JP3274420B2 - Ground surface vibration detection sensor and debris flow detection system - Google Patents

Ground surface vibration detection sensor and debris flow detection system

Info

Publication number
JP3274420B2
JP3274420B2 JP19418798A JP19418798A JP3274420B2 JP 3274420 B2 JP3274420 B2 JP 3274420B2 JP 19418798 A JP19418798 A JP 19418798A JP 19418798 A JP19418798 A JP 19418798A JP 3274420 B2 JP3274420 B2 JP 3274420B2
Authority
JP
Japan
Prior art keywords
vibration
detection
ground surface
debris flow
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19418798A
Other languages
Japanese (ja)
Other versions
JP2000028425A (en
Inventor
家郷 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meisei Electric Co Ltd
Original Assignee
Meisei Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meisei Electric Co Ltd filed Critical Meisei Electric Co Ltd
Priority to JP19418798A priority Critical patent/JP3274420B2/en
Publication of JP2000028425A publication Critical patent/JP2000028425A/en
Application granted granted Critical
Publication of JP3274420B2 publication Critical patent/JP3274420B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は地表面振動検出セン
サおよびこのセンサを用いて土石流の発生を検知する
石流検知システムに関するものである。
The present invention relates to a ground vibration detecting sensor.
Those about the soil <br/> ore flow detection system for detecting the occurrence of a debris flow using support and the sensor.

【0002】[0002]

【従来の技術】現在採用されている土石流発生検知シス
テムは雨量を計測して、その危険を予測するもので必ず
しも土石流の発生そのものをセンサで検出していないた
め、ワイヤーセンサと組み合わせて使用したり、又はワ
イヤーセンサ単独で使用し土石流発生によりワイヤーが
切断されたことで土石流発生検知を行っている。
2. Description of the Related Art Currently used debris flow detection systems measure the amount of rainfall and predict the danger of the rainfall. Since the debris flow generation itself is not necessarily detected by a sensor, it may be used in combination with a wire sensor. Alternatively, the debris flow generation is detected by using the wire sensor alone and cutting the wire due to the debris flow generation.

【0003】[0003]

【発明が解決しようとする課題】前記従来の土石流発生
検知システムは雨量を計測してその危険度を予測するも
ので、必ずしも土石流発生そのものを検出していないの
で雨量のほかに複数のポール間にワイヤーセンサを張
り、土石流によりワイヤーセンサが切断されたことを検
出し、もって土石流の発生を検出している。しかしなが
らワイヤーセンサは雪により切断されるなど信頼性が高
くない。そこで最近注目されているのが高感度地震計ま
たはハイドロフォンなどを用いて振動を検出し土石流を
検出しようというものがあるが、検出装置が高価な上に
センサに常時電力を供給する必要があるため、太陽電池
を用いなければならない遠隔地の観測には活用しにくい
という問題があった。
The above-mentioned conventional debris flow occurrence detection system measures the amount of rainfall and predicts the degree of danger. Since the occurrence of debris flow itself is not necessarily detected, in addition to the amount of rainfall, the conventional debris flow generation detection system is used between a plurality of poles. A wire sensor is set up, and it is detected that the wire sensor has been cut by the debris flow, thereby detecting the occurrence of the debris flow. However, the reliability of the wire sensor is not high, such as being cut by snow. Therefore, there has been a recent trend to detect debris flow by detecting vibration using a high-sensitivity seismometer or hydrophone, but the detection device is expensive and it is necessary to always supply power to the sensor For this reason, there is a problem that it is difficult to use it for observation of a remote place where a solar cell must be used.

【0004】本発明は以上の問題点を解決するために提
案するもので、センサのシステム自身外部からの電力を
全く必要とせず、センサとしての最終出力が無電圧接点
信号が得られる地表面振動検出センサ及び該地表面振動
検出センサを用いる土石流検知システムの開発を目的と
する。
The present invention proposes to solve the above-mentioned problems, and does not require any electric power from outside the sensor system itself, and the ground surface vibration at which the final output as the sensor is a non-voltage contact signal is obtained. for the purpose of development of debris Nagareken knowledge system using the detection sensor and該地surface vibration detection sensor.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、第1の発明は、地表面に載置される基板と、基板に
対して垂直な平面に沿って配置され、前記基板に設けら
れた支持体に対して上端隅部の支点を中心に揺動可能に
取付けられた振動板と、前記振動板を前記基板に対して
弾性的に支持して前記振動板を前記支点を中心に振動さ
せるバネ部材と、前記振動板の振動を回転動作に変換し
て起電力を発生させる変換手段と、前記変換手段からの
起電力が所定時間出力されると検出対象の地表面振動が
発生したと前記起電力を利用して判断する判断手段とを
有することを特徴とする地表面振動検出センサとするも
のである。
Means for Solving the Problems In order to achieve the above object, a first aspect of the present invention is to provide a substrate mounted on a ground surface,
Is disposed along a plane perpendicular against a vibrating plate mounted swingably around a fulcrum of the upper corner portion relative to the support member provided on said substrate, said vibrating plate to the substrate
The diaphragm is elastically supported and the diaphragm is vibrated about the fulcrum.
A spring member for converting the vibration of the diaphragm into a rotational operation.
Converting means for generating an electromotive force,
When the electromotive force is output for a predetermined time, the ground vibration
Determining means that the occurrence has occurred using the electromotive force.
A ground surface vibration detection sensor characterized by having
It is.

【0006】第2の発明は、上記第1の発明において、
前記基板には、複数の前記振動板を振動検出方向が異な
るように設けたことを特徴とする。
According to a second aspect, in the first aspect,
A plurality of the vibration plates are provided with different vibration detection directions on the substrate.
It is characterized by having been provided so that.

【0007】第3の発明は、標高の高い地点から低い地
点に、上記第1または第2の発明の地表面振動検出セン
サを有する複数の観測装置を配置し、前記各観測装置か
ら順次振動が発生したことを検出して土石流発生を検知
するようにしたことを特徴とする土石流検知システムに
ある。
[0007] A third aspect of the present invention relates to a method in which a high altitude is used for a low land.
In the point, the ground vibration detecting sensor according to the first or second aspect of the present invention.
A plurality of observation devices with
To detect the occurrence of debris flow
Debris flow detection system
is there.

【0008】第4の発明は、上記第3の発明において、
前記複数の観測装置は検出データを無線回線を用いて監
視装置に伝送するものであって、該観測装置から検出デ
ータを送出するとき、各観測装置はそれぞれ異なる固有
の遅延時間後に伝送し、該検出データを受信する前記監
視装置では、各観測装置の固有の遅延時間を基にして各
観測装置の地表面振動検出時刻を算出するようにしたこ
とを特徴とする。
[0008] In a fourth aspect based on the third aspect ,
The plurality of observation devices monitor the detected data using a wireless line.
Transmitted to the visual observation device, and the detection data is transmitted from the observation device.
When sending data, each observation device has its own unique
The monitor that transmits after a delay time of
In the observation device, each observation device is based on its own delay time.
The ground vibration detection time of the observation device was calculated.
And features.

【0009】[0009]

【0010】[0010]

【発明の実施の形態】以下に本発明を図面に示す実施形
態に基づいて詳細に説明する。即ち図面はいずれも本発
明の実施の形態を説明するためのもので、図1は本発明
の実施の形態に関わる地表面振動検出センサの構造概念
図、図2は地表面振動検出センサの電気回路にかかる部
分を示す回路図、図3は地表面振動検出センサが振動を
検知してから最終出力であるリレーの無電圧接点出力を
出力するまでの信号の流れを示す特性図、図4は地表面
振動検出センサが土石流検知システムに使用される例を
具体的に示す設置概念図、図5は複数の地表面振動検出
センサからの出力信号(観測装置1〜6)のモードによ
る検出例を説明し、土石流発生の判定を説明する図であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings. That is, all of the drawings are for explaining the embodiment of the present invention. FIG. 1 is a structural conceptual diagram of a ground vibration detecting sensor according to the embodiment of the present invention, and FIG. FIG. 3 is a circuit diagram showing a portion related to the circuit, FIG. 3 is a characteristic diagram showing a signal flow from the detection of vibration by the ground vibration detection sensor to the output of the final output, that is, the non-voltage contact output of the relay, and FIG. FIG. 5 is an installation conceptual diagram specifically showing an example in which a ground surface vibration detection sensor is used in a debris flow detection system. FIG. 5 shows an example of detection by output signal (observation devices 1 to 6) modes from a plurality of ground surface vibration detection sensors. It is a figure explaining and explaining determination of debris flow generation.

【0011】先ずは、図1を用いて地表面振動検出セン
サの構造について説明する。1は地表面振動検出センサ
を構成する各素子を載置する基板、10〜13は上記基
板1に設けられた取付穴、20,21は後記の振動を検
出する振動板や該検出した振動による回転動作を増幅す
る後記の増幅用ギア及び、その増幅した回転動作を伝達
し地表面振動検出の出力となる無電圧接点を有するリレ
ーを駆動させる後記のDCジェネレータを設置する支持
板、30,31は地表面の振動をX軸、Y軸、Z軸方向
から感応するための振動板、32,33は振動板30,
31に対応し、地表面の振動に対して該振動板30,3
1を回転動作せしめる支点、34,35は振動板30,
31に対応し設けられた回転動作を伝達するためのギア
溝、40,41は振動板30,31に設けられた、該振
動板30,31の振動による回転動作の慣性モーメント
を得るためのウェイト、50,51は振動板30,31
に対応して設けられた地表面からの振動を忠実に検出す
るスプリング、60,61は後記の増幅用ギアと一体化
された振動板30,31に有するギア溝34,35と噛
み合うギア、70,71は振動板30,31からの回転
動作を増幅して後記のDCジェネレータに伝える増幅用
ギア、80,81は増幅用ギア70,71から伝達の回
転動作により電気出力を得るためのDCジェネレータ
で、DCジェネレータ81はDCジェネレータ80と同
様で図示せず、82,83はDCジェネレータ80,8
1に対応して一体化された増幅用ギア70,71と噛み
合うジェネレータ用ギアであり、基板1は剛性の高い金
属からなり、この基板1上には振動を検出する振動板3
0及び振動板31をはじめ地表面振動検出センサを構成
する各素子が載置されている。
First, the structure of the ground vibration detecting sensor will be described with reference to FIG. Reference numeral 1 denotes a substrate on which elements constituting the ground surface vibration detecting sensor are mounted, 10 to 13 denote mounting holes provided in the substrate 1, 20 and 21 denote vibration plates for detecting vibrations described later, and vibrations detected by the detected vibrations. Amplifying gear for amplifying the rotational operation, and a support plate for installing a DC generator for transmitting a relay having a non-voltage contact to transmit the amplified rotational operation and output ground vibration detection; 30, 31 Are diaphragms for sensing vibrations on the ground surface in the X-axis, Y-axis, and Z-axis directions, and 32 and 33 are diaphragms 30,
31 corresponding to the vibration of the ground surface,
The fulcrum for rotating 1 is a diaphragm 30, 34 is a diaphragm 30,
Gear grooves 40 and 41 are provided on the diaphragms 30 and 31 for transmitting a rotational operation. Weights are provided on the diaphragms 30 and 31 for obtaining an inertia moment of the rotational operation due to the vibration of the diaphragms 30 and 31. , 50 and 51 are diaphragms 30 and 31
The springs 60 and 61 are provided in correspondence with the gears 34 and 35 of the diaphragms 30 and 31 integrated with the amplifying gears described later. , 71 are amplification gears for amplifying the rotation operation from the diaphragms 30 and 31 and transmitting the amplified operation to a DC generator described later. Reference numerals 80 and 81 are DC generators for obtaining an electric output by the rotation operation transmitted from the amplification gears 70 and 71. The DC generator 81 is the same as the DC generator 80 and is not shown, and 82 and 83 are the DC generators 80 and 8.
1 is a generator gear that meshes with the amplifying gears 70 and 71 integrated with each other. The substrate 1 is made of a metal having high rigidity.
Each element constituting the ground surface vibration detection sensor including the zero and the vibration plate 31 is mounted.

【0012】基板1の4隅は、上記取付穴10〜13を
利用して地盤やコンクリートで造られた土台等にコンク
リートネジ等で固定され、該基板1に伝えられる地表面
の振動に対してはX軸、Y軸、Z軸方向の振動に対して
感応できるような構成にしてあり、X軸、Z軸に対して
は振動板30が、Y軸、Z軸に対しては振動板31がそ
れぞれ地表面の振動を検出する。
The four corners of the substrate 1 are fixed to the ground or a base made of concrete using the mounting holes 10 to 13 with concrete screws or the like. Is configured to be sensitive to vibrations in the X-axis, Y-axis, and Z-axis directions. A diaphragm 30 is provided for the X-axis and the Z-axis, and a diaphragm 31 is provided for the Y-axis and the Z-axis. Detect vibrations on the ground surface, respectively.

【0013】ここでの説明ではX軸、Z軸方向の振動に
ついて行うが、Y軸、Z軸方向の振動に対しても構成が
X軸、Z軸の場合と同じなので説明を省略する。該X
軸、Z軸の構成において、支持板20は剛性の高い金属
板でなる基板1上で垂直に一体的に固定され、振動を検
出する振動板30は剛性の高い板状金属で、上記支持板
20に対しわずかな間隔を隔てて隔設されており、該振
動板30の上端隅部に設けられた支点32を中心にして
回転可能な状態で該支持板20に支持する構造となって
いる。
In the description here, the vibration in the X-axis and Z-axis directions will be described. However, the configuration for the vibration in the Y-axis and Z-axis directions is the same as that in the case of the X-axis and Z-axis. The X
In the configuration of the axis and the Z-axis, the support plate 20 is vertically and integrally fixed on the substrate 1 made of a highly rigid metal plate, and the vibration plate 30 for detecting vibration is a highly rigid plate-like metal. The vibration plate 30 is supported at a slight distance from the support plate 20 so as to be rotatable about a fulcrum 32 provided at the upper end corner of the diaphragm 30. .

【0014】また、振動板30の回転動作をDCジェネ
レータ80に伝達するために該振動板30の支点32と
対角線に対向する下端隅部の後記するスプリング50が
載置する近傍の該振動板30の側面にギア溝34が設け
てあり、増幅用ギア70を介して上記DCジェネレータ
80に振動板30の回転動作を伝えている。伝達する回
転動作の感度等は増幅用ギア70の大きさを変えて、変
換できるようにすることで容易に変更できる。
Further, in order to transmit the rotating operation of the diaphragm 30 to the DC generator 80, the diaphragm 30 in the vicinity of a position where a spring 50 to be described later is mounted on a lower end corner opposite to the fulcrum 32 of the diaphragm 30 and diagonally is mounted. A gear groove 34 is provided on the side surface of the oscillating plate 30, and transmits the rotation of the diaphragm 30 to the DC generator 80 via the amplification gear 70. The sensitivity and the like of the rotating operation to be transmitted can be easily changed by changing the size of the amplification gear 70 so that it can be converted.

【0015】また、振動板30には、振動による慣性モ
ーメントを得るために鉛等の重量のある金属のウェイト
40を該振動板30の中央部よりやや支点31寄りの平
面に載せてあり、さらに振動板30が地表面振動を忠実
に検出するために上記支点32と対角線に対向する下端
隅部に位置するギア溝34の近辺切欠部の底部と基板1
との間にスプリング50を設けてあり、上記振動板30
の支点32の位置は、該振動板30がX軸方向及びZ軸
方向の振動に対してバランスを崩しやすい位置すなわち
振動を感じやすい位置に設定してある。
A weight 40 made of heavy metal such as lead is placed on the diaphragm 30 on a plane slightly closer to the fulcrum 31 than the center of the diaphragm 30 to obtain an inertia moment due to vibration. In order for the diaphragm 30 to detect ground surface vibrations faithfully, the bottom of the notch near the gear groove 34 located at the lower end corner opposite to the fulcrum 32 diagonally and the substrate 1
Is provided between the diaphragm 30 and the diaphragm 30.
The position of the fulcrum 32 is set at a position where the diaphragm 30 easily loses its balance with respect to the vibrations in the X-axis direction and the Z-axis direction, that is, a position where the vibration is easily felt.

【0016】また、剛性の高い金属の支持板21は、Y
軸とZ軸で構成される面に生ずる振動を検出するために
振動板30に直交する位置に上記基板1へ垂直で一体的
に固定され、該支持板21には、振動板30と同一の構
造を有する剛性の高い板状金属の振動板31を設置し、
該振動板31の支点33は、振動板30の支点32の近
傍となる位置に、該支点32と同一の構造を有して上記
支持板21に取り付けられる。
The metal support plate 21 having high rigidity is made of Y
In order to detect a vibration generated on a plane composed of the axis and the Z axis, the substrate is fixed vertically and integrally to the substrate 1 at a position orthogonal to the diaphragm 30. A diaphragm 31 made of a highly rigid plate-like metal having a structure is installed,
The fulcrum 33 of the diaphragm 31 is attached to the support plate 21 at a position near the fulcrum 32 of the diaphragm 30 with the same structure as the fulcrum 32.

【0017】上記地表面振動検出センサは、土石流発生
を検知する基になる振動として図3(a)に示すような
振動すなわち振動板30(又は振動板31)が振幅10
0ミクロン、周期100msの振動が1秒間持続するこ
とを地表面の振動と判断する条件としている。
The ground surface vibration detection sensor has a vibration as shown in FIG. 3A, that is, a vibration plate 30 (or a vibration plate 31) having an amplitude of 10 as a base vibration for detecting occurrence of debris flow.
The condition that the vibration of 0 micron and the period of 100 ms lasts for 1 second is determined as the vibration of the ground surface.

【0018】図3(a)に示す振動を振動板30が検出
すると、ギア溝32を介して増幅用ギア70に伝達さ
れ、該増幅用ギア70では約60倍の増幅率が得られる
ように半径の比率を設定してあるのでDCジェネレータ
80に6mm相当の回転を与えることになる。ここでD
Cジェネレータ80を駆動するトルクとして約50g重
必要とすると、振動板30が必要となる慣性モーメント
を得るためには3kgをウェイト40に付加する。
When the vibration shown in FIG. 3A is detected by the diaphragm 30, the vibration is transmitted to the amplifying gear 70 through the gear groove 32 so that the amplification gear 70 can obtain an amplification factor of about 60 times. Since the radius ratio is set, the DC generator 80 is given a rotation equivalent to 6 mm. Where D
Assuming that a torque for driving the C generator 80 is required to be about 50 g, 3 kg is added to the weight 40 in order to obtain the necessary moment of inertia for the diaphragm 30.

【0019】次に図2及び図3を用いて地表面振動検出
センサの動作を説明する。図2は、X軸、Z軸方向の地
表面振動に対して検出した回転動作による起動力を電気
信号で出力するDCジェネレータ80とY軸、Z軸方向
の地表面振動に対して検出した回転動作による起動力を
電気信号で出力するDCジェネレータ81とのそれぞれ
からの出力が共通印加となるリレーを駆動し、該リレー
の無電圧接点のメーク接点による最終出力をあらわす電
気回路で、DCジェネレータ80とDCジェネレータ8
1との出力は、それぞれが同一回路構成のフィルタ部と
検波部D1及び検波部D2を介し、双方が共通となるチ
ャージアップコンデンサ部を経てリレー駆動部へ供給さ
れ、該リレー駆動部によりリレーを動作させるが、上記
のフィルタ部はL10,L11,L20,L21のチョ
ークコイルとC10〜C13,C20〜C23の電解コ
ンデンサとにより、検波部D1と検波部D2はダイオー
ドマトリックスにより、またチャージアップコンデンサ
部はR1,R2の抵抗とC14の電解コンデンサによ
り、それぞれが回路構成され、K1のリレーは複数のダ
イオードによるパワーFET Q1のベースへの信号入
力により駆動され無電圧接点k1を出力する。
Next, the operation of the ground vibration detecting sensor will be described with reference to FIGS. FIG. 2 shows a DC generator 80 that outputs, as an electric signal, a starting force due to a rotating operation detected with respect to the ground vibration in the X-axis and Z-axis directions, and a rotation detected with respect to the ground vibration in the Y-axis and Z-axis directions. An output from the DC generator 81, which outputs the starting force due to the operation as an electric signal, drives a relay to which a common application is applied, and an electric circuit representing a final output by a make contact of a non-voltage contact of the relay. And DC generator 8
1 is supplied to a relay driving unit via a filter unit having the same circuit configuration, a detection unit D1 and a detection unit D2, and a charge-up capacitor unit which is common to both. The filter section is operated by the choke coils of L10, L11, L20 and L21 and the electrolytic capacitors of C10 to C13 and C20 to C23, the detection section D1 and the detection section D2 are formed by a diode matrix, and the charge-up capacitor section. Are respectively constituted by the resistors of R1 and R2 and the electrolytic capacitor of C14, and the relay of K1 is driven by a signal input to the base of the power FET Q1 by a plurality of diodes and outputs a non-voltage contact k1.

【0020】図3は、上記振動板30及び振動板31が
検出する地表面からの振動波形に対する上記図2に示す
電気回路各部の信号波形を示し、(a)は検出対象振動
波形、(b)はDCジェネレータ出力波形、(c)はフ
ィルタ通過波形、(d)はチャージアップコンデンサ両
端波形、(e)はリレー出力をあらわす。X軸、Z軸の
振動を検出する振動板30が図3(a)に示すような振
動を少なくとも1秒間検出するとDCジェネレータ80
からは図3(b)の出力が得られる。この出力信号を図
2に示すフィルター部(L10,L11,C10〜C1
3)を通すことで土石流の振動周波数(10Hz成分)
を取り出している。
FIGS. 3A and 3B show signal waveforms of various parts of the electric circuit shown in FIG. 2 with respect to the vibration waveform from the ground surface detected by the diaphragm 30 and the diaphragm 31. FIG. ) Indicates a DC generator output waveform, (c) indicates a filter passing waveform, (d) indicates a waveform between both ends of the charge-up capacitor, and (e) indicates a relay output. When the diaphragm 30 for detecting the vibrations of the X axis and the Z axis detects the vibration as shown in FIG.
From FIG. 3B. This output signal is applied to the filter units (L10, L11, C10 to C1) shown in FIG.
3) Vibration frequency of debris flow by passing through (10Hz component)
Has been taken out.

【0021】この結果ノイズは(c)に示すように低減
され、フィルター部を通過した信号は検波部D1で検波
され、R1,R2,C14で構成されるチャージアップ
コンデンサを充電する。この充電が1秒間持続すると定
格動作電圧が1.5Vの小型のリレーK1を駆動するに
必要な電力(コンデンサC14の両端が1.8V)が得
られ、パワーFET Q1が動作し、リレーK1がパル
ス状に動作する。パワーFET Q1が動作するとコン
デンサC14の容量は抵抗R2を通して放電し、初期の
状態に戻る。以上の説明はX軸、Z軸の振動検知を振動
板30で行ったがY軸、Z軸の振動を検出する振動板3
1の機能、動作も同様であり、DCジェネレータ81の
出力はフィルター部(L20,L21,C20〜C2
3)を介し、検波部D2を通してR1,R2,C14で
構成されるチャージアップコンデンサを充電する。以上
の説明のように地表面振動検出センサは地表面の振動エ
ネルギーを電気信号に変換し、最終出力としてリレーK
1の無電圧接点(k1)のパルス出力が得られる。
As a result, the noise is reduced as shown in (c), and the signal passing through the filter is detected by the detector D1, and charges the charge-up capacitor composed of R1, R2 and C14. If this charging continues for one second, the power (1.8 V across capacitor C14) required to drive small relay K1 with a rated operating voltage of 1.5 V is obtained, power FET Q1 operates, and relay K1 is activated. Operates in pulse form. When the power FET Q1 operates, the capacitance of the capacitor C14 is discharged through the resistor R2 and returns to the initial state. In the above description, the X-axis and Z-axis vibrations are detected by the diaphragm 30, but the diaphragm 3 for detecting the Y-axis and Z-axis vibrations
1 has the same function and operation, and the output of the DC generator 81 is supplied to the filter section (L20, L21, C20 to C2).
Through 3), the charge-up capacitor composed of R1, R2, and C14 is charged through the detection unit D2. As described above, the ground vibration detection sensor converts the vibration energy of the ground to an electric signal and outputs the relay K as the final output.
A pulse output of one non-voltage contact (k1) is obtained.

【0022】つぎに、地表面振動検出センサを使用した
システムを図4と図5で説明する。図4は土石流検知シ
ステムの設置概念図で、渓流に沿って観測装置1〜観測
装置6を配置し、各観測装置には図1で説明した地表面
振動検出センサが少なくとも1個は設置されており、観
測装置1〜4までは観測結果を無線伝送で監視装置10
0へ伝送するが、その信号の内容は観測装置1〜4を区
別するいわゆる独自の局符号で変調して伝送する。観測
装置5,6は無線機を用いず、振動を検知すれば直接局
符号を監視装置100へ伝送する。
Next, a system using the ground surface vibration detection sensor will be described with reference to FIGS. FIG. 4 is a conceptual diagram of the installation of the debris flow detection system. Observation devices 1 to 6 are arranged along a mountain stream, and each observation device has at least one ground surface vibration detection sensor described in FIG. The observation devices 1 to 4 transmit the observation results by radio transmission to the monitoring device 10.
Although the signal is transmitted to 0, the content of the signal is modulated by a so-called unique station code for distinguishing the observation devices 1 to 4 and transmitted. Observation devices 5 and 6 do not use a wireless device, and directly transmit a station code to monitoring device 100 when vibration is detected.

【0023】図5は図4の各観測装置1〜6の検出デー
タを用いて土石流を判断する方法を説明する図で、
(a)は観測装置1〜観測装置6の地表面振動検出セン
サが同時刻に振動を検出した例を示しており、この検出
モードは地震により広域にわたりほぼ同一時刻に地表面
に振動が生じたものと監視局100で判定し、スピーカ
102及び電話回線103を用いて土石流発生の警報は
発しない。
FIG. 5 is a diagram for explaining a method of judging debris flow using the detection data of each of the observation devices 1 to 6 in FIG.
(A) shows an example in which the ground surface vibration detection sensors of the observation devices 1 to 6 detect vibrations at the same time, and in this detection mode, vibrations occur on the ground surface at substantially the same time over a wide area due to an earthquake. The monitoring station 100 determines that the debris flow has occurred, and does not use the speaker 102 and the telephone line 103 to issue an alarm for occurrence of debris flow.

【0024】(b)の検出モードは観測装置2だけが振
動を検出した例を示しており、ある一定の時間を経過し
ても下流の観測装置1及び観測装置3〜観測装置6が振
動を検出しておらず、土石流以外の振動ノイズと監視装
置100で判定し、検出モード(a)と同様警報は発し
ない。
The detection mode (b) shows an example in which only the observation device 2 detects vibration, and the observation device 1 and the observation devices 3 to 6 on the downstream side vibrate even after a certain period of time. The monitoring device 100 determines that vibration noise other than debris flow has not been detected, and no alarm is issued as in the detection mode (a).

【0025】(c)の検出モードは観測装置1、観測装
置2、観測装置3の順に時間をおいて振動を検出した例
で、このような振動検出モードが土石流が発生しつつあ
ることを示すもので監視装置100ではスピーカ102
と電話回線103を用いて危険地域に対して警報を発
し、土石流による災害を最小限にすることが可能にな
る、検出モード(a)についてさらに説明すると、観測
装置1〜観測装置4までは無線伝送方式を採用しており
各観測装置1〜4の無線周波数が同一であれば混信が生
じ、監視局100では正常に観測装置1〜観測装置4の
信号を受信、復調出来なくなるので、観測装置2〜観測
装置4は個別に固有の遅延時間を設けておき振動検出
時、設定遅延時間後に無線伝送する。この結果電波の同
時送出はさけられる。
The detection mode (c) is an example in which vibrations are detected in order of the observation device 1, the observation device 2, and the observation device 3 in order, and such a vibration detection mode indicates that debris flow is occurring. In the monitoring device 100, the speaker 102
The detection mode (a), in which a warning is issued to the danger area using the telephone line 103 to minimize a disaster caused by debris flow, will be described further. If the transmission system is used and the radio frequencies of the observation devices 1 to 4 are the same, interference occurs, and the monitoring station 100 cannot receive and demodulate the signals of the observation devices 1 to 4 normally. Second, the observation devices 4 individually provide a unique delay time, and perform wireless transmission after a set delay time when detecting vibration. As a result, simultaneous transmission of radio waves is avoided.

【0026】監視装置100では受信信号により観測装
置を判別し、既知である遅延時間から発生時刻を算出
し、振動が同時刻であることを算出し、地震によるもの
であると判定する。
The monitoring device 100 determines the observation device based on the received signal, calculates the occurrence time from the known delay time, calculates that the vibration is at the same time, and determines that the vibration is caused by an earthquake.

【0027】以上の説明では土石流検知システムのセン
サを地表面振動検出センサのみで構成した例で説明した
が雨量計測と併用することでさらに土石流発生検知の精
度アップに結びつくことは明らかである。
In the above description, the example in which the sensor of the debris flow detection system is constituted only by the ground surface vibration detection sensor has been described. However, it is apparent that the use of the sensor together with the rainfall measurement further improves the accuracy of the debris flow generation detection.

【0028】[0028]

【発明の効果】以上説明したように、本発明の地表面振
動検出センサは電力を全く必要とせず、振動で得たエネ
ルギーを利用して電気信号に変換し、最終出力信号が
電力を利用して例えばパルス状の無電圧接点で出力する
ので、現在雨量を計測することで構成している土石流発
生予知システムの雨量計と簡単に置換することができる
ので容易に新しいシステムが構成できる。地表面振動検
出センサの設置場所にもよるがワイヤーセンサと異なり
雪や本来の土石流等により破壊したり、流出するわけで
はないので繰り返し利用でき、観測装置での振動の検出
方法及び監視装置での信号処理により安価で信頼性の高
い検出ができるという顕著な効果を有する。
As described above, according to the present invention, the ground surface vibration detection sensor of the present invention does not require any power, converted into an electrical signal by utilizing the energy obtained by the vibration, the final output signal is caused
Since power is output using, for example, pulse-shaped no-voltage contacts, a new system can be easily configured because it can be easily replaced with the rain gauge of the debris flow generation prediction system that is configured by measuring the current rainfall. it can. Although it depends on the installation location of the ground surface vibration detection sensor, unlike a wire sensor, it does not break or flow out due to snow or the original debris flow, so it can be used repeatedly. The signal processing has a remarkable effect that inexpensive and highly reliable detection can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係わる地表面振動検出セ
ンサの構造概念図。
FIG. 1 is a structural conceptual diagram of a ground surface vibration detection sensor according to an embodiment of the present invention.

【図2】本発明の地表面振動検出センサの回路図。FIG. 2 is a circuit diagram of a ground vibration detection sensor according to the present invention.

【図3】本発明の地表面振動検出センサの信号処理を示
す特性図。
FIG. 3 is a characteristic diagram showing signal processing of the ground vibration detection sensor of the present invention.

【図4】本発明の振動検出方法による土石流検知システ
ムの設置概念図。
FIG. 4 is a conceptual diagram of installation of a debris flow detection system according to the vibration detection method of the present invention.

【図5】本発明の振動検出方法により土石流発生を説明
する説明図。
FIG. 5 is an explanatory diagram illustrating debris flow generation by the vibration detection method of the present invention.

【符号の説明】[Explanation of symbols]

1…基板 10〜13…取付穴 20,21…支持板 30,31…振動板 32,33…支点 34,35…ギア溝 40,41…ウェイト 50,51…スプリング 60,61…ギア 70,71…増幅用ギア 80,81…DCジェネレータ 82,83…DCジェネレータ用ギア 100…監視装置 101…アンテナ 102…スピーカ 103…電話回線 DESCRIPTION OF SYMBOLS 1 ... Board | substrate 10-13 ... Mounting hole 20, 21 ... Support plate 30, 31 ... Vibration plate 32, 33 ... Support point 34, 35 ... Gear groove 40, 41 ... Weight 50, 51 ... Spring 60, 61 ... Gear 70, 71 ... Amplification gears 80, 81 DC generators 82, 83 DC generator gears 100 Monitoring device 101 Antenna 102 Speaker 103 Telephone line

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 Yoshiraru Ishikaw a & Tadanori Ishiz uka,土木研究資料、337 山田孝、南哲行&水野秀明、砂防学会 誌、50(5)、60−64頁 及び奥付 (1998年1月15日発行) 疋田誠、自然災害科学研究西武地区部 会報・論文集−20号、第142−146頁、 1996年3月、図−2参 (58)調査した分野(Int.Cl.7,DB名) G01H 1/00 G01D 21/00 G01V 1/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References Yoshiraru Ishikawa & Tadanori Ishizuka, Civil Engineering Research Material, 337 Takashi Yamada, Tetsuyuki Minami & Hideaki Mizuno, Journal of Sabo Society, 50 (5), pp. 60-64 and Imprint ( (Published on January 15, 1998) Makoto Hikita, Seibu District Natural Disaster Sciences Research Bulletin, No. 20, pp. 142-146, March 1996, see Fig. 2 (58) Fields surveyed (Int. Cl. 7, DB name) G01H 1/00 G01D 21/00 G01V 1/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 地表面に載置される基板と、基板に対し
て垂直な平面に沿って配置され、前記基板に設けられた
支持体に対して上端隅部の支点を中心に揺動可能に取付
けられた振動板と、前記振動板を前記基板に対して弾性
的に支持して前記振動板を前記支点を中心に振動させる
バネ部材と、前記振動板の振動を回転動作に変換して起
電力を発生させる変換手段と、前記変換手段からの起電
力が所定時間出力されると検出対象の地表面振動が発生
したと前記起電力を利用して判断する判断手段とを有す
ることを特徴とする地表面振動検出センサ。
A substrate mounted on a ground surface and a substrate
A vibrating plate that is arranged along a vertical plane and that is attached to a support provided on the substrate so as to be swingable about a fulcrum at an upper end corner, and that the vibrating plate is elastically mounted on the substrate.
And vibrates the diaphragm around the fulcrum
The vibration of the spring member and the vibrating plate is converted into a rotational motion and the vibration is generated.
Conversion means for generating electric power, and electromotive force from the conversion means
When the force is output for a predetermined time, the ground vibration of the detection target occurs
Means for making a judgment using the electromotive force
A ground surface vibration detection sensor.
【請求項2】 前記基板には、複数の前記振動板を振動
検出方向が異なるように設けたことを特徴とする請求項
1に記載の地表面振動検出センサ。
2. A plurality of said vibrating plates are vibrated on said substrate.
The detection direction is provided differently, The claim characterized by the above-mentioned.
2. The ground surface vibration detection sensor according to 1.
【請求項3】 標高の高い地点から低い地点に、請求項
1または2に記載の地表面振動検出センサを有する複数
の観測装置を配置し、前記各観測装置から順次振動が発
生したことを検出して土石流発生を検知するようにした
ことを特徴とする土石流検知システム。
3. The low point from high-altitude point, claim
A plurality having the ground surface vibration detection sensor according to 1 or 2
A debris flow detection system , wherein the observation devices are arranged and the occurrence of vibration is sequentially detected from each of the observation devices to detect the occurrence of debris flow.
【請求項4】 前記複数の観測装置は検出データを無線
回線を用いて監視装置に伝送するものであって、該観測
装置から検出データを送出するとき、各観測装置はそれ
ぞれ異なる固有の遅延時間後に伝送し、該検出データを
受信する前記監視装置では、各観測装置の固有の遅延時
間を基にして各観測装置の地表面振動検出時刻を算出す
るようにしたことを特徴とする請求項3に記載の土石流
検知システム。
4. A one said plurality of observation devices for transmitting detection data to the monitoring device by using a radio channel, when transmitting the detection data from said observation device, different inherent delay time each observation device respectively transmitting after said detection by said monitoring device that receives the data, according to claim 3, characterized in that to calculate the ground surface vibration detection time inherent delay each observation device based on the respective observation devices The debris flow detection system according to 1.
JP19418798A 1998-07-09 1998-07-09 Ground surface vibration detection sensor and debris flow detection system Expired - Fee Related JP3274420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19418798A JP3274420B2 (en) 1998-07-09 1998-07-09 Ground surface vibration detection sensor and debris flow detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19418798A JP3274420B2 (en) 1998-07-09 1998-07-09 Ground surface vibration detection sensor and debris flow detection system

Publications (2)

Publication Number Publication Date
JP2000028425A JP2000028425A (en) 2000-01-28
JP3274420B2 true JP3274420B2 (en) 2002-04-15

Family

ID=16320398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19418798A Expired - Fee Related JP3274420B2 (en) 1998-07-09 1998-07-09 Ground surface vibration detection sensor and debris flow detection system

Country Status (1)

Country Link
JP (1) JP3274420B2 (en)

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Yoshiraru Ishikawa & Tadanori Ishizuka,土木研究資料、337
山田孝、南哲行&水野秀明、砂防学会誌、50(5)、60−64頁 及び奥付(1998年1月15日発行)
疋田誠、自然災害科学研究西武地区部会報・論文集−20号、第142−146頁、1996年3月、図−2参

Also Published As

Publication number Publication date
JP2000028425A (en) 2000-01-28

Similar Documents

Publication Publication Date Title
Forward Wideband laser-interferometer graviational-radiation experiment
CA1129061A (en) Method and system for monitoring the angular deformation of structural elements
US6255962B1 (en) Method and apparatus for low power, micro-electronic mechanical sensing and processing
US20020048220A1 (en) Wide frequency band micromachined capacitive microphone/hydrophone and method
CN113063594B (en) Acoustic intelligent bearing and monitoring and diagnosing method thereof
EP0027738A2 (en) Intrusion alarm system
KR101660768B1 (en) The apparatus for controlling status information of earthquake accelerometer, and method thereof
CA1241432A (en) End weighted reed sound transducer
CN202903327U (en) Debris flow earth sound monitoring device
US4351192A (en) Fluid flow velocity sensor using a piezoelectric element
US5362929A (en) Weight sensor device
US4083255A (en) Hydro-optic vibration detector
JP3274420B2 (en) Ground surface vibration detection sensor and debris flow detection system
US5925822A (en) Microelectromechanical cantilever acoustic sensor
KR102442346B1 (en) method for field-verifying normal operation of seismic acceleration sensor and the seismic acceleration sensor using thereby
CN212540225U (en) Passive wireless piezoelectricity driven composite coating damage detection sensor
US7508187B2 (en) Device and system for the measurement of an external electrostatic field, and system and method for the detection of storms
CN209356059U (en) A kind of base for tractor of elevator vibration monitoring device based on surface acoustic wave sensor
KR101805530B1 (en) Smart-elastic mounts for ships based on the internet of thing
JP2856748B2 (en) Method of measuring vibration propagating in a substance and vibration pickup
CN214250909U (en) Crack detection device
Fröjd et al. Voice-Coils As Reciprocal Transducers in Structural Health Monitoring Applications
JP3136450B2 (en) Underground structure exploration method
JPH10269487A (en) System for measuring distribution of physical quantity
US10444203B2 (en) Ultrasonic vibration sensing

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees