JP3277222B2 - Optical fiber coil support structure - Google Patents

Optical fiber coil support structure

Info

Publication number
JP3277222B2
JP3277222B2 JP20717695A JP20717695A JP3277222B2 JP 3277222 B2 JP3277222 B2 JP 3277222B2 JP 20717695 A JP20717695 A JP 20717695A JP 20717695 A JP20717695 A JP 20717695A JP 3277222 B2 JP3277222 B2 JP 3277222B2
Authority
JP
Japan
Prior art keywords
optical fiber
base
support
support structure
fiber coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20717695A
Other languages
Japanese (ja)
Other versions
JPH0953944A (en
Inventor
太郎 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP20717695A priority Critical patent/JP3277222B2/en
Publication of JPH0953944A publication Critical patent/JPH0953944A/en
Application granted granted Critical
Publication of JP3277222B2 publication Critical patent/JP3277222B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Gyroscopes (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は光ファイバジャイ
ロに用いられる光ファイバコイルの支持構造に関する。
The present invention relates to a support structure for an optical fiber coil used in an optical fiber gyro.

【0002】[0002]

【従来の技術】まず、光ファイバジャイロの構成を図3
を参照して説明する。光源1から放射された光は光方向
性結合器2、偏光子3及び光方向性結合器4を介してセ
ンシングコイルを構成する光ファイバコイル5内に右回
り光及び左回り光として送り込まれる。この右回り光は
まず位相変調器6において位相変調され、この位相変調
された右回り光は光方向性結合器4、偏光子3及び光方
向性結合器2を介して受光器7に到達する。左回り光も
同様に、まず位相変調器6において位相変調され、位相
変調された左回り光は光方向性結合器4、偏光子3及び
光方向性結合器2を介して受光器7に到達する。
2. Description of the Related Art First, the construction of an optical fiber gyro is shown in FIG.
This will be described with reference to FIG. The light emitted from the light source 1 is sent through the optical directional coupler 2, the polarizer 3, and the optical directional coupler 4 into the optical fiber coil 5 constituting the sensing coil as clockwise light and counterclockwise light. The clockwise light is first phase-modulated by the phase modulator 6, and the phase-modulated clockwise light reaches the light receiver 7 via the optical directional coupler 4, the polarizer 3, and the optical directional coupler 2. . Similarly, the left-handed light is similarly phase-modulated in the phase modulator 6, and the phase-modulated left-handed light reaches the light receiver 7 via the light directional coupler 4, the polarizer 3, and the light directional coupler 2. I do.

【0003】受光器7に到達した光は電気信号に光電変
換され、その変換された電気信号は同期検波器8に入力
される。同期検波器8においては、発振器9から供給さ
れる信号を参照信号として、光ファイバコイル5の中心
軸回りの回転角速度に比例する角速度出力である基本波
成分を得ることができる。次に、従来の光ファイバコイ
ルの支持構造を図4を参照して説明する。光ファイバ2
1が巻回される巻枠22は円筒状巻芯23とその両端に
それぞれ設けられたフランジ24とよりなり、巻芯23
の内周側において、その軸方向のほぼ中央部にリング状
の取付け部25が一体に突出形成されている。
The light that has reached the light receiver 7 is photoelectrically converted into an electric signal, and the converted electric signal is input to a synchronous detector 8. In the synchronous detector 8, a fundamental wave component which is an angular velocity output proportional to the rotational angular velocity about the central axis of the optical fiber coil 5 can be obtained using the signal supplied from the oscillator 9 as a reference signal. Next, a conventional optical fiber coil support structure will be described with reference to FIG. Optical fiber 2
1 is wound around a cylindrical core 23 and flanges 24 provided at both ends thereof.
A ring-shaped mounting portion 25 is formed integrally and protruding at the substantially central portion in the axial direction on the inner peripheral side.

【0004】この巻枠22に対して、その巻芯23内に
支持台26が挿入され、支持台26に取付け部25が取
付け固定される。支持台26は円筒状とされて基台27
上に立設されており、その挿入端部、つまりリング状端
面28が取付け部25に対接される。支持台26への取
付け部25の取付けはネジ止めによって行われ、即ち取
付け部25に形成された穴29を介してネジ31が支持
台26の端面28に形成されたネジ穴32に螺入されて
固定される。
[0004] A support base 26 is inserted into the winding core 23 of the winding frame 22, and a mounting portion 25 is mounted and fixed to the support base 26. The support 26 has a cylindrical shape and a base 27.
The insertion end, that is, the ring-shaped end surface 28 is in contact with the mounting portion 25. The attachment portion 25 is attached to the support 26 by screwing, that is, a screw 31 is screwed into a screw hole 32 formed in the end surface 28 of the support 26 through a hole 29 formed in the attachment 25. Fixed.

【0005】[0005]

【発明が解決しようとする課題】ところで、光ファイバ
コイル5はその屈折率が温度により変化し、また温度変
化によって膨張収縮することにより応力状態も変化する
ため、温度によってその特性が変化する。従って、光フ
ァイバジャイロの性能は周囲温度の影響を受け、温度変
化に伴なう光ファイバコイル5の特性変化によって、そ
の角速度出力に誤差が含まれることになり、性能劣化を
きたすことになる。
Incidentally, the refractive index of the optical fiber coil 5 changes with temperature, and the stress state also changes due to expansion and contraction due to the temperature change, so that its characteristics change with temperature. Therefore, the performance of the optical fiber gyro is affected by the ambient temperature, and the change in the characteristics of the optical fiber coil 5 due to the temperature change includes an error in the angular velocity output, resulting in performance degradation.

【0006】このため、図4に示した従来の光ファイバ
コイル支持構造では、周囲温度変化による主な熱移動は
基台27を介して行われることから、低熱伝導材によっ
て支持台26を構成し、基台27から巻枠22への熱伝
導を抑制していた。一方、光ファイバジャイロにおいて
は、光ファイバコイル5の温度をモニタし、角速度出力
を温度補正することが行われている。
For this reason, in the conventional optical fiber coil support structure shown in FIG. 4, since the main heat transfer due to the change in the ambient temperature is performed through the base 27, the support 26 is made of a low heat conductive material. , The heat conduction from the base 27 to the reel 22 was suppressed. On the other hand, in the optical fiber gyro, the temperature of the optical fiber coil 5 is monitored and the angular velocity output is corrected.

【0007】図5は上述した従来の光ファイバコイル支
持構造のモデルを作成して、各部の温度変化を測定し、
グラフ化したものである。なお、支持構造の模式図及び
測定点を図中に示している。図5より、巻枠22への熱
伝導の遅延効果は認められるものの、この構造では点
A,B,Cの温度変化率に差が生じており、即ち巻枠2
2の軸方向における温度変化率に差があり、熱が不均一
に分布することになり、よって光ファイバコイル5の均
一な温度分布状態が得られず、光ファイバジャイロにお
ける角速度出力の温度補正精度が低下し、充分な性能が
得られないものとなっている。
FIG. 5 shows a model of the above-mentioned conventional optical fiber coil support structure, and measures the temperature change of each part.
It is a graph. The schematic diagram of the support structure and the measurement points are shown in the figure. From FIG. 5, although the effect of delaying the heat conduction to the bobbin 22 is recognized, in this structure, there is a difference in the rate of temperature change between the points A, B, and C, that is, the bobbin 2
There is a difference in the rate of temperature change in the axial direction 2 and the heat is unevenly distributed, so that a uniform temperature distribution state of the optical fiber coil 5 cannot be obtained, and the temperature correction accuracy of the angular velocity output in the optical fiber gyro. And sufficient performance cannot be obtained.

【0008】一方、図6は従来の光ファイバコイル支持
構造における巻枠22の熱分布の不均一性に鑑み、熱分
布のバランスをとることを目的として考えた支持構造の
モデルの温度変化状態を示したものである。この例は従
来と同様、低熱伝導材によって構成した支持台26で巻
枠22の上部を支持したものであり、つまり取付け部2
5の位置を変更したものである。
On the other hand, FIG. 6 shows a temperature change state of a model of the supporting structure which is considered to balance the heat distribution in consideration of the non-uniformity of the heat distribution of the winding frame 22 in the conventional optical fiber coil supporting structure. It is shown. In this example, as in the prior art, the upper portion of the bobbin 22 is supported by a support 26 made of a low heat conductive material.
The position of No. 5 has been changed.

【0009】図6より、点A,B,Cの温度変化率の差
は図5に比べて縮小しているものの、未だ無視できない
差があることが判る。これは巻枠22と支持台26とが
近接しているため、熱放射による支持台26から巻枠2
2への熱伝達があり、かつ支持台26は低熱伝導材より
なるため、それ自身が基台27から遠ざかるに従って大
きな熱勾配を持ち、その熱勾配に沿って熱放射が発生し
て、巻枠22にその熱勾配のまま熱伝達が行われるため
と考えられる。
FIG. 6 shows that although the difference in the rate of temperature change at points A, B, and C is smaller than that in FIG. 5, there is still a difference that cannot be ignored. This is because the reel 22 and the support 26 are close to each other, and
2 and the support 26 is made of a low heat conductive material, so that the support 26 itself has a large thermal gradient as it moves away from the base 27, heat radiation is generated along the thermal gradient, and It is considered that the heat is transferred to the heat exchanger 22 while keeping the heat gradient.

【0010】なお、この熱放射の影響は例えば巻枠22
と支持台26との間隙を大きくすれば解消できるが、省
スペース化の点から小型な支持構造が要求され、また構
造上の強度の点から巻枠22と支持台26との間隙を大
きくすることは好ましくないため、巻枠22と支持台2
6との近接は避けられず、よってこの熱放射の影響は回
避できない。
The effect of the heat radiation is, for example, the
Can be eliminated by increasing the gap between the support 22 and the support 26. However, a small support structure is required in terms of space saving, and the gap between the winding frame 22 and the support 26 is increased in terms of structural strength. It is not preferable that the winding frame 22 and the support 2
6 is unavoidable and therefore the effect of this thermal radiation cannot be avoided.

【0011】図7は支持台26の熱勾配を小さくするこ
とを考え、取付け部25の位置は図6と同じ位置とし
て、支持台26を高熱伝導材によって構成した支持構造
のモデルの温度変化状態を示したものである。この例で
は支持台26に基台27から遠ざかるにつれて生ずる熱
勾配は小さくなり、よって支持台26から熱放射により
巻枠22に伝達される熱の分布はほぼ一様となり、点
A,B,Cの温度変化率の差という点では、極めて良好
な結果が得られる。
FIG. 7 shows that the thermal gradient of the support 26 is reduced, and the position of the mounting portion 25 is the same as that of FIG. 6, and the temperature change state of the model of the support structure in which the support 26 is made of a high heat conductive material. It is shown. In this example, the thermal gradient generated as the distance from the support 26 to the base 27 becomes smaller, so that the distribution of heat transmitted from the support 26 to the reel 22 by heat radiation becomes substantially uniform, and points A, B, and C Very good results can be obtained in terms of the difference in the rate of change of the temperature.

【0012】しかしながら、この例では巻枠22への熱
伝達の絶対量が大きく、基台27の温度変化(周囲温度
の変化)に伴い、巻枠22に急激な温度変化が生ずるた
め、光ファイバコイル5に熱劣化が生ずる恐れがある。
この発明の目的はこれら問題点に鑑み、巻枠が周囲温度
の影響を受けにくく、つまり巻枠の温度変化量及び温度
変化率が小さく、さらに巻枠の均一な温度分布状態を得
ることができる光ファイバコイル支持構造を提供するこ
とにある。
However, in this example, since the absolute amount of heat transfer to the winding frame 22 is large and the temperature of the base 27 changes (change of ambient temperature), the temperature of the winding frame 22 changes suddenly. There is a possibility that the coil 5 may be thermally degraded.
SUMMARY OF THE INVENTION In view of these problems, the object of the present invention is that the winding form is hardly affected by the ambient temperature, that is, the temperature change amount and the temperature change rate of the winding form are small, and a uniform temperature distribution state of the winding form can be obtained. An object of the present invention is to provide an optical fiber coil support structure.

【0013】[0013]

【課題を解決するための手段】この発明では、一端側内
周に取付け部が突設された円筒状巻芯とフランジとより
なり、光ファイバが巻回される巻枠と、基台上に立設さ
れ、巻芯内に挿入されて、その挿入端部が上記取付け部
と結合される支持台とを備え、巻枠及び支持台の巻芯へ
の挿入部がそれぞれ高熱伝導材で構成され、支持台の、
上記挿入部に至る基部が低熱伝導材で構成される。
According to the present invention, there is provided a cylindrical frame having a mounting portion projecting from the inner periphery of one end and a flange, and a winding frame on which an optical fiber is wound, and a base. A supporting table which is erected and inserted into the core, and whose insertion end is coupled to the mounting portion, wherein the winding frame and the inserting section of the supporting table into the core are each made of a high heat conductive material. Of the support,
The base reaching the insertion portion is made of a low heat conductive material.

【0014】[0014]

【発明の実施の形態】この発明の実施例を図1を参照し
て説明する。なお、図4と対応する部分には同一符号を
付してある。この例では円筒状巻芯23の軸方向におい
て、基台27と反対側の端部内周にリング状の取付け部
25が一体に突出形成され、つまり巻枠22の上端側が
支持台26によって支持される構造とされる。巻芯2
3、フランジ24及び取付け部25よりなる巻枠22は
高熱伝導材で構成され、その材料としては例えばインバ
ーなどが使用される。
An embodiment of the present invention will be described with reference to FIG. Parts corresponding to those in FIG. 4 are denoted by the same reference numerals. In this example, in the axial direction of the cylindrical winding core 23, a ring-shaped mounting portion 25 is integrally formed on the inner periphery of the end opposite to the base 27, that is, the upper end side of the winding frame 22 is supported by the support 26. Structure. Core 2
3, the winding frame 22 composed of the flange 24 and the mounting portion 25 is made of a high heat conductive material, for example, Invar or the like is used as the material.

【0015】巻芯23内に挿入されて、その挿入端部が
取付け部25と結合され、光ファイバ21が巻回された
巻枠22を支持する円筒状の支持台26は、巻芯23の
内周面と対向する部分に位置する挿入部41と、その挿
入部41に至る、つまり巻枠22の外部に位置する基部
42とによって構成され、これらが積み重ねられて基台
27上に支持台26が立設される。
A cylindrical support 26 supporting the reel 22 around which the optical fiber 21 is wound is inserted into the core 23 and the inserted end thereof is connected to the mounting portion 25. An insertion portion 41 is located at a portion facing the inner peripheral surface, and a base 42 that reaches the insertion portion 41, that is, a base 42 that is located outside the bobbin 22, is stacked and supported on the base 27. 26 is erected.

【0016】挿入部41は例えばアルミニウム合金など
の高熱伝導材によって構成され、一方基部42は低熱伝
導材によって構成される。この低熱伝導材としては例え
ばポリエーテルイミド樹脂などの樹脂材が使用される。
なお、基台27はアルミニウム合金などで構成される。
挿入部41及び基部42は図1に示したように、それぞ
れその両端面に周方向に順次複数の凹部が形成されて、
両端面がそれぞれくし歯状とされている。なお、挿入部
41、基部42共に、その上端面の凹部は下端面の凹部
間の位置、即ち凸部に対応するように形成されている。
また、挿入部41の下端面の各凹部は基部42の上端面
の各凹部とそれぞれ対向するように形成されている。
The insertion portion 41 is made of a high heat conductive material such as an aluminum alloy, while the base 42 is made of a low heat conductive material. As the low thermal conductive material, for example, a resin material such as a polyetherimide resin is used.
The base 27 is made of an aluminum alloy or the like.
As shown in FIG. 1, the insertion portion 41 and the base portion 42 are each formed with a plurality of concave portions sequentially in the circumferential direction on both end surfaces thereof.
Both end surfaces are comb-shaped. In addition, both the insertion portion 41 and the base portion 42 are formed such that the concave portion on the upper end surface thereof corresponds to the position between the concave portions on the lower end surface, that is, the convex portion.
Further, each concave portion on the lower end surface of the insertion portion 41 is formed so as to face each concave portion on the upper end surface of the base portion 42.

【0017】基部42の上端面の各凹部には軸方向に貫
通する穴43が形成されており、一方各凸部にはネジ穴
44が形成されている。同様に、挿入部41にもその上
端面の各凹部に軸方向に貫通する穴45が形成されてお
り、各凸部にネジ穴46が形成されている。この支持構
造の組立ては下記のようにして行われる。即ち、基部4
2の穴43を介してネジ47が基台27のネジ穴48に
螺入されて、まず基部42が基台27に取付け固定され
る。次に、挿入部41の穴45を介してネジ49が基部
42のネジ穴44に螺入され、基部42に挿入部41が
取付けられて、支持台26が組立てられる。そして、巻
枠22の取付け部25に形成された穴29を介してネジ
31が挿入部41のネジ穴46に螺入されて、取付け部
25が挿入部41の上端面に対接固定され、支持台26
に巻枠22が取付けられて組立てが完了する。なお、ネ
ジ31,47,49はこの例ではそれぞれ6本使用され
て組立てが行われるが、図においてはその各1本ずつを
示している。
An axially penetrating hole 43 is formed in each concave portion on the upper end surface of the base portion 42, while a screw hole 44 is formed in each convex portion. Similarly, the insertion portion 41 has a hole 45 penetrating in the axial direction in each concave portion on the upper end surface thereof, and a screw hole 46 formed in each convex portion. The assembly of the support structure is performed as follows. That is, the base 4
The screw 47 is screwed into the screw hole 48 of the base 27 through the second hole 43, and the base 42 is first attached to the base 27 and fixed. Next, the screw 49 is screwed into the screw hole 44 of the base 42 through the hole 45 of the insertion portion 41, the insertion portion 41 is attached to the base 42, and the support base 26 is assembled. Then, the screw 31 is screwed into the screw hole 46 of the insertion portion 41 through the hole 29 formed in the attachment portion 25 of the winding frame 22, and the attachment portion 25 is fixed to the upper end surface of the insertion portion 41 in contact with the screw 31. Support 26
And the assembling is completed. In this example, six screws 31, 47, and 49 are used for assembling, and one screw is shown in each drawing.

【0018】上述した構成によれば、低熱伝導材よりな
る基部42によって、基台27から挿入部41への熱移
動が抑制され、よって巻枠22への熱伝導の遅延効果を
得ることができ、一方巻枠22と近接対向する支持台2
6の挿入部41は高熱伝導材よりなるため、基台27か
ら遠ざかるに従って生ずる熱勾配は極めて小さく、挿入
部41から熱放射により巻枠22に伝達される熱の分布
をほぼ一様にすることができる。従って、周囲温度の変
化に伴う巻枠22の温度変化量及び温度変化率を小さく
することができ、かつその温度分布状態の均一化を図る
ことができる。
According to the above-described structure, the heat transfer from the base 27 to the insertion portion 41 is suppressed by the base 42 made of a low heat conductive material, so that the effect of delaying the heat transfer to the reel 22 can be obtained. , One side of the support 2 that is in close proximity to the bobbin 22
Since the insertion portion 41 is made of a high thermal conductive material, the heat gradient generated as the distance from the base 27 increases is extremely small, and the distribution of heat transmitted from the insertion portion 41 to the reel 22 by heat radiation is made substantially uniform. Can be. Therefore, the temperature change amount and the temperature change rate of the winding frame 22 due to the change in the ambient temperature can be reduced, and the temperature distribution can be made uniform.

【0019】図2は図1に示した光ファイバコイル支持
構造のモデルを作成して、前述した図5〜7と同様に、
各部の温度変化を測定し、グラフ化したものである。図
2より、巻枠22各部(点A,B,C)の温度変化率は
図5〜7と比較して小さく、また点A,B,Cの温度変
化率の差もほとんどないことがわかる。なお、上述した
例では基部42と挿入部41とを積み重ねて支持台26
を構成しているが、例えば基部42と挿入部41の径を
変え、結合部分においてそれらを径方向に重ねてネジ止
め等により結合する構成としてもよい。
FIG. 2 shows a model of the optical fiber coil support structure shown in FIG. 1 and, like FIGS.
The temperature change of each part is measured and graphed. From FIG. 2, it is understood that the temperature change rates of the respective portions (points A, B, and C) of the winding frame 22 are smaller than those in FIGS. 5 to 7, and that there is almost no difference between the temperature change rates of the points A, B, and C. . In the example described above, the base 42 and the insertion portion 41 are stacked and
However, for example, the diameter of the base portion 42 and the insertion portion 41 may be changed, and these portions may be overlapped in the radial direction at the joint portion and joined by screwing or the like.

【0020】[0020]

【発明の効果】以上説明したように、この発明によれば
周囲温度の変化に伴う巻枠22の温度変化量及び温度変
化率を極めて小さくすることができ、かつその温度分布
状態を均一なものとすることができる。従って、この支
持構造によって光ファイバジャイロの光ファイバコイル
5を支持すれば、周囲温度の影響による光ファイバジャ
イロの性能劣化を防止することができ、良好な温度特性
を有する光ファイバジャイロを得ることができる。な
お、巻枠22に急激な温度変化が発生しないため、光フ
ァイバコイル5が熱劣化する恐れもない。
As described above, according to the present invention, the temperature change amount and the temperature change rate of the winding frame 22 due to the change in the ambient temperature can be made extremely small, and the temperature distribution can be made uniform. It can be. Therefore, if the optical fiber coil 5 of the optical fiber gyro is supported by this support structure, the performance of the optical fiber gyro can be prevented from deteriorating due to the influence of the ambient temperature, and an optical fiber gyro having good temperature characteristics can be obtained. it can. Since no rapid temperature change occurs in the winding frame 22, there is no possibility that the optical fiber coil 5 is thermally degraded.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例を示す分解斜視図。FIG. 1 is an exploded perspective view showing an embodiment of the present invention.

【図2】この発明の実施例のモデルを用いて測定した各
部の温度変化を表すグラフ。
FIG. 2 is a graph showing a temperature change of each part measured using the model of the embodiment of the present invention.

【図3】光ファイバジャイロの構成を説明するための
図。
FIG. 3 is a diagram illustrating a configuration of an optical fiber gyro.

【図4】従来の光ファイバコイルの支持構造を示す分解
斜視図。
FIG. 4 is an exploded perspective view showing a conventional optical fiber coil support structure.

【図5】図4に示した支持構造のモデルを用いて測定し
た各部の温度変化を表すグラフ。
FIG. 5 is a graph showing a temperature change of each portion measured using the model of the support structure shown in FIG.

【図6】図4に示した支持構造に対し、支持位置を変更
したモデルを用いて測定した各部の温度変化を表すグラ
フ。
6 is a graph showing a temperature change of each part measured using a model in which a supporting position is changed with respect to the supporting structure shown in FIG.

【図7】図6のモデルに対し、構成材料を変更したモデ
ルを用いて測定した各部の温度変化を表すグラフ。
7 is a graph showing a temperature change of each part measured using a model in which constituent materials are changed with respect to the model of FIG. 6;

【符号の説明】[Explanation of symbols]

21 光ファイバ 22 巻枠 23 巻芯 24 フランジ 25 取付け部 26 支持台 27 基台 41 挿入部 42 基部 Reference Signs List 21 optical fiber 22 winding frame 23 winding core 24 flange 25 mounting part 26 support base 27 base 41 insertion part 42 base

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一端側内周に取付け部が突設された円筒
状巻芯とフランジとよりなり、光ファイバが巻回される
巻枠と、 基台上に立設され、上記巻芯内に挿入されて、その挿入
端部が上記取付け部と結合される支持台とを具備し、 上記巻枠及び上記支持台の上記巻芯への挿入部がそれぞ
れ高熱伝導材で構成され、 上記支持台の、上記挿入部に至る基部が低熱伝導材で構
成されていることを特徴とする光ファイバコイルの支持
構造。
An optical fiber is wound around a cylindrical core having a mounting portion protruding from an inner periphery of one end thereof and a flange. And a support base, the insertion end of which is coupled to the mounting portion, wherein the insertion portions of the winding frame and the support base to the core are each made of a high heat conductive material, A support structure for an optical fiber coil, wherein a base portion of the stand reaching the insertion portion is made of a low heat conductive material.
JP20717695A 1995-08-14 1995-08-14 Optical fiber coil support structure Expired - Lifetime JP3277222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20717695A JP3277222B2 (en) 1995-08-14 1995-08-14 Optical fiber coil support structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20717695A JP3277222B2 (en) 1995-08-14 1995-08-14 Optical fiber coil support structure

Publications (2)

Publication Number Publication Date
JPH0953944A JPH0953944A (en) 1997-02-25
JP3277222B2 true JP3277222B2 (en) 2002-04-22

Family

ID=16535503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20717695A Expired - Lifetime JP3277222B2 (en) 1995-08-14 1995-08-14 Optical fiber coil support structure

Country Status (1)

Country Link
JP (1) JP3277222B2 (en)

Also Published As

Publication number Publication date
JPH0953944A (en) 1997-02-25

Similar Documents

Publication Publication Date Title
US5313333A (en) Method and apparatus for combined active and passive athermalization of an optical assembly
US5245687A (en) Optical fiber coil unit for a fiber optic gyro
JPH10206172A (en) Fiber optic sensor coil including buffer regions
CN111829499A (en) High-precision fiber-optic gyroscope system based on optical fiber temperature measurement and optical fiber ring structure
JP3277222B2 (en) Optical fiber coil support structure
JPH07103771A (en) Flange-support type sensor coil for fiber-optic gyroscope
US4152674A (en) Air spaced etalon with mechanism for adjusting parallelism of reflecting surfaces
US6496263B1 (en) System and method for providing an improved IFOG hub to coil thermal and mechanical slip interface
US3619811A (en) Gas laser tube mount
JPH08313271A (en) Fiber-optic coil
JP2655931B2 (en) Optical fiber gyro, and navigation system and moving object having the optical fiber gyro
FR2759162A1 (en) DEVICE FOR FIXING THE OPTICAL BLOCK OF A TRIAXIAL LASER GYROMETER ON AN ACTIVATION DEVICE
JP2838123B2 (en) Optical fiber gyro structure
US4836677A (en) Ring laser cavity length control mirror assembly
JP3566129B2 (en) Temperature compensated optical fiber Bragg grating
JP2549668B2 (en) Optical fiber coil for sensor
JP2003202521A (en) Optical isolator
JP3002095B2 (en) Sensor coil for low bias fiber optic gyroscope
JPS63134913A (en) Optical fiber sensor
JP2616231B2 (en) Optical fiber coil
Allen et al. Low-cost fiber optic gyro for land navigation
JP3219135B2 (en) Laser oscillator
JPH0343797B2 (en)
JP2001350103A (en) Reflecting telescopic device
US20030086193A1 (en) Optical unit and its use

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090215

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100215

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100215

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100215

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140215

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term