. The number of the heat exchangers in the hydrogen gas release mode during the heating operation is set to be greater than the number of the heat exchangers in the hydrogen gas storage mode during the heating operation. And

【0009】本発明の第3の構成は、上記第1の構成に
おいて更に、前記制御手段が、冷房時に、前記水素ガス
吸蔵期間終了後で前記水素ガス放出期間開始前の前記熱
交換器を外部熱源からの前記熱媒により予冷する予冷期
間を設定するものであることを特徴としている。本発明
の第4の構成は、上記第1の構成において更に、前記制
御手段が、暖房時に、前記水素ガス放出期間終了後で前
記水素ガス吸蔵期間開始前の前記熱交換器を外部熱源か
らの前記熱媒により予熱する予熱期間を設定するもので
あることを特徴としている。
[0009] In a third aspect of the present invention, in the first aspect, the control means may further include, during cooling, externally connecting the heat exchanger after the end of the hydrogen gas storage period and before the start of the hydrogen gas release period. A pre-cooling period for pre-cooling by the heat medium from a heat source is set. In a fourth configuration of the present invention, in the first configuration, the control unit may further include, during heating, the heat exchanger after the end of the hydrogen gas release period and before the start of the hydrogen gas storage period from an external heat source. A preheating period for preheating by the heat medium is set.

【0010】本発明の第5の構成は、上記第1の構成に
おいて更に、前記制御手段が、冷房時に、前記水素ガス
放出期間終了後で前記水素ガス吸蔵期間開始前の前記熱
交換器で被冷却対象の冷却のための前記熱媒を冷却する
顕熱回収期間を設定するものであることを特徴としてい
る。本発明の第6の構成は、上記第1の構成において更
に、前記制御手段が、暖房時に、前記水素ガス吸蔵期間
終了後で前記水素ガス放出期間開始前の前記熱交換器で
被加熱対象の加熱のための前記熱媒を加熱する顕熱回収
期間を設定するものであることを特徴としている。
According to a fifth aspect of the present invention, in the above-mentioned first aspect, the control means may further include, during cooling, the heat exchanger mounted on the heat exchanger after the end of the hydrogen gas release period and before the start of the hydrogen gas storage period. A sensible heat recovery period for cooling the heat medium for cooling the object to be cooled is set. In a sixth configuration of the present invention, in the above-described first configuration, the control unit may further include, during heating, an object to be heated in the heat exchanger after the end of the hydrogen gas storage period and before the start of the hydrogen gas release period. A sensible heat recovery period for heating the heat medium for heating is set.

【0011】本発明の第7の構成は、上記第3又は4の
構成において更に、前記制御手段が、前記予熱又は予冷
期間の少なくとも一部において、前記圧縮機の能力を削
減乃至停止するものであることを特徴としている。本発
明の第8の構成は、上記第5又は6の構成において更
に、前記制御手段が、前記顕熱回収期間の少なくとも一
部において、被冷却対象冷却用の前記熱媒を輸送を行う
熱媒輸送手段の能力を削減乃至停止するものであること
を特徴としている。
According to a seventh aspect of the present invention, in the third or fourth aspect, the control means further reduces or stops the capacity of the compressor during at least a part of the preheating or precooling period. It is characterized by having. According to an eighth aspect of the present invention, in the fifth or sixth aspect, the control means is further configured to transport the heat medium for cooling the object to be cooled during at least a part of the sensible heat recovery period. It is characterized in that the capacity of the transportation means is reduced or stopped.

【0012】[0012]

【作用及び発明の効果】金属水素化物を収蔵する3個以
上の熱交換器は、それぞれ弁により低圧管路及び高圧管
路に順次に連結される。これにより、水素ガス放出モー
ドの熱交換器は低圧管路へ水素放出して吸熱動作を行
い、水素ガス吸蔵モードの熱交換器は高圧管路から水素
吸蔵して発熱動作を行い、これら両モードの順次切り換
えにより冷却(冷房)運転又は加熱(暖房)運転が行わ
れる。
The three or more heat exchangers storing metal hydrides are sequentially connected to the low-pressure line and the high-pressure line by valves. As a result, the heat exchanger in the hydrogen gas release mode releases hydrogen to the low-pressure pipe to perform an endothermic operation, and the heat exchanger in the hydrogen gas storage mode stores hydrogen from the high-pressure pipe to perform an exothermic operation. , A cooling (cooling) operation or a heating (heating) operation is performed.

【0013】特に、本発明の第1又は第2の構成では、
吸蔵側熱交換器の個数を放出側熱交換器の個数より増設
する冷房運転と、放出側熱交換器の個数を吸蔵側熱交換
器の個数より多く設定する暖房運転との少なくとも一方
を実施するので、以下の作用効果を奏する。すなわち、
このような冷房運転を行えば、吸蔵側熱交換器1個当た
りの水素ガス吸蔵量が上記増設分だけ減少するので、水
素ガス流量を削減することなく、吸蔵側熱交換器の内外
温度差及び圧力を低減することができる。したがって冷
房能力の劣化なしに吸蔵側熱交換器の耐圧強度を低下す
ることができ、また上記増設により水素ガス流量を上記
増設分だけ増加して冷房能力を増大することができる。
Particularly, in the first or second configuration of the present invention,
At least one of a cooling operation in which the number of storage-side heat exchangers is increased from the number of release-side heat exchangers and a heating operation in which the number of release-side heat exchangers is set to be larger than the number of storage-side heat exchangers are performed. Therefore, the following operation and effect can be obtained. That is,
If such a cooling operation is performed, the amount of hydrogen gas stored per storage-side heat exchanger is reduced by the above-mentioned additional amount, so that the temperature difference between the inside and outside of the storage-side heat exchanger and the hydrogen gas flow rate can be reduced without reducing the hydrogen gas flow rate. The pressure can be reduced. Therefore, the pressure resistance of the storage-side heat exchanger can be reduced without deteriorating the cooling capacity, and the cooling capacity can be increased by increasing the hydrogen gas flow rate by the above-mentioned additional capacity.

【0014】また、このような暖房運転を行えば、放出
側熱交換器1個当たりの水素ガス放出量が上記増設分だ
け増加するので、水素ガス流量を削減することなく放出
側熱交換器の内外温度差及び圧力を増加することができ
る。したがって、暖房能力の劣化なしに放出側熱交換器
の圧力が負圧になるのを防止することができ、また水素
ガス流量を上記増設分だけ増加して暖房能力を増大する
ことができる。
In addition, if such a heating operation is performed, the amount of hydrogen gas released per discharge-side heat exchanger increases by the above-mentioned additional amount, so that the discharge-side heat exchanger can be used without reducing the hydrogen gas flow rate. The temperature difference and pressure inside and outside can be increased. Therefore, it is possible to prevent the pressure of the discharge side heat exchanger from becoming negative without deteriorating the heating capacity, and it is possible to increase the heating capacity by increasing the flow rate of the hydrogen gas by the increased amount.

【0015】本発明の第3の構成では、上記第1の構成
において更に、冷房時に、水素ガス吸蔵期間終了後で水
素ガス放出期間開始前の熱交換器を外部熱源からの熱媒
により予冷するので、二つの熱交換器の間で水素ガス吸
蔵モードを切り替えた際に、冷房出力の低下を防止する
ことができる。本発明の第4の構成では、上記第1の構
成において更に、暖房時に、水素ガス放出期間終了後で
水素ガス吸蔵期間開始前の熱交換器を外部熱源からの熱
媒により予熱するので、二つの熱交換器の間で水素ガス
放出モードを切り替えた際に、暖房出力の低下を防止す
ることができる。
[0015] In a third configuration of the present invention, in the first configuration, the heat exchanger is precooled by a heat medium from an external heat source after the end of the hydrogen gas storage period and before the start of the hydrogen gas release period during cooling. Therefore, when the hydrogen gas storage mode is switched between the two heat exchangers, a decrease in the cooling output can be prevented. In the fourth configuration of the present invention, in the first configuration, the heat exchanger is further preheated by the heat medium from the external heat source after the end of the hydrogen gas release period and before the start of the hydrogen gas storage period during heating. When the hydrogen gas release mode is switched between the two heat exchangers, it is possible to prevent a decrease in the heating output.

【0016】本発明の第5の構成では、上記第1の構成
において更に、冷房時に、水素ガス放出期間終了後で水
素ガス吸蔵期間開始前の熱交換器で被冷却対象冷却用の
熱媒を冷却する顕熱回収期間を設定するので、二つの熱
交換器の間で水素ガス放出モードを切り替えた際に、冷
房出力を増大することができる。本発明の第6の構成で
は、上記第1の構成において更に、暖房時に、前記水素
ガス吸蔵期間終了後で前水素ガス放出期間開始前の前記
熱交換器で被加熱対象加熱用の前記熱媒を加熱する顕熱
回収期間を設定するので、二つの熱交換器の間で水素ガ
ス吸蔵モードを切り替えた際に、暖房出力を増大するこ
とができる。
According to a fifth aspect of the present invention, in the above-described first aspect, during cooling, the heat medium for cooling the object to be cooled is cooled by the heat exchanger after the end of the hydrogen gas release period and before the start of the hydrogen gas storage period. Since the sensible heat recovery period for cooling is set, the cooling output can be increased when the hydrogen gas release mode is switched between the two heat exchangers. In a sixth configuration of the present invention, in the first configuration, the heating medium for heating an object to be heated is further heated by the heat exchanger after the end of the hydrogen gas occlusion period and before the start of the pre-hydrogen gas release period. Since the sensible heat recovery period for heating is set, the heating output can be increased when the hydrogen gas storage mode is switched between the two heat exchangers.

【0017】本発明の第7の構成は、上記第3又は4の
構成において更に、前記制御手段が、前記予熱又は予冷
期間の少なくとも一部において、前記圧縮機の能力を削
減乃至停止するので、後述するように動力を節約するこ
とができる。本発明の第8の構成は、上記第5又は6の
構成において更に、前記制御手段が、顕熱回収期間の少
なくとも一部において、被冷却対象冷却用の前記熱媒の
輸送を行う熱媒輸送手段の能力を削減乃至停止するの
で、後述するように被冷却対象冷却用の熱媒の温度変化
を低減することができる。
According to a seventh aspect of the present invention, in the above third or fourth aspect, the control means further reduces or stops the capacity of the compressor during at least a part of the preheating or precooling period. Power can be saved as described below. According to an eighth aspect of the present invention, in the fifth or sixth aspect, further, the control means transports the heat medium for cooling the object to be cooled during at least a part of the sensible heat recovery period. Since the capacity of the means is reduced or stopped, a change in temperature of the heat medium for cooling the object to be cooled can be reduced as described later.

【0018】[0018]

【実施例】本発明の装置の一実施例を図1に示すブロッ
ク図、図2に示す動作サイクル図を参照して説明する。
1a、1b,1cはそれぞれ金属水素化物を収蔵するタ
ンク状の熱交換器であり、2は圧縮機、3a、3b、3
cは低圧弁、4a、4b、4cは高圧弁、5は高圧管
路、6は低圧管路、70、72、74は外部熱媒として
の外気及び空調用熱媒としての内気(室内空気)を熱交
換器1a、1b,1cに個別に導入するダクト、71、
73、75は外部熱媒としての外気及び空調用熱媒とし
ての内気を熱交換器1a、1b,1cから個別に排出す
るダクト、76は外気を導入するダクト、77は外気を
排出するダクト、78は後述するダンパ8へ内気を導入
するダクト、79は内気を室内に送出するダクト、8
は、ダクト70、72、74とダクト76、78との連
結を切り換えるとともに開度制御も行い、かつ、ダクト
71、73、75とダクト77、79との連結を切り換
えるとともに開度制御も行うフィルムスクリーンダンパ
(以下、ダンパと略称する)、9はコントローラ、11
は外気導入用のファン、12は内気導入用のファンであ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the apparatus of the present invention will be described with reference to the block diagram shown in FIG. 1 and the operation cycle diagram shown in FIG.
Numerals 1a, 1b and 1c denote tank-shaped heat exchangers for storing metal hydrides, respectively, and 2 a compressor, 3a, 3b and 3
c is a low-pressure valve, 4a, 4b, and 4c are high-pressure valves, 5 is a high-pressure pipe, 6 is a low-pressure pipe, 70, 72, and 74 are outside air as an external heat medium and indoor air (room air) as a heat medium for air conditioning. , 71, each of which is separately introduced into the heat exchangers 1a, 1b, 1c.
73 and 75 are ducts for individually discharging outside air as an external heat medium and inside air as a heat medium for air conditioning from the heat exchangers 1a, 1b, 1c, 76 is a duct for introducing outside air, 77 is a duct for discharging outside air, 78 is a duct for introducing inside air to a damper 8 described later, 79 is a duct for sending inside air to a room, 8
Is a film that switches the connection between the ducts 70, 72, 74 and the ducts 76, 78 and also controls the opening degree, and switches the connection between the ducts 71, 73, 75 and the ducts 77, 79 and also controls the opening degree. Screen damper (hereinafter abbreviated as damper), 9 is a controller, 11
Is a fan for introducing outside air, and 12 is a fan for introducing inside air.

【0019】熱交換器1a、1b,1cは、弁3a、3
b、3cの開により個別に低圧管路6に水素ガスを放出
し、弁4a、4b、4cの開により個別に高圧管路5か
ら水素ガスを吸蔵する。ダンパ8はモータで移動するフ
ィルムスクリーンを有し、スクリーンを移動させてスク
リーンに開口された所定の窓をダクト70〜79の開口
に合わせると、熱交換器1a、1b,1cに導入する外
気及び内気の組合せ及び熱交換器1a、1b,1cから
送出される外気及び内気の行き先が容易に決定される。
The heat exchangers 1a, 1b, 1c are provided with valves 3a, 3a
By opening b and 3c, hydrogen gas is individually discharged to the low pressure line 6, and by opening the valves 4a, 4b and 4c, hydrogen gas is individually absorbed from the high pressure line 5. The damper 8 has a film screen that is moved by a motor. When the screen is moved and a predetermined window opened in the screen is aligned with the openings of the ducts 70 to 79, the outside air introduced into the heat exchangers 1a, 1b, 1c and The destination of the combination of inside air and the outside air and inside air sent from the heat exchangers 1a, 1b, 1c is easily determined.

【0020】9はマイコン内蔵のコントローラであり、
圧縮機2、弁3a、3b、3c、弁4a、4b、4c、
ダンパ8、ファン11、12の制御を行う。圧縮機2は
不図示の駆動手段たとえばモータなどにより駆動されて
水素ガスの圧縮を行い、熱交換器1a、1b,1cは弁
3a、3b、3c、4a、4b、4cの開閉により水素
ガスの吸蔵、放出を行う。熱交換器1a、1b,1cに
収蔵される金属水素化物としては、LaNi5 ・MmN
5 (Mmはミツシュメタル)、FeTiなどが挙げら
れる。これらの金属水素化物は、脱水素化反応により吸
熱し、水素化反応により発熱するものとして周知であ
る。熱交換器1a、1b,1cの上記吸蔵、放出により
産成される冷熱、温熱は内気又は外気に伝達される。
9 is a controller with a built-in microcomputer.
Compressor 2, valves 3a, 3b, 3c, valves 4a, 4b, 4c,
The control of the damper 8 and the fans 11 and 12 is performed. The compressor 2 is driven by a driving means (not shown) such as a motor to compress the hydrogen gas, and the heat exchangers 1a, 1b, 1c open and close the valves 3a, 3b, 3c, 4a, 4b, 4c to supply the hydrogen gas. Performs occlusion and release. The metal hydride stored in the heat exchangers 1a, 1b, 1c is LaNi 5 .MmN
i 5 (Mm is Mitsushumetaru), and the like FeTi. These metal hydrides are well known to absorb heat by a dehydrogenation reaction and generate heat by a hydrogenation reaction. The cold and warm heat generated by the occlusion and release of the heat exchangers 1a, 1b and 1c is transmitted to the inside air or the outside air.

【0021】以下、この装置の冷房運転動作を説明す
る。ただし説明を簡単にするために、コントローラ9
は、図2に示すように定期的に弁3a、3b、3c、4
a、4b、4cを開閉するものとし、圧縮機2は所定回
転数で駆動されているものとする。この装置は、それぞ
れ等しい一定期間に設定された位相期間(単にサイクル
とも呼ぶ)10、20、30を順番に繰り返して実施さ
れる。サイクル10は熱交換器1aが原則として水素ガ
ス放出を行い、他の熱交換器1b,1cが原則として水
素ガス吸蔵を行う期間であり、サイクル20は熱交換器
1bが原則として水素ガス放出を行い、他の熱交換器1
a,1cが原則として水素ガス吸蔵を行う期間であり、
サイクル30は熱交換器1cが原則として水素ガス放出
を行い、他の熱交換器1a,1bが原則として水素ガス
吸蔵を行う期間である。サイクル10は順番に顕熱回収
期間t1、主期間t2、予冷期間t3に分割され、サイ
クル20は順番に顕熱回収期間t4、主期間t5、予冷
期間t6に分割され、サイクル30は順番に顕熱回収期
間t7、主期間t8、予冷期間t9に分割されている。
Hereinafter, the cooling operation of the apparatus will be described. However, in order to simplify the explanation, the controller 9
The valves 3a, 3b, 3c, 4 are periodically arranged as shown in FIG.
a, 4b, and 4c are opened and closed, and the compressor 2 is driven at a predetermined rotation speed. This apparatus is implemented by sequentially repeating a phase period (also simply referred to as a cycle) 10, 20, 30 which is set to an equal fixed period. The cycle 10 is a period in which the heat exchanger 1a emits hydrogen gas in principle and the other heat exchangers 1b and 1c store hydrogen gas in principle, and the cycle 20 is a cycle in which the heat exchanger 1b emits hydrogen gas in principle. Done, other heat exchanger 1
a and 1c are periods in which hydrogen gas is stored in principle,
The cycle 30 is a period in which the heat exchanger 1c emits hydrogen gas in principle, and the other heat exchangers 1a and 1b absorb hydrogen gas in principle. The cycle 10 is sequentially divided into a sensible heat recovery period t1, a main period t2, and a precooling period t3, the cycle 20 is sequentially divided into a sensible heat recovery period t4, a main period t5, and a precooling period t6, and the cycle 30 is sequentially divided into a sensible heat recovery period t4, a precooling period t6. It is divided into a heat recovery period t7, a main period t8, and a pre-cooling period t9.

【0022】以下、期間t2から順番に動作を説明す
る。t2では、弁3aは開、弁3b,3cは閉、弁4a
は閉、弁4b,4cは開、熱交換器1aには内気が導入
され、熱交換器1b、1cには外気が導入される。これ
により、熱交換器1aが内気より吸熱し、熱交換器1
b,1cが外気に排熱する。
Hereinafter, the operation will be described in order from the period t2. At t2, the valve 3a is opened, the valves 3b and 3c are closed, and the valve 4a
Is closed, the valves 4b and 4c are opened, the inside air is introduced into the heat exchanger 1a, and the outside air is introduced into the heat exchangers 1b and 1c. As a result, the heat exchanger 1a absorbs heat from the inside air, and the heat exchanger 1a
b and 1c exhaust heat to the outside air.

【0023】t3では、弁4bが閉じられる。これによ
り、熱交換器1bは外気温度近傍まで予冷される。t4
では、弁3bは開、弁3a,3cは閉、弁4a,4bは
閉、弁4cは開、熱交換器1a、1bには内気が導入さ
れ、熱交換器1cには外気が導入される。これにより、
熱交換器1a,1bが吸熱、熱交換器1cが排熱を行
う。弁3a,4aが両方とも閉じているので、熱交換器
1aは自己の熱容量に蓄熱された顕熱(内気との間の温
度差×比熱×熱交換器1aの質量)の相当部分を内気に
与える。
At t3, the valve 4b is closed. Thereby, the heat exchanger 1b is pre-cooled to near the outside air temperature. t4
Then, the valve 3b is opened, the valves 3a and 3c are closed, the valves 4a and 4b are closed, the valve 4c is opened, the inside air is introduced into the heat exchangers 1a and 1b, and the outside air is introduced into the heat exchanger 1c. . This allows
The heat exchangers 1a and 1b absorb heat, and the heat exchanger 1c exhausts heat. Since both the valves 3a and 4a are closed, the heat exchanger 1a converts a considerable part of the sensible heat (temperature difference between the air and the internal air × specific heat × mass of the heat exchanger 1a) stored in its own heat capacity into the internal air. give.

【0024】t5では、弁4aが開かれ、内気温度程度
まで温度上昇した熱交換器1aが水素ガスを吸蔵する。
t6では、弁4cが閉じられる。これにより、熱交換器
1cは外気温度近傍まで予冷される。t7では、弁3c
は開、弁3a,3bは閉、弁4b,4cは閉、弁4aは
開、熱交換器1b、1cには内気が導入され、熱交換器
1aには外気が導入される。これにより、熱交換器1
b,1cが吸熱、熱交換器1aが排熱を行う。弁3b,
4bが両方とも閉じているので、熱交換器1bは自己の
熱容量に蓄熱された顕熱の相当部分を内気に与える。
At t5, the valve 4a is opened, and the heat exchanger 1a, whose temperature has risen to about the inside air temperature, stores hydrogen gas.
At t6, the valve 4c is closed. Thereby, the heat exchanger 1c is pre-cooled to near the outside air temperature. At t7, the valve 3c
Is open, the valves 3a and 3b are closed, the valves 4b and 4c are closed, the valve 4a is open, inside air is introduced into the heat exchangers 1b and 1c, and outside air is introduced into the heat exchanger 1a. Thereby, the heat exchanger 1
b and 1c absorb heat, and the heat exchanger 1a exhausts heat. Valve 3b,
Since both of the heat exchangers 4b are closed, the heat exchanger 1b gives a considerable portion of the sensible heat stored in its heat capacity to the inside air.

【0025】t8では、弁4bが開かれ、内気温度程度
まで温度上昇した熱交換器1bが水素ガスを吸蔵する。
t9では、弁4aが閉じられる。これにより、熱交換器
1aは外気温度近傍まで予冷される。次のt1では、弁
3aは開、弁3b,3cは閉、弁4a,4cは閉、弁4
bは開、熱交換器1a、1cには内気が導入され、熱交
換器1bには外気が導入される。これにより、熱交換器
1a,1cが吸熱、熱交換器1bが排熱を行う。弁3
c,4cが両方とも閉じているので、熱交換器1cは自
己の熱容量に蓄熱された顕熱の相当部分を内気に与え
る。
At t8, the valve 4b is opened, and the heat exchanger 1b, whose temperature has increased to about the inside air temperature, stores hydrogen gas.
At t9, the valve 4a is closed. Thereby, the heat exchanger 1a is pre-cooled to near the outside air temperature. At the next t1, the valve 3a is open, the valves 3b and 3c are closed, the valves 4a and 4c are closed, and the valve 4 is closed.
b is open, inside air is introduced into the heat exchangers 1a and 1c, and outside air is introduced into the heat exchanger 1b. Thereby, the heat exchangers 1a and 1c absorb heat, and the heat exchanger 1b performs exhaust heat. Valve 3
Since both c and 4c are closed, the heat exchanger 1c gives a considerable portion of the sensible heat stored in its own heat capacity to the inside air.

【0026】上記実施例では、冷房動作を説明したが暖
房動作も原理は同じであり、図2のタイミングチャート
において、放出動作と吸蔵動作とを入替えた後、放出動
作する熱交換器及びt1、t4、t7期間(予熱期間)
に水素ガス授受しない熱交換器に外気を与え、吸蔵動作
をする熱交換器及びt3、t6、t9期間(顕熱回収期
間)に水素ガス授受しない熱交換器に内気を与えればよ
い。
In the above embodiment, the cooling operation has been described, but the principle of the heating operation is the same. In the timing chart of FIG. 2, after the discharge operation and the occlusion operation are switched, the heat exchanger performing the discharge operation and t1, t4, t7 period (preheating period)
The outside air may be supplied to the heat exchanger that does not exchange hydrogen gas, and the inside air may be supplied to the heat exchanger that performs the occlusion operation and the heat exchanger that does not exchange hydrogen gas during t3, t6, and t9 (sensible heat recovery period).

【0027】(実施例2)他の実施例を図3を参照し、
冷房時の運転動作を例として説明する。この実施例は、
各熱交換器1a、1b,1cのダクト71、73、75
にそれぞれ温度センサ91〜93が個別に配設されてお
り、実施例1で説明した顕熱回収期間t1、t4、t7
の終了(言い換えれば主期間t2、t5、t8の開始)
を、温度センサ91〜93の温度更に言えば顕熱回収動
作中の熱交換器から導出される内気の温度に基づいて決
定するものである。
(Embodiment 2) Another embodiment will be described with reference to FIG.
An operation during cooling will be described as an example. This example is
Ducts 71, 73, 75 of each heat exchanger 1a, 1b, 1c
Temperature sensors 91 to 93 are individually arranged, and the sensible heat recovery periods t1, t4, t7 described in the first embodiment.
(In other words, the start of the main periods t2, t5, t8)
Is determined on the basis of the temperature of the temperature sensors 91 to 93, and more specifically, the temperature of the inside air derived from the heat exchanger during the sensible heat recovery operation.

【0028】具体的に説明すると、コントローラ9は、
現在、顕熱回収期間t1、t4、t7のいずれかである
ことを調べ、顕熱回収期間t1であれば熱交換器1cか
ら送出される内気の温度が所定のしきい値温度Tt1を
超えたかどうかを調べ、超えたら顕熱回収期間t1を終
了する。次に、現在、顕熱回収期間t4であれば熱交換
器1aから送出される内気の温度が所定のしきい値温度
Tt1を超えたかどうかを調べ、超えたら顕熱回収期間
t4を終了する。次に、現在、顕熱回収期間t7であれ
ば熱交換器1bから送出される内気の温度が所定のしき
い値温度Tt1を超えたかどうかを調べ、超えたら顕熱
回収期間t7を終了する。しきい値温度Tt1は内気温
度より所定温度(例えば摂氏5度程度)低い温度とされ
る。
More specifically, the controller 9 comprises:
At present, it is checked whether the period is the sensible heat recovery period t1, t4, or t7. If the sensible heat recovery period is t1, whether the temperature of the inside air sent from the heat exchanger 1c exceeds a predetermined threshold temperature Tt1. The sensible heat recovery period t1 is terminated. Next, if the present time is the sensible heat recovery period t4, it is checked whether or not the temperature of the inside air sent from the heat exchanger 1a exceeds a predetermined threshold temperature Tt1, and if it exceeds, the sensible heat recovery period t4 ends. Next, if the present time is the sensible heat recovery period t7, it is checked whether or not the temperature of the inside air sent from the heat exchanger 1b exceeds a predetermined threshold temperature Tt1, and if it exceeds, the sensible heat recovery period t7 ends. The threshold temperature Tt1 is a predetermined temperature (for example, about 5 degrees Celsius) lower than the inside air temperature.

【0029】なお、暖房時には、上記した温度比較にお
いて、顕熱回収中の熱交換器から送出される内気の温度
が所定のしきい値温度Tt2未満かどうかを調べ、未満
となったら顕熱回収期間を終了すればよい。このように
すれば、無駄に顕熱回収期間を延長することなく顕熱回
収を充分に行うことができる。
At the time of heating, in the above temperature comparison, it is checked whether or not the temperature of the inside air sent from the heat exchanger during the recovery of the sensible heat is lower than a predetermined threshold temperature Tt2. The period may be ended. In this way, the sensible heat recovery can be sufficiently performed without uselessly extending the sensible heat recovery period.

【0030】(実施例3)他の実施例を図2を参照し、
冷房時の運転動作を例として説明する。この実施例は、
実施例1で説明した予冷期間t3、t6、t9におい
て、予冷中の熱交換器以外の熱交換器の水素ガス吸蔵及
び水素ガス放出も予冷中の熱交換器と同様に停止するも
のである。
(Embodiment 3) Another embodiment will be described with reference to FIG.
An operation during cooling will be described as an example. This example is
In the pre-cooling periods t3, t6, and t9 described in the first embodiment, the hydrogen gas occlusion and the hydrogen gas release of the heat exchangers other than the heat exchanger during the pre-cooling are also stopped similarly to the heat exchanger during the pre-cooling.

【0031】具体的に説明すると、予冷期間t3におい
て圧縮機2を停止し、弁3a、3b、3c及び4a、4
b、4cを閉じる。このようにすれば、前述のように熱
交換器1bが吸蔵温度から内気温度近傍まで顕熱冷却
(予冷)されるとともに、熱交換器1aがこの予冷期間
t3において顕熱回収を行い、熱交換器1cは顕熱冷却
をおこなって外気温度近傍まで冷却される。
More specifically, the compressor 2 is stopped during the precooling period t3, and the valves 3a, 3b, 3c and 4a, 4a,
b and 4c are closed. With this configuration, as described above, the heat exchanger 1b is sensibly cooled (pre-cooled) from the storage temperature to the vicinity of the inside air temperature, and the heat exchanger 1a performs sensible heat recovery during the pre-cooling period t3, thereby exchanging heat. The vessel 1c performs sensible heat cooling to be cooled to a temperature near the outside air temperature.

【0032】同様に、予冷期間t6において圧縮機2を
停止し、弁3a、3b、3c及び4a、4b、4cを閉
じ、予冷期間t9において圧縮機2を停止し、弁3a、
3b、3c及び4a、4b、4cを閉じれば、それぞれ
同様の作用が生じる。このようにすれば、期間t3、t
6、t9において圧縮機を停止できるので、圧縮機動力
を節減することができる。
Similarly, the compressor 2 is stopped during the pre-cooling period t6, the valves 3a, 3b, 3c and 4a, 4b, 4c are closed, and the compressor 2 is stopped during the pre-cooling period t9, and the valves 3a,
Closing 3b, 3c and 4a, 4b, 4c has the same effect. By doing so, the periods t3, t
6. Since the compressor can be stopped at t9, the power for the compressor can be reduced.

【0033】暖房運転時の動作も上記と同じであるが、
図2において、水素ガス放出動作と水素ガス吸蔵動作と
を逆転すればよい。 (実施例4)他の実施例を図2を参照して冷房時の運転
動作を説明する。この実施例は、実施例1で説明した顕
熱回収期間t1、t4、t7において、顕熱冷却動作
(予冷後の熱交換器温度から水素ガス放出温度まで熱交
換器の温度を冷却する動作)を行う熱交換器の内気流量
を削減(停止でもよい)するものである。
The operation during the heating operation is the same as above,
In FIG. 2, the operation of releasing hydrogen gas and the operation of storing hydrogen gas may be reversed. Embodiment 4 Another embodiment will be described with reference to FIG. In this embodiment, in the sensible heat recovery periods t1, t4, and t7 described in the first embodiment, the sensible heat cooling operation (the operation of cooling the temperature of the heat exchanger from the pre-cooled heat exchanger temperature to the hydrogen gas release temperature). To reduce (or stop) the inside air flow rate of the heat exchanger that performs the above.

【0034】具体的に説明すると、顕熱回収期間t4に
おいて熱交換器1bに導入する内気流量、顕熱回収期間
t7において熱交換器1cに導入する内気流量、顕熱回
収期間t1において熱交換器1aに導入する内気流量を
それぞれダンパ8の制御により0とするか又は部分的に
削減するものである。このようにすれば、自己の水素ガ
ス放出による顕熱冷却動作中の熱交換器の温度を速やか
に水素ガス放出温度まで低下することができ、正常な内
気冷却を早期に開始することができるまた、水素ガス放
出温度に達せず、水素ガス放出温度を基準としてまだ高
温である熱交換器から出た充分に冷却されない内気が室
内に送出されることがなく、冷房フィーリングを改善す
ることもできる。
More specifically, the inside air flow introduced into the heat exchanger 1b during the sensible heat recovery period t4, the inside air flow introduced into the heat exchanger 1c during the sensible heat recovery period t7, and the heat exchanger during the sensible heat recovery period t1 The inside air flow introduced into 1a is set to 0 or partially reduced by controlling the damper 8, respectively. With this configuration, the temperature of the heat exchanger during the sensible heat cooling operation due to the release of hydrogen gas can be rapidly reduced to the hydrogen gas release temperature, and normal inside air cooling can be started early. In addition, the inside air that does not reach the hydrogen gas release temperature and is still not sufficiently cooled from the heat exchanger that is still high based on the hydrogen gas release temperature is not sent into the room, and the cooling feeling can be improved. .

【0035】暖房運転時の動作も上記と同じであり、図
2において水素ガス放出動作と水素ガス吸蔵動作とを逆
転すればよい。実施例1の装置の冷房出力の時間変化を
図4に示し、実施例2の装置の冷房出力の時間変化を図
5に示し、実施例3の装置の冷房出力の時間変化を図6
に示し、図7に示す従来の装置の冷房出力の時間変化を
図9に示す。ただし、各装置の構造、及び上記で説明し
た以外の運転条件は同じとする。これらの図から、実施
例1〜3の装置は、従来の装置より冷房出力の変動が小
さいことがわかる。
The operation during the heating operation is the same as above, and the operation of releasing the hydrogen gas and the operation of storing the hydrogen gas in FIG. 2 may be reversed. FIG. 4 shows the time change of the cooling output of the device of the first embodiment, FIG. 5 shows the time change of the cooling output of the device of the second embodiment, and FIG. 6 shows the time change of the cooling output of the device of the third embodiment.
FIG. 9 shows the change over time of the cooling output of the conventional apparatus shown in FIG. However, the structure of each device and the operating conditions other than those described above are the same. From these figures, it can be seen that the devices of Examples 1 to 3 have smaller fluctuations in the cooling output than the conventional devices.

【0036】なお、上記各実施例において、熱交換器は
4個以上とすることができ、また、熱媒及びその輸送配
管系は通常の空調又は冷凍又はヒートポンプ装置に用い
られるものを用いることができることは当然である。更
に、コントローラによる上記時間又は検出温度による弁
3a、3b、3c、4a、4b、4cや圧縮機2、ダン
パ8の制御は極めて簡単であるので、フローチャート又
は制御回路図の添付は省略する。
In each of the above embodiments, the number of heat exchangers may be four or more, and the heat medium and its transport piping system may be those used in ordinary air conditioning or refrigeration or heat pump devices. What you can do is obvious. Further, since the control of the valves 3a, 3b, 3c, 4a, 4b, 4c, the compressor 2, and the damper 8 by the controller based on the time or the detected temperature is extremely simple, the flowchart or the control circuit diagram is omitted.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の装置の一実施例を示すブロック図であ
る。
FIG. 1 is a block diagram showing one embodiment of the apparatus of the present invention.

【図2】図1の装置の動作サイクル図である。FIG. 2 is an operation cycle diagram of the device of FIG. 1;

【図3】実施例2の装置のを示すブロック図である。FIG. 3 is a block diagram illustrating an apparatus according to a second embodiment.

【図4】実施例1の装置の冷房出力の時間変化を示す図
である。
FIG. 4 is a diagram illustrating a change over time of a cooling output of the apparatus according to the first embodiment.

【図5】実施例2の装置の冷房出力の時間変化を示す図
である。
FIG. 5 is a diagram illustrating a change over time of a cooling output of the apparatus according to the second embodiment.

【図6】実施例3の装置の冷房出力の時間変化を示す図
である。
FIG. 6 is a diagram illustrating a change over time of a cooling output of the apparatus according to the third embodiment.

【図7】従来の装置を示すブロック図である。FIG. 7 is a block diagram showing a conventional device.

【図8】図7の装置の動作サイクル図である。8 is an operation cycle diagram of the device of FIG.

【図9】図7の装置の冷房出力の時間変化を示す図であ
る。
FIG. 9 is a diagram showing a change over time of a cooling output of the apparatus of FIG. 7;

【符号の説明】[Explanation of symbols]

1a,1b,1cは熱交換器、2は圧縮機、3a,3
b、3cは低圧弁、4a、4b、4cは高圧弁、5は高
圧管路、6は低圧管路、70〜79はダクト、8はダン
パ、9はコントローラ(制御手段)、11、12はファ
ン(熱媒輸送手段)。
1a, 1b, 1c are heat exchangers, 2 is a compressor, 3a, 3
b, 3c are low-pressure valves, 4a, 4b, 4c are high-pressure valves, 5 is a high-pressure pipe, 6 is a low-pressure pipe, 70 to 79 are ducts, 8 is a damper, 9 is a controller (control means), and 11 and 12 are Fan (heat medium transport means).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三浦 正芳 愛知県刈谷市豊田町2丁目1番地 株式 会社豊田自動織機製作所内 (72)発明者 藤田 信雄 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 (72)発明者 青木 博史 愛知県愛知郡長久手町大字長湫字横道41 番地の1 株式会社豊田中央研究所内 (72)発明者 三井 宏之 愛知県愛知郡長久手町大字長湫字横道41 番地の1 株式会社豊田中央研究所内 (56)参考文献 特開 昭63−108168(JP,A) 特開 平6−257884(JP,A) 特開 平7−55284(JP,A) (58)調査した分野(Int.Cl.7,DB名) F25B 17/12 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masayoshi Miura 2-1-1 Toyota-cho, Kariya-shi, Aichi Prefecture Inside Toyota Industries Corporation (72) Inventor Nobuo Fujita 1-Toyota-cho, Toyota-shi, Aichi Prefecture Toyota Motor Vehicle Stock Inside the company (72) Inventor Hiroshi Aoki 41-41, Chuchu-ji, Yoji, Nagakute-cho, Aichi-gun, Aichi Prefecture Inside Toyota Central R & D Laboratories Co., Ltd. (56) References JP-A-63-108168 (JP, A) JP-A-6-257884 (JP, A) JP-A-7-55284 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) F25B 17/12

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】金属水素化物を収蔵して複数種類の熱媒と
順次に熱授受する3個以上の熱交換器と、水素ガスを圧
縮する圧縮機と、水素ガス放出モードの前記熱交換器か
ら放出された低圧水素ガスを低圧弁を介して前記圧縮機
に導入する低圧管路と、前記圧縮機から吐出された高圧
水素ガスを高圧弁を介して水素ガス吸蔵モードの前記熱
交換器に吸蔵させる高圧管路と、前記各弁の順次開閉に
より前記熱交換器の前記両モードを交互に切り換えて前
記各熱交換器に水素ガス吸蔵期間及び水素ガス放出期間
を交互に設定する制御手段とを備える圧縮式金属水素化
物ヒートポンプにおいて、 前記制御手段は、冷房動作時において前記水素ガス吸蔵
モードの前記熱交換器の個数を前記水素ガス放出モード
の前記熱交換器の個数より多く設定する冷房制御動作
と、暖房動作時において前記水素ガス放出モードの前記
熱交換器の個数を前記水素ガス吸蔵モードの前記熱交換
器の個数より多く設定する暖房制御動作との少なくとも
一方を実施するものであることを特徴とする圧縮式金属
水素化物ヒートポンプ。
1. A heat exchanger for storing hydrogenated metal and sequentially exchanging heat with a plurality of types of heat medium, a compressor for compressing hydrogen gas, and the heat exchanger in a hydrogen gas release mode. A low-pressure pipe for introducing the low-pressure hydrogen gas discharged from the compressor to the compressor through a low-pressure valve, and the high-pressure hydrogen gas discharged from the compressor to the heat exchanger in a hydrogen gas storage mode through a high-pressure valve. A high-pressure pipe to be occluded, and control means for alternately switching the two modes of the heat exchanger by sequentially opening and closing the respective valves to alternately set a hydrogen gas occlusion period and a hydrogen gas release period to the heat exchangers. A compression type metal hydride heat pump comprising: a cooling system for setting the number of the heat exchangers in the hydrogen gas storage mode to be larger than the number of the heat exchangers in the hydrogen gas release mode during a cooling operation. And at least one of a heating control operation for setting the number of the heat exchangers in the hydrogen gas release mode to be larger than the number of the heat exchangers in the hydrogen gas storage mode during the heating operation. A compression type metal hydride heat pump characterized by the above-mentioned.
【請求項2】前記制御手段は、冷房動作時における前記
水素ガス吸蔵モードの前記熱交換器の個数を前記水素ガ
ス放出モードの前記熱交換器の個数より多く設定し、か
つ、暖房動作時における前記水素ガス放出モードの前記
熱交換器の個数を前記水素ガス吸蔵モードの前記熱交換
器の個数より多く設定するものである請求項1記載の圧
縮式金属水素化物ヒートポンプ。
The control means sets the number of the heat exchangers in the hydrogen gas storage mode during the cooling operation to be greater than the number of the heat exchangers in the hydrogen gas release mode, and controls the number of the heat exchangers during the heating operation. 2. The compression metal hydride heat pump according to claim 1, wherein the number of the heat exchangers in the hydrogen gas release mode is set to be larger than the number of the heat exchangers in the hydrogen gas storage mode.
【請求項3】前記制御手段は、冷房時に、前記水素ガス
吸蔵期間終了後で前記水素ガス放出期間開始前の前記熱
交換器を外部熱源からの前記熱媒により予冷する予冷期
間を設定するものである請求項1記載の圧縮式金属水素
化物ヒートポンプ。
3. The cooling means sets a pre-cooling period in which the heat exchanger is pre-cooled by the heat medium from an external heat source after the end of the hydrogen gas storage period and before the start of the hydrogen gas release period during cooling. The compression metal hydride heat pump according to claim 1, wherein
【請求項4】前記制御手段は、暖房時に、前記水素ガス
放出期間終了後で前記水素ガス吸蔵期間開始前の前記熱
交換器を外部熱源からの前記熱媒により予熱する予熱期
間を設定するものである請求項1記載の圧縮式金属水素
化物ヒートポンプ。
4. The heating device according to claim 1, wherein said control means sets a preheating period in which the heat exchanger is preheated by the heat medium from an external heat source after the end of the hydrogen gas release period and before the start of the hydrogen gas storage period during heating. The compression metal hydride heat pump according to claim 1, wherein
【請求項5】前記制御手段は、冷房時に、前記水素ガス
放出期間終了後で前記水素ガス吸蔵期間開始前の前記熱
交換器で被冷却対象冷却用の前記熱媒を冷却する顕熱回
収期間を設定するものである請求項1記載の圧縮式金属
水素化物ヒートポンプ。
5. The sensible heat recovery period for cooling the heat medium for cooling the object to be cooled by the heat exchanger after the end of the hydrogen gas release period and before the start of the hydrogen gas storage period during cooling. The compression type metal hydride heat pump according to claim 1, wherein
【請求項6】前記制御手段は、暖房時に、前記水素ガス
吸蔵期間終了後で前記水素ガス放出期間開始前の前記熱
交換器で被加熱対象加熱用の前記熱媒を加熱する顕熱回
収期間を設定するものである請求項1記載の圧縮式金属
水素化物ヒートポンプ。
6. The sensible heat recovery period in which the heating means heats the heating medium for heating the object to be heated by the heat exchanger after the end of the hydrogen gas storage period and before the start of the hydrogen gas release period during heating. The compression type metal hydride heat pump according to claim 1, wherein
【請求項7】前記制御手段は、前記予熱又は予冷期間の
少なくとも一部において、前記圧縮機の能力を削減乃至
停止するものである請求項3又は4記載の圧縮式金属水
素化物ヒートポンプ。
7. The compression metal hydride heat pump according to claim 3, wherein the control means reduces or stops the capacity of the compressor during at least a part of the preheating or precooling period.
【請求項8】前記制御手段は、前記顕熱回収期間の少な
くとも一部において、被冷却対象冷却用の前記熱媒の輸
送を行う熱媒輸送手段の能力を削減乃至停止するもので
ある請求項5又は6記載の圧縮式金属水素化物ヒートポ
ンプ。
8. The control means reduces or stops the ability of the heat medium transport means for transporting the heat medium for cooling the object to be cooled during at least a part of the sensible heat recovery period. 7. The compression metal hydride heat pump according to 5 or 6.
JP00051895A 1995-01-06 1995-01-06 Compression metal hydride heat pump Expired - Fee Related JP3286485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00051895A JP3286485B2 (en) 1995-01-06 1995-01-06 Compression metal hydride heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00051895A JP3286485B2 (en) 1995-01-06 1995-01-06 Compression metal hydride heat pump

Publications (2)

Publication Number Publication Date
JPH08189721A JPH08189721A (en) 1996-07-23
JP3286485B2 true JP3286485B2 (en) 2002-05-27

Family

ID=11475998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00051895A Expired - Fee Related JP3286485B2 (en) 1995-01-06 1995-01-06 Compression metal hydride heat pump

Country Status (1)

Country Link
JP (1) JP3286485B2 (en)

Also Published As

Publication number Publication date
JPH08189721A (en) 1996-07-23

Similar Documents

Publication Publication Date Title
JP5132314B2 (en) Automotive air conditioner with absorption heat pump
JP3256878B2 (en) Apparatus and method for heating and cooling space used in automobile
US20030182955A1 (en) Vehicular air conditioner
JP2020172178A (en) On-vehicle temperature controller
JPH0810093B2 (en) Control method for air conditioning system using metal hydride
EP0602665A2 (en) Cooling and heating equipment for vehicles using hydrogen absorbing alloys
US4736596A (en) Air conditioner
JPH11344263A (en) Refrigerating cycle with bypass tube
JP3286485B2 (en) Compression metal hydride heat pump
EP1477348B1 (en) Refrigeration cycle device
JP3114369B2 (en) Heat pump type air conditioning system
JP3126086B2 (en) Compression metal hydride heat pump
JP2883789B2 (en) Hydrogen fueled vehicles
JP3646401B2 (en) Air conditioner
US5048299A (en) Air conditioner for an automobile
JP2985759B2 (en) Heat pump system
JPH05272833A (en) Control method for freezing output of adsorption type freezer and adsorption type freezer capable of controlling freezing output
JP3622537B2 (en) Air conditioner
JP4201488B2 (en) Refrigeration equipment
JPH06211030A (en) Cooling device for automobile
JPH0979674A (en) Air conditioner
KR20030046151A (en) Cooling and heating air conditioning system
JPH10205932A (en) Air conditioner
JPH09170846A (en) On-vehicle chemical heat pump
JP2977375B2 (en) Air conditioner

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080308

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110308

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees