JP3278032B2 - Rotor pole polarity detection method for permanent magnet synchronous motor - Google Patents

Rotor pole polarity detection method for permanent magnet synchronous motor

Info

Publication number
JP3278032B2
JP3278032B2 JP15510895A JP15510895A JP3278032B2 JP 3278032 B2 JP3278032 B2 JP 3278032B2 JP 15510895 A JP15510895 A JP 15510895A JP 15510895 A JP15510895 A JP 15510895A JP 3278032 B2 JP3278032 B2 JP 3278032B2
Authority
JP
Japan
Prior art keywords
permanent magnet
phase
rotor
pole
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15510895A
Other languages
Japanese (ja)
Other versions
JPH0866082A (en
Inventor
明秀 真下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP15510895A priority Critical patent/JP3278032B2/en
Publication of JPH0866082A publication Critical patent/JPH0866082A/en
Application granted granted Critical
Publication of JP3278032B2 publication Critical patent/JP3278032B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、永久磁石形同期電動
機の回転子磁極極性を検出する検出法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a detection method for detecting the polarity of a rotor magnetic pole of a permanent magnet synchronous motor.

【0002】[0002]

【従来の技術】永久磁石形同期電動機は最大トルクを発
生させるために界磁極の絶対位置を検出する必要があ
る。界磁極の位置を検出する方法としては、レゾルバを
用いる方法がある。これはシンクロまたは類似の装置で
あって、回転子は機械的に駆動されて回転子角度の正弦
または余弦に相当する電気出力を生ずるようになってい
る。これは回転子と同軸上に別個のコイル状のセンサを
設け、回転子の位置に応じて出力電圧を変化させるもの
で、この電圧値により回転子の位置を知ることができ
る。またあらかじめ位置合わせを行うため、回転子位置
が判れば自ずと回転子磁極の極性を知ることができる。
またホール素子を組み合わせて磁極の位置を検出する方
法がある。この方法はホール素子を永久磁石形同期電動
機の電機子巻線の相数と等しい数だけ使用し、電機子巻
線と一定の関係を保って電動機に固定する。回転子軸上
には界磁極と一体になって回転する信号円板を設け、信
号円板がホール素子を通過するときに信号を与え、これ
が磁極の位置信号となる。センサレス位置検出法として
回転子の突極性を利用する方法がある。回転子が突極性
を持つ場合、各相のリアクタンスには回転子の位置によ
って異なるので、リアクタンスを検出して回転子の磁極
位置を検出できる。また、各相の電圧,電流の瞬時値を
3相−2相変換し、d軸,q軸とのずれ角をもとめ回転
子の磁極位置を検出する方法がある。
2. Description of the Related Art A permanent magnet synchronous motor needs to detect an absolute position of a field pole in order to generate a maximum torque. As a method for detecting the position of the field pole, there is a method using a resolver. This is a synchro or similar device in which the rotor is driven mechanically to produce an electrical output corresponding to the sine or cosine of the rotor angle. In this method, a separate coil-shaped sensor is provided coaxially with the rotor, and the output voltage is changed according to the position of the rotor. The position of the rotor can be known from the voltage value. In addition, since the positioning is performed in advance, if the rotor position is known, the polarity of the rotor magnetic pole can be naturally known.
There is also a method of detecting the position of a magnetic pole by combining Hall elements. In this method, the Hall elements are used in a number equal to the number of phases of the armature windings of the permanent magnet synchronous motor, and are fixed to the motor while maintaining a fixed relationship with the armature windings. A signal disk that rotates integrally with the field pole is provided on the rotor shaft, and a signal is given when the signal disk passes through the Hall element, and this is a position signal of the magnetic pole. As a sensorless position detection method, there is a method that utilizes the saliency of the rotor. When the rotor has saliency, the reactance of each phase differs depending on the position of the rotor. Therefore, the reactance can be detected to detect the magnetic pole position of the rotor. In addition, there is a method in which the instantaneous values of the voltage and current of each phase are converted into three-phase to two-phase, and the deviation angle between the d-axis and the q-axis is determined to detect the magnetic pole position of the rotor.

【0003】[0003]

【発明が解決しようとする課題】従来の永久磁石形同期
電動機はホール素子などの磁極位置センサを設けるた
め、電動機体格が大きくなりセンサーからのケーブルも
必要となる。また、センサのコストや製造する際の取付
けや位置合わせに手間と時間を要するなど、種々の問題
があった。これらの事態を解決するためにセンサレス化
を進める必要があるが、磁極位置が検出できても磁極の
極性即ちN極かS極かの判別ができないため、電機子巻
線に流す電流の方向を決定できないという問題があっ
た。
Since the conventional permanent magnet type synchronous motor is provided with a magnetic pole position sensor such as a Hall element, the size of the motor becomes large and a cable from the sensor is required. In addition, there are various problems such as the cost of the sensor and the time and effort required for mounting and positioning during manufacture. In order to solve these situations, it is necessary to promote sensorless operation. However, even if the magnetic pole position can be detected, it is not possible to determine the polarity of the magnetic pole, that is, the N pole or the S pole. There was a problem that it could not be decided.

【0004】この発明は、検出用センサを用いることな
く永久磁石形同期電動機の磁極の位置と極性とを検出す
ることができる回転子磁極の極性検出法を提供すること
を目的とする。
An object of the present invention is to provide a rotor magnetic pole polarity detection method capable of detecting the position and polarity of the magnetic pole of a permanent magnet synchronous motor without using a detection sensor.

【0005】[0005]

【課題を解決するための手段】回転子表面に永久磁石を
備えた永久磁石形同期電動機において、固定子鉄心の磁
束密度を磁化特性上の変曲点付近に磁化させ、3相の固
定子巻線のうち1相の巻線と他の短絡された2相との間
に正ならびに負方向のパルス電圧を印加する工程と、パ
ルス電圧を印加した相の印加後過渡時の両方の応答電流
の大きさを検出する工程と、検出された応答電流の差の
有無からパルス電圧印加巻線に対向する回転子の永久磁
石の部位が磁極中心であるか極間であるかを判定する工
程と、パルス電圧印加巻線に対向する回転子の永久磁石
の部位が磁極中心のとき、前記検出された応答電流が固
定子鉄心の磁束密度の増磁方向か減磁方向かを判定する
工程と、その判定結果からパルス電圧を印加した相に対
向する磁極がN極かS極かを判別する工程とからなるこ
とによって、上記目的を達成する。
SUMMARY OF THE INVENTION In a permanent magnet synchronous motor having a permanent magnet on a rotor surface, a three-phase stator winding is formed by magnetizing a magnetic flux density of a stator core near an inflection point on a magnetization characteristic. Applying a positive and negative pulse voltage between one phase winding of the wire and the other short-circuited two phases, and a response current of both the transients after the application of the pulse voltage applied phase. A step of detecting the magnitude, and a step of determining whether the portion of the permanent magnet of the rotor facing the pulse voltage application winding is at the center of the magnetic pole or between the poles based on the presence or absence of the detected response current difference, When the position of the permanent magnet of the rotor facing the pulse voltage application winding is the center of the magnetic pole, a step of determining whether the detected response current is in the direction of increasing or decreasing the magnetic flux density of the stator core, The magnetic pole opposite to the phase to which the pulse voltage was applied is the N pole By comprising the step of determining whether the S-pole, to achieve the above object.

【0006】また、回転子鉄心の磁束密度を磁化特性上
の変曲点付近に磁化させ、3相の固定子巻線のうち1相
の巻線と他の短絡された2相との間に正ならびに負方向
のパルス電圧を印加する工程と、パルス電圧を印加した
相の印加後過渡時の両方の応答電流の大きさを検出する
工程と、検出された応答電流の差の有無からパルス電圧
印加巻線に対向する回転子の永久磁石の部位が磁極中心
であるか極間であるかを判定する工程と、パルス電圧印
加巻線に対向する回転子の永久磁石の部位が磁極中心の
とき、前記検出された応答電流が固定子鉄心の磁束密度
の増磁方向か減磁方向かを判定する工程と、その判定結
果からバルス電圧を印加した相に対向する磁極がN極か
S極かを判別する工程とからなるものとする。
Further, the magnetic flux density of the rotor core is magnetized in the vicinity of the inflection point on the magnetizing characteristic, so that one of the three-phase stator windings is connected to the other two short-circuited phases. A step of applying a positive or negative direction pulse voltage, a step of detecting the magnitude of both response currents during a transient after application of the phase to which the pulse voltage is applied, and a step of applying a pulse voltage based on the presence or absence of a difference between the detected response currents. A step of determining whether the permanent magnet portion of the rotor facing the applied winding is at the center of the magnetic pole or between the poles, and when the permanent magnet portion of the rotor facing the pulse voltage applying winding is at the center of the magnetic pole Determining whether the detected response current is in the direction of increasing or demagnetizing the magnetic flux density of the stator core; and, based on the determination result, whether the magnetic pole facing the phase to which the pulse voltage has been applied is an N pole or an S pole. Is determined.

【0007】また、永久磁石から発生する磁束による固
定子鉄心又は回転子鉄心の磁束密度が磁化特性上の変曲
点付近に達していないときには、固定子巻線に直流励磁
して固定子鉄心又は回転子鉄心の磁束密度を磁化特性上
の変曲点に到達させた後に正ならびに負方向にパルス電
圧を重畳させ、パルス電圧を印加した相に対応する磁極
がN極かS極かを判別するようにすれば、回転子磁極の
極性を検出するうえに好適である。
[0007] When the magnetic flux density of the stator core or the rotor core due to the magnetic flux generated from the permanent magnet does not reach the vicinity of the inflection point on the magnetization characteristics, the stator winding is DC-excited to excite the stator core or the stator core. After the magnetic flux density of the rotor core reaches the inflection point on the magnetization characteristic, a pulse voltage is superimposed in the positive and negative directions, and it is determined whether the magnetic pole corresponding to the phase to which the pulse voltage is applied is the N pole or the S pole. This is suitable for detecting the polarity of the rotor magnetic pole.

【0008】[0008]

【作用】この発明は、回転子の磁極極性で異なる固定子
巻線のインダクタンスを、巻線に印加した電圧による鉄
心磁束密度変化に対応する電流により検出して、前記固
定子巻線の相に対応する永久磁石の磁極の極性の判別を
行うものである。即ち、図12に示す固定子鉄心又は回
転子鉄心の磁化特性と磁束密度との関係を示す線図にお
いて、鉄心の磁束密度Bを図12の磁化特性上の変曲点
O付近とした場合に、固定子巻線に磁束を増磁する方向
に電流を流したときと減磁する方向に電流を流したとき
では磁束の変化が異なり、減磁方向の電流変化H2 に対
する磁束変化量が大きく、増磁方向の電流変化H1 に対
する磁束量変化が小さくなる。インダクタンスは磁束変
化量に比例するので、増磁方向のときは減磁方向のとき
に比べて鉄心に対応する固定子巻線のインダクタンスは
小さくなる。このインダクタンスの違いは、図13の鉄
心における電圧印加後の電流変化を示した特性図のよう
に、固定子巻線より鉄心に電圧V1 を印加すると鉄心の
前記した磁化特性より増磁方向電流はA1 、減磁方向電
流はA2 のごとく流れる。従って、図14に示すように
パルス電圧Vp を印加したときは増磁方向電流はAp1
ごとく変化し、減磁方向電流はAp2のごとく変化し電流
の立ち上がりに差としてでてくる。
According to the present invention, the inductance of a stator winding different in the magnetic pole polarity of a rotor is detected by a current corresponding to a change in magnetic flux density of a core caused by a voltage applied to the winding, and the phase of the stator winding is detected. This is to determine the polarity of the magnetic pole of the corresponding permanent magnet. That is, in the diagram showing the relationship between the magnetic property and the magnetic flux density of the stator core or the rotor core shown in FIG. 12, the magnetic flux density B of the iron core is set to be near the inflection point O on the magnetic property of FIG. , different changes in the magnetic flux when a current flows in a direction to demagnetize a when current flows in the direction of Zo磁magnetic flux in the stator windings, large flux change amount for demagnetization direction of current change H 2 , the amount of magnetic flux change with respect to Zo磁direction of current change H 1 is reduced. Since the inductance is proportional to the amount of change in magnetic flux, the inductance of the stator winding corresponding to the iron core in the direction of demagnetization is smaller than in the direction of demagnetization. This difference in inductance, as shown in Figure characteristics showing current change after the application of a voltage in the iron core of FIG. 13, the above-mentioned magnetic properties than Zo磁direction current of the core by applying a voltages V 1 to the core from the stator winding Flows as A 1 , and the demagnetizing current flows as A 2 . Therefore, Zo磁direction current when applying a pulse voltage V p as shown in FIG. 14 is changed as in A p1, demagnetization direction current comes out as a difference in the rise of the changed current as the A p2.

【0009】図15は永久磁石形同期電動機の断面図で
ある。図15において、回転子軸である回転子鉄心1の
外径側に円筒形の永久磁石2が取付けられ径方向に着磁
され、回転子を構成している。この回転子の外径側に電
機子鉄心である固定子鉄心3が配置されて、この固定子
鉄心3に電機子巻線である固定子巻線U相巻線(正方
向)4、U相巻線(負方向)5、V相巻線(正方向)
6、V相巻線(負方向)7、W相巻線(正方向)8、W
相巻線(負方向)9が巻かれている。このような永久磁
石形同期電動機において、固定子鉄心3又は回転子鉄心
1の磁束密度を磁化特性上の変曲点付近に磁化させた場
合には、前記したように巻線相に正ならびに負方向のパ
ルス電圧を印加した過渡時に、鉄心の磁束密度の増磁方
向に電流が流れたときは磁束変化量が少なく応答電流は
大きく、減磁方向に電流が流れたときは磁束変化量が大
きく応答電流は小さい。従って、印加巻線相の電流によ
り発生する磁束と、前記した永久磁石2による磁束が同
方向に固定子鉄心3又は回転子鉄心1に通るときは増磁
となり、印加相の電流による磁束と永久磁石2による磁
束が反対方向に通るときは減磁となる。このようにして
両方の応答電流の大きさから固定子巻線のパルス電圧印
加相に対向する永久磁石磁極の極性を判定することがで
きる。
FIG. 15 is a sectional view of a permanent magnet type synchronous motor. In FIG. 15, a cylindrical permanent magnet 2 is mounted on an outer diameter side of a rotor core 1 which is a rotor shaft, and is magnetized in a radial direction to constitute a rotor. A stator core 3 which is an armature core is arranged on the outer diameter side of the rotor, and a stator winding U-phase winding (positive direction) 4 and a U-phase Winding (negative direction) 5, V-phase winding (positive direction)
6, V-phase winding (negative direction) 7, W-phase winding (positive direction) 8, W
A phase winding (negative direction) 9 is wound. In such a permanent magnet type synchronous motor, when the magnetic flux density of the stator core 3 or the rotor core 1 is magnetized in the vicinity of the inflection point on the magnetization characteristics, the winding phase is positive and negative as described above. During the transient of applying a pulse voltage in the direction, when the current flows in the direction of increasing the magnetic flux density of the iron core, the amount of change in magnetic flux is small and the response current is large, and when the current flows in the direction of demagnetization, the amount of change in magnetic flux is large. The response current is small. Therefore, when the magnetic flux generated by the current of the applied winding phase and the magnetic flux generated by the permanent magnet 2 pass through the stator core 3 or the rotor core 1 in the same direction, the magnetic flux is increased, and the magnetic flux generated by the applied phase current becomes permanent. When the magnetic flux from the magnet 2 passes in the opposite direction, demagnetization occurs. In this way, the polarity of the permanent magnet magnetic pole facing the pulse voltage application phase of the stator winding can be determined from the magnitude of both response currents.

【0010】また、永久磁石から発生する磁束により固
定子鉄心3又は回転子鉄心1の磁束密度が磁化特性上の
変曲点に達していないときは、固定子巻線に直流励磁し
て固定子鉄心3又は回転子鉄心1の磁束密度を磁化特性
上の変曲点付近に到達さることにより、前記と同じ方法
で回転子磁極の極性を判別することができる。
When the magnetic flux density of the stator core 3 or the rotor core 1 does not reach the inflection point on the magnetization characteristics due to the magnetic flux generated from the permanent magnet, the stator winding is DC-excited and the stator is excited. By reaching the magnetic flux density of the iron core 3 or the rotor iron core 1 near the inflection point on the magnetization characteristic, the polarity of the rotor magnetic pole can be determined in the same manner as described above.

【0011】[0011]

【実施例】図1は永久磁石形同期電動機において永久磁
石の磁極がU相の真下にある場合の磁石及び電流による
磁束を示す図で、(A)はN極が真下にある場合を示す
図、(B)はS極が真下にある場合を示す図である。図
1は固定子巻線を短節,集中巻きとしている図15と同
様の構成であり、図15と同じ部位は同じ符号を付し説
明を省略する。図1において、固定子鉄心3は、永久磁
石2から発生する磁束により固定子鉄心3の磁束密度が
磁化特性上の変曲点付近に達するように構成してある。
この場合にUの相固定子鉄心の真下に磁極が存在すると
き、V,W相の巻線を短絡し、U−VW相間にパルス電
圧を印加する。このときU,V,W相の電流が図1
す如く流れると、磁石による磁束10は実線矢印の方向
に流れ、電流による磁束11は破線矢印の方向に流れ
る。その結果U相の真下にある磁極がN極のとき電流は
増磁方向となり、U相の真下にある磁極がS極のとき電
流は減磁方向となる。このため固定子巻線の電流の検出
値が大きければU相の真下にある磁極はN極、固定子巻
線の応答電流の検出値が小さければU相の真下にある磁
極はS極であることがわかる。
FIG. 1 is a diagram showing magnets and magnetic flux due to current when a magnetic pole of a permanent magnet is directly below a U-phase in a permanent magnet type synchronous motor. FIG. 1 (A) is a diagram showing a case where an N-pole is directly below. (B) is a diagram showing a case where the S pole is directly below. FIG. 1 has the same configuration as that of FIG. 15 in which the stator winding is a short section and concentrated winding, and the same parts as those of FIG. 15 are denoted by the same reference numerals and description thereof will be omitted. In FIG. 1, the stator core 3 is configured such that the magnetic flux density of the stator core 3 reaches near the inflection point on the magnetization characteristic by the magnetic flux generated from the permanent magnet 2.
In this case, when a magnetic pole exists immediately below the U phase stator core, the V and W phase windings are short-circuited, and a pulse voltage is applied between the U and VW phases. At this time, when the U-, V-, and W-phase currents flow as shown in FIG. 1 , the magnetic flux 10 generated by the magnet flows in the direction of the solid arrow, and the magnetic flux 11 generated by the current flows in the direction of the broken arrow. As a result, when the magnetic pole immediately below the U-phase is the N-pole, the current is in the direction of increase in magnetism, and when the magnetic pole immediately below the U-phase is the S-pole, the current is in the direction of demagnetization. For this reason, if the detected value of the stator winding current is large, the magnetic pole immediately below the U phase is the N pole, and if the detected current value of the stator winding response current is small, the magnetic pole immediately below the U phase is the S pole. You can see that.

【0012】図2は永久磁石の極間がU相の真下にある
場合の磁石による磁束を示す図である。この場合は固定
子鉄心には永久磁石2からの磁束は殆ど通らず、従って
磁化特性変曲点にはほど遠く、増磁,減磁での固定子巻
線のインダクタンスの変化は現れず、前記したパルス電
圧を印加しても電流の大きさの差が現れない。このよう
なときは検出する相をV相かW相にすればよい。即ち、
第2図においてV相巻線6,7及びW相巻線8,9の真
下にある磁石は磁極中央に位置しているので、V−WU
間かW−UV間にパルス電圧を印加することにより、前
記したように磁石の極性を判別することが可能となる。
FIG. 2 is a diagram showing the magnetic flux generated by the permanent magnet when the gap between the permanent magnets is immediately below the U-phase. In this case, the magnetic flux from the permanent magnet 2 hardly passes through the stator core, so that it is far from the inflection point of the magnetization characteristic, and the inductance of the stator winding does not change due to the increase or decrease of the magnetization. Even if a pulse voltage is applied, no difference in the magnitude of the current appears. In such a case, the phase to be detected may be the V phase or the W phase. That is,
In FIG. 2, since the magnets immediately below the V-phase windings 6, 7 and the W-phase windings 8, 9 are located at the center of the magnetic poles, V-WU
By applying a pulse voltage between the two or between W and UV, the polarity of the magnet can be determined as described above.

【0013】前記した実施例では、固定子鉄心3の磁束
密度が永久磁石2から発生する磁束により磁化特性上の
変曲点付近に位置するように設定した構成からなるもの
においての判定法であるが、回転子鉄心1を磁化性上の
変曲点になるように磁化させた構成からなる永久磁石形
同期電動機でも同様に判別することができる。即ち、図
1の(A)及び(B)のU相固定子鉄心の真下に磁極が
存在する場合に、U−VW相間にパルス電圧を印加した
ときに流れる電流による磁束11と永久磁石2による磁
束10とが回転子鉄心1内を交差して通る。従って、回
転子鉄心1を前記したように磁化特性上の変曲点付近に
なるように設定しておくことにより、図1の(A)のよ
うにU相の真下にある磁極がN極のときU−VW間にパ
ルス電圧を印加するとU相の固定子巻線4,5の応答電
流は増磁方向となり、(B)のようにS極のときの電流
は減磁方向となる。従って、これにより回転子表面に備
えた永久磁石の磁極極性を判別することができる。ま
た、磁化特性変曲点付近の磁束領域を直流磁場中の回転
子鉄心に設けることにより、前記した電機子側の交流磁
場中の固定子鉄心に設ける場合と比して鉄損の増加を抑
えた電動機構成とすることができる。
[0013] In the embodiment described above, that the magnetic flux density of the stator core 3 is made of a configuration that is set to be located in the vicinity of the inflection point on the magnetic properties by magnetic flux generated from the permanent magnet 2
Is a determination method in, it is possible to determine similarly permanent magnet type synchronous motor having the configuration in which the rotor core 1 is magnetized to be the inflection point on the magnetizable. That is, when a magnetic pole exists immediately below the U-phase stator core shown in FIGS. 1A and 1B, the magnetic flux 11 and the permanent magnet 2 caused by the current flowing when a pulse voltage is applied between the U-VW phases. The magnetic flux 10 crosses and passes through the rotor core 1. Therefore, by setting the rotor core 1 so as to be near the inflection point on the magnetization characteristics as described above , the magnetic pole immediately below the U phase as shown in FIG. When a pulse voltage is applied between U and VW, the response current of the U-phase stator windings 4 and 5 is in the direction of demagnetization, and the current in the case of the S pole is in the direction of demagnetization as shown in FIG. Accordingly, it is possible to determine the magnetic pole polarity of the permanent magnet provided on the rotor surface. Further, by providing the magnetic flux region near the magnetization characteristic inflection point on the rotor core in the DC magnetic field, the increase in iron loss is suppressed as compared with the case where the magnetic field is provided on the stator core in the AC magnetic field on the armature side. Motor configuration.

【0014】次に、図3ないし図10にシュミレーショ
ンの結果を示す。図3は永久磁石形同期電動機の解析形
状を示す図である。図3において回転子鉄心1の外径に
永久磁石2が取り付けられて、図3のごとく着磁されて
回転子を形成して、固定子鉄心3の磁束密度が永久磁石
2による発生磁束により磁化特性変曲点付近になるよう
に設定している。回転子の外側に固定子鉄心3が配置さ
れ固定子鉄心3にU相巻線(正方向)4、U相巻線(負
方向)5、V相巻線(正方向)6、V相巻線(負方向)
7、W相巻線(正方向)8、W相巻線(負方向)9が巻
かれている。図4は図3におけるU相の真下に永久磁石
の極がある場合の磁石による磁束を示す図である。図5
は図3の永久磁石形同期電動機に加える電圧波形を示す
図で、横軸は時間(秒)、縦軸は電圧(V)を表す。図
6はU−VW間に図5の電圧方向を変えて印加したとき
U相応答電流を示す線図であり、AU1は増磁方向電流、
U2は減磁方向電流を示す。図7は図6の1.2 m秒間の
U相応答電流を示す線図であり、AU1は増磁方向電流、
U2は減磁方向電流を示す。図7における増磁方向電流
と減磁方向電流との最終の差は、1.2 m秒幅のパルス電
圧での上昇電流の差に相当する。
Next, the results of the simulation are shown in FIGS. FIG. 3 is a diagram showing an analysis shape of the permanent magnet synchronous motor. In FIG. 3, a permanent magnet 2 is attached to the outer diameter of the rotor core 1 and magnetized as shown in FIG. 3 to form a rotor. The magnetic flux density of the stator core 3 is magnetized by the magnetic flux generated by the permanent magnet 2. It is set to be near the characteristic inflection point. A stator core 3 is arranged outside the rotor, and a U-phase winding (positive direction) 4, a U-phase winding (negative direction) 5, a V-phase winding (positive direction) 6, and a V-phase winding Line (negative direction)
7, a W-phase winding (positive direction) 8, and a W-phase winding (negative direction) 9 are wound. FIG. 4 is a diagram showing the magnetic flux generated by the magnet when the pole of the permanent magnet is located immediately below the U-phase in FIG. FIG.
Is a diagram showing a voltage waveform applied to the permanent magnet synchronous motor of FIG. 3, in which the horizontal axis represents time (seconds) and the vertical axis represents voltage (V). Figure 6 is a diagram showing a U-phase response current upon application by changing the voltage direction in FIG. 5 between U-VW, A U1 is Zo磁direction current,
A U2 indicates a demagnetization direction current. FIG. 7 is a diagram showing the U-phase response current for 1.2 ms in FIG. 6, where A U1 is the current in the magnetizing direction,
A U2 indicates a demagnetization direction current. The final difference between the current in the increasing direction and the current in the demagnetizing direction in FIG. 7 corresponds to the difference between the rising currents at a pulse voltage of 1.2 ms width.

【0015】図8は永久磁石形同期電動機の極間がU相
の真下にある場合の磁石による磁束を示す図である。図
8において図7と同じ部位は同じ符号を付してある。こ
のときV相,W相の下にはそれぞれ極性の異なった磁極
が同じ位置関係で存在しているので、図5の電圧をU−
VW間に印加しV,W相の応答電流を計算したものを図
9に示す。図9においてAW はW相電流を示し、AV
V相電流を示す。この場合V相電流は減磁方向,W相電
流は増磁方向となっている。図10は図9の1.2 m秒間
迄のV相,W相の応答電流を示す図である。図10にお
ける1.2 m秒後の最終電流値の差は電圧幅1.2 秒時にお
ける上昇電流の差に相当する。従って電圧印加の方向を
U−VW間か、V−WU間か、W−UV間かあらかじめ
きめておけば、各相の応答電流の大小で増磁か減磁かが
わかり、N極かS極かを判定することができる。
FIG. 8 is a diagram showing the magnetic flux generated by the magnet when the gap between the poles of the permanent magnet type synchronous motor is directly below the U-phase. 8, the same parts as those in FIG. 7 are denoted by the same reference numerals. At this time, since magnetic poles having different polarities exist under the V phase and the W phase in the same positional relationship, the voltage shown in FIG.
FIG. 9 shows the calculated response currents of the V and W phases applied between VW. In FIG. 9, A W indicates a W-phase current, and A V indicates a V-phase current. In this case, the V-phase current is in the demagnetization direction, and the W-phase current is in the magnetization direction. FIG. 10 is a diagram showing the V-phase and W-phase response currents up to 1.2 ms in FIG. The difference in the final current value after 1.2 ms in FIG. 10 corresponds to the difference in the rising current when the voltage width is 1.2 seconds. Therefore, if it is determined in advance whether the direction of voltage application is between U-VW, V-WU, or W-UV, the magnitude of the response current of each phase can be used to determine whether the magnetization is demagnetization or demagnetization. It can be determined whether it is a pole.

【0016】また、永久磁石2からの磁束で固定子鉄心
3又は回転子鉄心1の磁束密度が磁化特性上の変曲点付
近にないときは、固定子巻線を直流励磁し、固定子鉄心
3又は回転子鉄心1の磁束密度を変曲点付近となるよう
にする。そして、正並びに負方向のパルス電圧を重畳し
て固定子巻線に印加するようにする。図11は固定子巻
線に前記した直流励磁及びパルス電圧を加えたときの、
電圧,電流波形を示す図である。パルス電圧印加後は、
前記と同様に固定子鉄心3又は回転子鉄心1の磁化特性
と応答電流から回転子の磁極極性を判定することができ
る。なお、この実施例では短節,集中巻の構成について
記載したが全節,分布巻などその他の電機子形状の場合
も同様である。
When the magnetic flux density of the stator core 3 or the rotor core 1 is not near the inflection point on the magnetization characteristic due to the magnetic flux from the permanent magnet 2, the stator winding is DC-excited and the stator core is excited. 3 or the magnetic flux density of the rotor core 1 is set near the inflection point. Then, the positive and negative pulse voltages are superimposed and applied to the stator winding. FIG. 11 shows the state when the above-described DC excitation and pulse voltage were applied to the stator winding.
It is a figure which shows a voltage and a current waveform. After applying the pulse voltage,
As described above, the magnetic pole polarity of the rotor can be determined from the magnetization characteristics of the stator core 3 or the rotor core 1 and the response current. In this embodiment, the configuration of the short section and concentrated winding is described, but the same applies to other armature shapes such as full section and distributed winding.

【0017】[0017]

【発明の効果】この発明によれば、永久磁石形同期電動
機の固定子鉄心、又は回転子鉄心の磁束密度が磁化特性
上の変曲点付近になるように設計するか、あるいは固定
子巻線に直流励磁して、固定子鉄心又は回転子鉄心の磁
束密度が磁化特性の変曲点付近になるようにして、固定
子巻線に正ならびに負方向のパルス電圧を印加し、印加
後過渡時における両方の応答電流を検出することにより
固定子巻線の磁束が増磁方向か減磁方向かを検出するこ
とにより、固定子巻線のパルス電圧印加相に対向する永
久磁石の位置と極性とを判定することができるので、特
別なセンサを必要とせずに検出測定の合理化が達成され
る。
According to the present invention, the stator core or the rotor core of the permanent magnet type synchronous motor is designed so that the magnetic flux density is near the inflection point on the magnetization characteristic, or the stator winding is formed. DC excitation to apply a pulse voltage in both positive and negative directions to the stator winding so that the magnetic flux density of the stator core or rotor core is near the inflection point of the magnetization characteristics. The position and polarity of the permanent magnet facing the pulse voltage application phase of the stator winding by detecting whether the magnetic flux of the stator winding Can be determined, so that the rationalization of the detection measurement is achieved without requiring a special sensor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】永久磁石形同期電動機において磁極がU相の真
下にある場合の磁石及び電流による磁束を示す図で、
(A)はN極が真下にある場合を示す図、(B)はS極
が真下にある場合を示す図である。
FIG. 1 is a diagram showing a magnet and a magnetic flux by an electric current when a magnetic pole is directly below a U-phase in a permanent magnet type synchronous motor;
(A) is a diagram showing a case where the N pole is directly below, and (B) is a diagram showing a case where the S pole is directly below.

【図2】永久磁石形同期電動機において極間がU相の真
下にある場合の磁石及び電流による磁束を示す図であ
る。
FIG. 2 is a diagram illustrating magnets and magnetic fluxes due to current when a gap is directly below a U-phase in a permanent magnet synchronous motor.

【図3】永久磁石形同期電動機の解析形状を示す図であ
る。
FIG. 3 is a diagram showing an analysis shape of a permanent magnet type synchronous motor.

【図4】図3におけるU相の真下に永久磁石の磁極があ
る場合の磁石による磁束を示す図である。
FIG. 4 is a diagram illustrating a magnetic flux generated by a magnet when a magnetic pole of a permanent magnet is located immediately below a U-phase in FIG. 3;

【図5】図3の永久磁石形同期電動機に印加する電圧波
形を示す図である。
5 is a diagram showing a voltage waveform applied to the permanent magnet type synchronous motor of FIG.

【図6】図5の電圧をU−VW間に方向を変えて印加し
たときU相応答電流を示す線図である。
FIG. 6 is a diagram showing a U-phase response current when the voltage of FIG. 5 is applied in a different direction between U and VW.

【図7】図6の1.2 m秒間のU相応答電流を示す線図で
ある。
FIG. 7 is a diagram showing a U-phase response current for 1.2 ms in FIG. 6;

【図8】永久磁石形同期電動機の極間がU相の真下にあ
る場合の磁石による磁束を示す図である。
FIG. 8 is a diagram illustrating a magnetic flux generated by a magnet when a gap between the poles of the permanent magnet type synchronous motor is immediately below a U-phase.

【図9】図5の電圧をU−VW間に印加しV,W相の応
答電流を示す図である。
FIG. 9 is a diagram showing V and W phase response currents when the voltage of FIG. 5 is applied between U and VW.

【図10】図9の1.2 m秒間迄のV相,W相の応答電流
を示す図である。
FIG. 10 is a diagram showing V-phase and W-phase response currents up to 1.2 ms in FIG. 9;

【図11】固定子巻線に直流励磁及びパルス電圧を加え
たときの電圧,電流波形を示す図である。
FIG. 11 is a diagram showing voltage and current waveforms when DC excitation and pulse voltage are applied to a stator winding.

【図12】鉄心の磁化特性と磁束密度との関係を示す線
図である。
FIG. 12 is a diagram showing a relationship between a magnetization characteristic of an iron core and a magnetic flux density.

【図13】鉄心における電圧印加後の電流の変化を示す
線図である。
FIG. 13 is a diagram showing a change in current after voltage is applied to the iron core.

【図14】鉄心におけるパルス電圧印加時の電流を示す
線図である。
FIG. 14 is a diagram showing a current when a pulse voltage is applied to an iron core.

【図15】永久磁石形同期電動機の縦断面図である。FIG. 15 is a longitudinal sectional view of a permanent magnet type synchronous motor.

【符号の説明】[Explanation of symbols]

1 回転子鉄心 2 永久磁石 3 固定子鉄心 4 U相巻線(正方向) 5 U相巻線(負方向) 6 V相巻線(正方向) 7 V相巻線(負方向) 8 W相巻線(正方向) 9 W相巻線(負方向) 10 磁石による磁束 11 電流による磁束 Reference Signs List 1 rotor core 2 permanent magnet 3 stator core 4 U-phase winding (positive direction) 5 U-phase winding (negative direction) 6 V-phase winding (positive direction) 7 V-phase winding (negative direction) 8 W-phase Winding (positive direction) 9 W-phase winding (negative direction) 10 Magnetic flux by magnet 11 Magnetic flux by current

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H02P 6/16 H02K 21/16 H02P 5/28 H02P 7/36 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H02P 6/16 H02K 21/16 H02P 5/28 H02P 7/36

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】回転子表面に永久磁石を備えた永久磁石形
同期電動機において、固定子鉄心の磁束密度を磁化特性
上の変曲点付近に磁化させ、3相の固定子巻線のうち1
相の巻線と他の短絡された2相との間に正ならびに負方
向のパルス電圧を印加する工程と、パルス電圧を印加し
た相の印加後過渡時の両方の応答電流の大きさを検出す
る工程と、検出された応答電流の差の有無からパルス電
圧印加巻線に対向する回転子の永久磁石の部位が磁極中
心であるか極間であるかを判定する工程と、パルス電圧
印加巻線に対向する回転子の永久磁石の部位が磁極中心
のとき、前記検出された応答電流が固定子鉄心の磁束密
度の増磁方向か減磁方向かを判定する工程と、その判定
結果からパルス電圧を印加した相に対向する磁極がN極
かS極かを判別する工程とからなることを特徴とする永
久磁石形同期電動機の回転子磁極極性検出法。
In a permanent magnet type synchronous motor having a permanent magnet on a rotor surface, a magnetic flux density of a stator core is magnetized near an inflection point on magnetization characteristics, and one of three-phase stator windings is provided.
Applying positive and negative pulse voltages between the phase windings and the other two short-circuited phases, and detecting the magnitude of both the response current during the transient after the application of the pulse voltage applied phase Determining whether the portion of the permanent magnet of the rotor facing the pulse voltage application winding is at the center of the magnetic pole or between the poles based on the presence or absence of the difference between the detected response currents. When the position of the permanent magnet of the rotor facing the line is the center of the magnetic pole, a step of determining whether the detected response current is in the direction of increasing or decreasing the magnetic flux density of the stator core, and from the determination result, Discriminating whether a magnetic pole facing a phase to which a voltage is applied is an N pole or an S pole. A method of detecting the polarity of a rotor magnetic pole of a permanent magnet type synchronous motor, comprising:
【請求項2】回転子表面に永久磁石を備えた永久磁石形
同期電動機において、回転子鉄心の磁束密度を磁化特性
上の変曲点付近に磁化させ、3相の固定子巻線のうち1
相の巻線と他の短絡された2相との間に正ならびに負方
向のパルス電圧を印加する工程と、パルス電圧を印加し
た相の印加後過渡時の両方の応答電流の大きさを検出す
る工程と、検出された応答電流の差の有無からパルス電
圧印加巻線に対向する回転子の永久磁石の部位が磁極中
心であるか極間であるかを判定する工程と、パルス電圧
印加巻線に対向する回転子の永久磁石の部位が磁極中心
のとき、前記検出された応答電流が固定子鉄心の磁束密
度の増磁方向か減磁方向かを判定する工程と、その判定
結果からバルス電圧を印加した相に対向する磁極がN極
かS極かを判別する工程とからなることを特徴とする永
久磁石形同期電動機の回転子磁極極性検出法。
2. A permanent magnet synchronous motor having a permanent magnet on a rotor surface, wherein a magnetic flux density of a rotor core is magnetized near an inflection point on a magnetization characteristic, and one of three-phase stator windings is provided.
Applying positive and negative pulse voltages between the phase windings and the other two short-circuited phases, and detecting the magnitude of both the response current during the transient after the application of the pulse voltage applied phase Determining whether the portion of the permanent magnet of the rotor facing the pulse voltage application winding is at the center of the magnetic pole or between the poles based on the presence or absence of the difference between the detected response currents. A step of determining whether the detected response current is the direction of increase or demagnetization of the magnetic flux density of the stator core when the permanent magnet portion of the rotor facing the wire is at the center of the magnetic pole; Discriminating whether a magnetic pole facing a phase to which a voltage is applied is an N pole or an S pole. A method of detecting the polarity of a rotor magnetic pole of a permanent magnet type synchronous motor, comprising:
【請求項3】請求項1又は請求項2に記載の永久磁石形
同期電動機の回転子磁極極性判定法において、永久磁石
から発生する磁束による固定子鉄心又は回転子鉄心の磁
束密度が磁化特性上の変曲点付近に達していないときに
は、固定子巻線に直流励磁して固定子鉄心又は回転子鉄
心の磁束密度を磁化特性上の変曲点に到達させた後に正
ならびに負方向にパルス電圧を重畳させ、パルス電圧を
印加した相に対応する磁極がN極かS極かを判別するこ
とを特徴とする永久磁石形同期電動機の回転子磁極極性
検出法。
3. The method for determining the polarity of a rotor magnetic pole of a permanent magnet synchronous motor according to claim 1 or 2, wherein the magnetic flux density of the stator core or the rotor iron core due to the magnetic flux generated from the permanent magnet is reduced in terms of magnetization characteristics. When it does not reach near the inflection point, the DC voltage is applied to the stator winding to allow the magnetic flux density of the stator core or rotor core to reach the inflection point on the magnetization characteristics, and then the pulse voltage in the positive and negative directions And determining whether the magnetic pole corresponding to the phase to which the pulse voltage is applied is an N pole or an S pole.
JP15510895A 1994-06-14 1995-05-30 Rotor pole polarity detection method for permanent magnet synchronous motor Expired - Lifetime JP3278032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15510895A JP3278032B2 (en) 1994-06-14 1995-05-30 Rotor pole polarity detection method for permanent magnet synchronous motor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP15533394 1994-06-14
JP6-155333 1994-06-14
JP15510895A JP3278032B2 (en) 1994-06-14 1995-05-30 Rotor pole polarity detection method for permanent magnet synchronous motor

Publications (2)

Publication Number Publication Date
JPH0866082A JPH0866082A (en) 1996-03-08
JP3278032B2 true JP3278032B2 (en) 2002-04-30

Family

ID=26483191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15510895A Expired - Lifetime JP3278032B2 (en) 1994-06-14 1995-05-30 Rotor pole polarity detection method for permanent magnet synchronous motor

Country Status (1)

Country Link
JP (1) JP3278032B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09285088A (en) 1996-04-12 1997-10-31 Hitachi Ltd Permanent magnet dynamo-electric machine and motor-driven vehicle employing the same
JP3480439B2 (en) * 1999-09-27 2003-12-22 日産自動車株式会社 Control device for rotating electric machine
JP3681318B2 (en) * 2000-02-28 2005-08-10 株式会社日立製作所 Synchronous motor control device and vehicle using the same
JP3979561B2 (en) * 2000-08-30 2007-09-19 株式会社日立製作所 AC motor drive system
JP4632157B2 (en) * 2006-12-04 2011-02-16 日立アプライアンス株式会社 Permanent magnet motor drive system
DE102007060877A1 (en) * 2007-12-18 2009-06-25 Robert Bosch Gmbh Method for sensorless operation of an electric, electronically commutating machine
JP5298548B2 (en) * 2008-02-01 2013-09-25 富士電機株式会社 Maintenance method of electric equipment having permanent magnet
JP5659810B2 (en) * 2011-01-18 2015-01-28 ダイキン工業株式会社 Motor drive device

Also Published As

Publication number Publication date
JPH0866082A (en) 1996-03-08

Similar Documents

Publication Publication Date Title
JP3371314B2 (en) DC brushless motor and control device
JP4801773B2 (en) Brushless motor, brushless motor control system, and brushless motor control method
Champa et al. Initial rotor position estimation for sensorless brushless DC drives
Kano Torque ripple reduction of saliency-based sensorless drive concentrated-winding IPMSM using novel flux barrier
JP3278032B2 (en) Rotor pole polarity detection method for permanent magnet synchronous motor
JP2002044888A (en) Motor and motor controller
JP2003319583A (en) Synchronous motor
JPS61180019A (en) Magnetic bearing
JP2000060038A (en) Motor
JP2014007853A (en) Motor
JP3558308B2 (en) Permanent magnet type synchronous motor with rotor pole polarity discrimination
JP3117164B2 (en) Permanent magnet rotating electric machine, control method and control device thereof, and electric vehicle using the same
JP2004236369A (en) Switched reluctance motor
JP4668046B2 (en) PHASE ADJUSTING METHOD FOR ROTARY POSITION DETECTION DEVICE AND PHASE DETECTION DEVICE FOR ROTARY POSITION DETECTION DEVICE
WO2009090986A1 (en) Motor position detection method, motor drive device, and pump
Kano et al. Design of saliency-based sensorless drive IPM motors for general industrial applications
JPH08336269A (en) Dc brushless motor
JPH07222385A (en) Reverse salient cylindrical magnet synchronous motor
CN101087093B (en) Synchronization electromotor with detection coil
JP3468751B2 (en) Motor drive
JPH08317619A (en) Permanent-magnet motor
US11894740B1 (en) System and method for permanent magnet assisted synchronous reluctance motor control from zero or low speed
EP4250535A1 (en) Rotating machine
JP3752789B2 (en) Inspection method for permanent magnet motor
JP3510534B2 (en) Motor control device and control method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090215

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100215

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term