JP3274230B2 - Aggregated fine particle dispersion method - Google Patents
Aggregated fine particle dispersion methodInfo
- Publication number
- JP3274230B2 JP3274230B2 JP12630893A JP12630893A JP3274230B2 JP 3274230 B2 JP3274230 B2 JP 3274230B2 JP 12630893 A JP12630893 A JP 12630893A JP 12630893 A JP12630893 A JP 12630893A JP 3274230 B2 JP3274230 B2 JP 3274230B2
- Authority
- JP
- Japan
- Prior art keywords
- particles
- dispersion
- diameter
- fine particles
- particle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Combined Means For Separation Of Solids (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、凝集した微粒子を分散
させる方法、詳しくは、気流の加速によって凝集粒子を
分散させる方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for dispersing aggregated fine particles, and more particularly, to a method for dispersing aggregated particles by accelerating airflow.
【0002】[0002]
【従来の技術】セラミックスなどの無機物微粒子や有機
物微粒子は一般にその粒径が小さくなるほど凝集し易
く、このため、一次粒子が数個〜数十個あるいはそれ以
上凝集して凝集体を形成している場合は多い。2. Description of the Related Art In general, inorganic or organic fine particles such as ceramics are more likely to aggregate as the particle size becomes smaller. Therefore, several to several tens or more primary particles are aggregated to form an aggregate. There are many cases.
【0003】一方、凝集した微粒子を一次粒子まで分散
させるという要求は種々の分野においてしばしばあり、
このために例えば、容器内に多数の大径ビーズを入れて
凝集微粒子を供給しながら撹拌するとか、回転ブラシに
凝集微粒子を供給するという機械的な凝集体の破壊方法
や、凝集微粒子をエジェクターに供給して気流中での加
速により分散させる方法などが、従来から行われてい
る。On the other hand, there is often a demand in various fields to disperse aggregated fine particles into primary particles,
For this purpose, for example, a large number of large-diameter beads are put into a container and stirred while supplying the aggregated fine particles, or a mechanical aggregate destruction method of supplying the aggregated fine particles to a rotating brush, or the aggregated fine particles are ejected to an ejector. A method of supplying and dispersing by acceleration in an air stream has been conventionally performed.
【0004】また上記気流中での分散法では、例えば数
μm径程度の微粒子であれば気流ガス密度を大きくする
ことで凝集粒子の分散性を高められることを本発明者等
は既に報告している(遠藤,高坂:化学工学論文集,1
8,p760(1992))。The present inventors have already reported that in the above-mentioned dispersion method in a gas stream, for example, fine particles having a diameter of about several μm can increase the dispersibility of aggregated particles by increasing the gas flow gas density. (Endo, Takasaka: Chemical Engineering Transactions, 1
8, p760 (1992)).
【0005】[0005]
【発明が解決しようとする課題】しかしながら、上記の
機械的分散法では被分散対象物の粒径に限界があるし、
また機械的撹拌装置などに由来するコンタミ抑制に限界
があり、他方、気流中での分散法は分散可能な微粒子に
下限があって、例えば1μm以下の微粒子については必
ずしも有効ではない。However, in the mechanical dispersion method described above, there is a limit to the particle size of the object to be dispersed,
In addition, there is a limit to the suppression of contamination caused by a mechanical stirrer or the like. On the other hand, the dispersion method in an air stream has a lower limit on fine particles that can be dispersed, and is not necessarily effective for fine particles of 1 μm or less, for example.
【0006】本発明者等はこのような従来法の問題点に
鑑みて、微粒子分散メカニズムの理論的解析と、実際面
において求められているより有効な手段の開発を目的と
して鋭意研究を重ね、本発明を開発するに至ったもので
ある。In view of such problems of the conventional method, the present inventors have conducted intensive studies for the purpose of theoretical analysis of the fine particle dispersion mechanism and the development of more effective means required in practice. The present invention has been developed.
【0007】本発明では、以上の目的を達成するために
上記特許請求の範囲の各請求項に記載した本発明を完成
したものであり、その特徴の一つは、被分散対象である
1.0μm径以下のサブミクロン径の一次粒子径の微粒
子凝集体と、この微粒子凝集体が表面に付着した50μ
m径以上の分散媒体粒子との混合体を、これらの微粒子
凝集体と分散媒体粒子の上記混合体を気流中で加速させ
てサブミクロン径の分散した一次粒子を得るところにあ
る。 According to the present invention, in order to achieve the above object, the present invention described in each of the claims is completed, and one of its features is an object to be dispersed.
1.0 [mu] m and fine <br/> child aggregates of primary particle size of submicron diameter under diameter or less, 50.mu. this particulate aggregate is adhered to the surface
The mixture of the dispersion medium particles on m diameter or more, these microparticles
Accelerate the above mixture of agglomerates and dispersion media particles in a gas stream
In Rutokoro give dispersed primary particles of submicron size Te.
【0008】本発明は、従来の方法では分散が困難であ
ったサブミクロン径の一次粒子径の凝集体を対象とする
場合に特に有効であり、サブミクロンの微粒子である微
粒子凝集(一次粒子)と、100μm程度の分散媒体粒
子例えば50μm〜150μm径の分散媒体粒子とを用
いることができる。[0008] The present invention is, in the conventional method is particularly effective when the target aggregates of primary particle diameter of submicron size dispersion is difficult, fine is the submicron particulate
And particle aggregation (primary particles), can be used and distributed media particles of the dispersing medium particle e.g. 50μm~150μm size of about 100 [mu] m.
【0009】分散対象となる微粒子としては、例えばプ
ラスチック粒子、セラミックス粒子又は炭酸カルシウ
ム、アルミナ、ポリスチレンラテックス等を挙げること
ができる。The fine particles to be dispersed include, for example, plastic particles, ceramic particles, calcium carbonate, alumina, polystyrene latex and the like.
【0010】分散媒体粒子の材質は特に限定されるもの
ではないが、例えばセラミックス等が好ましく用いら
れ、特にガラスビーズを好適に用いることができる。The material of the dispersion medium particles is not particularly limited, but for example, ceramics and the like are preferably used, and glass beads can be particularly preferably used.
【0011】上記構成において、分散媒体粒子を気流中
で加速させる手段としては、例えばエジェクター、高圧
容器等を用いることができる。気流圧力は、0.5kg
/cm2 〜150kg/cm2 の範囲で本発明を実施す
ることができる。In the above configuration, as means for accelerating the dispersion medium particles in the air stream, for example, an ejector, a high-pressure vessel, or the like can be used. Air flow pressure is 0.5kg
/ Cm 2 to 150 kg / cm 2 can be used to carry out the present invention.
【0012】本発明において以上の構成を採用した理由
は次ぎのことによる。図1にモデル的に示した大小2個
の粒子からなりたっている凝集粒子が一様な流れの場に
瞬時におかれたときに、これらの異径粒子間に働く分散
力Fd は次式で与えられる。なおここでは小粒径粒子を
A、大粒径粒子をBとする。The reason why the above configuration is employed in the present invention is as follows. When the model shown and aggregated particles composed magnitude of two particles is placed instantaneously in a field of uniform flow in FIG. 1, the dispersion force F d by the following equation acting between these different size particles Given by In this case, the small particle size is A and the large particle size is B.
【0013】[0013]
【数1】 (Equation 1)
【0014】ここでこの分散力Fd を高める方法とし
て、大粒径粒子Bの大きさdVBと、密度ρPBとを大きく
することによる分散効果の影響を考察する。[0014] As a method wherein increasing the dispersion force F d, consider the size d VB of large particles B, and the influence of the dispersion effect due to the increase the density [rho PB.
【0015】図2は後述する試験を想定して1個のガラ
スビーズ(dVB=100μm)に1個のPSL粒子が付
着したもの(異径2粒子)が流体から受ける分散力Fd
(傾きの大きな曲線)を上記式から求めたもので、流体
に関する条件は、Pf は後述する試験に用いたエジェク
ターに供給する窒素ガスの初期圧力であり、ρf はエジ
ェクターのど部における臨界圧に達した窒素ガスの密度
である。傾きの小さな曲線はHamaker定数をA12
=1.2×10-10 Jおよび粒子間距離を0.4nmと
仮定したときのPSL粒子とガラスビーズ(dp2=10
0μm)間に働くvan der Waals力を示し
ている。このHamaker定数は文献値の平均的な値
A11=1×10-19 J(PSL)およびA22=1.5×
10-19J(ガラスとしてSiO2 )から、A12=(A
11・A22)1/2 として計算した。この図2から、PSL
粒子とガラスビーズ間には、PSL粒子同士に比べて約
1桁大きな分散力Fd が働き、Fd の極大値のところ
(PSL粒子の粒径≒105μm)で分散効果が最も高
くなるが、PSL粒子0.5μm径程度でも、例えばP
1 =1〜2MPa,abs.程度でガラス粒子から容易
に分離することが予想できる。FIG. 2 shows a dispersion force F d received from a fluid in which one PSL particle adheres to one glass bead (d VB = 100 μm) (two particles having different diameters) assuming a test described later.
(A curve with a large slope) was obtained from the above equation, and the conditions regarding the fluid were as follows: P f is the initial pressure of the nitrogen gas supplied to the ejector used in the test described later, and ρ f is the critical pressure at the throat of the ejector. Is the density of the nitrogen gas reached. The curve with a small slope shows the Hamaker constant as A 12
= 1.2 × 10 −10 J and the interparticle distance of 0.4 nm, the PSL particles and glass beads (d p2 = 10
0 pm). The Hamaker constant is an average value of literature values A 11 = 1 × 10 −19 J (PSL) and A 22 = 1.5 ×
From 10 -19 J (SiO 2 as glass), A 12 = (A
11 · A 22 ) Calculated as 1/2 . From this FIG. 2, the PSL
Between particles and glass beads, about one order of magnitude greater dispersion forces F d acts compared to PSL particles together, although dispersion effects (particle size ≒ 105 .mu.m of PSL particles) at the maximum value of F d is the highest, Even if the PSL particles have a diameter of about 0.5 μm, for example, P
1 = 1 to 2 MPa, abs. It can be expected that it will easily separate from the glass particles to some degree.
【0016】またこのようなガラスビーズと0.5μm
径程度の微粒子の混合物は、流動性がよく定量供給が容
易であるなどの点で取扱性に優れている。Further, such glass beads and 0.5 μm
A mixture of fine particles having a diameter of about 100% is excellent in handleability, for example, in that flowability is good and quantitative supply is easy.
【0017】これらの理論的な解析と取扱性等に基づい
て、分散対象である特にはサブミクロン程度の微粒子を
分散させるためには、微粒子よりも粒径の大きな分散媒
体粒子を用いることを内容とした本発明を開発したので
ある。On the basis of these theoretical analysis and handling properties, in order to disperse fine particles, particularly of the order of submicron, which are to be dispersed, it is necessary to use dispersion medium particles having a larger particle diameter than the fine particles. Thus, the present invention was developed.
【0018】[0018]
【実施例】図3に示す装置を用いて、凝集微粒子の分散
試験を行なった。図3の装置は、ステンレス細管(0.
2mmφ)2を通し微粒子を表面に付着したガラスビー
ズを供給するように該細管2が臨んだのど部11と、こ
ののど部11から開口径が前方に向かって漸拡するよう
に設けられたテーパ付の開口部12と、のど部11の後
方周囲から該のど部11に圧力窒素ガスを吹き込むよう
にガス管4で窒素ガスボンベ3が接続された圧力ガス導
入口13とかなるエジェクター1を有し、このエジェク
ター1のテーパ付開口部12から吹き出されるガス流を
搬送管5を通して試料採取容器であるチャンバー6(容
積0.05m3 )に搬送し、このチャンバー6の底部に
設置したスライドガラス7の上に微粒子を自然沈降して
沈着させるようにしたものである。EXAMPLE Using the apparatus shown in FIG. 3, a dispersion test of aggregated fine particles was performed. The apparatus shown in FIG.
A throat portion 11 facing the thin tube 2 so as to supply glass beads having fine particles adhered to the surface through a 2 mmφ) 2, and a taper provided so that the opening diameter gradually increases forward from the throat portion 11. An ejector 1 serving as a pressure gas inlet 13 to which a nitrogen gas cylinder 3 is connected by a gas pipe 4 so as to blow a pressure nitrogen gas into the throat 11 from around the back of the throat 11; The gas flow blown out from the tapered opening 12 of the ejector 1 is transported through a transport pipe 5 to a chamber 6 (capacity: 0.05 m 3 ), which is a sample collection container. The fine particles are allowed to settle by natural settling.
【0019】以上の装置を用いて以下のようにして試験
を行なった。Using the above apparatus, a test was conducted as follows.
【0020】恒温恒湿器(温度298。K,湿度40
%)において、PSL(ポリスチレンラテックス)粒子
懸濁液を48時間乾燥させた粒径0.305μmおよび
0.493μmの単分散標準粒子(密度1.05×10
3 kg/m3 )と、直径約100μmのガラスビーズ
(密度2.4×103 kg/m3 )とを、1×10-5m
3の密閉ガラス容器(図示せず)内に一定量(ガラスビ
ーズ1個に対し、PSL粒子を1.8×105 、3.5
×105 、7.0×105 、3.5×106 個)入れ、
これを振盪撹拌することにより混合して、ガラスビーズ
表面にPSL粒子が付着した供給粒子試料を調整した。A thermo-hygrostat (temperature 298, K, humidity 40)
%), A PSL (polystyrene latex) particle suspension was dried for 48 hours, and monodispersed standard particles having a particle size of 0.305 μm and 0.493 μm (density 1.05 × 10 5
3 kg / m 3 ) and glass beads having a diameter of about 100 μm (density 2.4 × 10 3 kg / m 3 ) were combined with 1 × 10 −5 m
In a closed glass container (not shown) of No. 3, a fixed amount (1.8 × 10 5 , 3.5 PSL particles per glass bead)
× 10 5 , 7.0 × 10 5 , 3.5 × 10 6 )
This was mixed by shaking and stirring to prepare a supply particle sample having PSL particles adhered to the surface of glass beads.
【0021】この試料を、図3の装置ののど部11の負
圧部に細管2を通して約10mg/sで吸引させ、のど
部11の高速窒素ガス気流で加速分散させた後、チャン
バー6に導き、スライドガラス7の上に全粒子が自然沈
降によって沈着した後、工学顕微鏡により約1000個
の粒子についての分散状態を観察した。This sample is sucked into the negative pressure part of the throat part 11 of the apparatus of FIG. 3 through the thin tube 2 at about 10 mg / s, accelerated and dispersed by a high-speed nitrogen gas flow of the throat part 11, and then introduced into the chamber 6. After all the particles were deposited on the slide glass 7 by spontaneous sedimentation, the dispersion state of about 1000 particles was observed with an engineering microscope.
【0022】その試験結果を図4(PSL粒子径:0.
493μm)および図5(PSL粒子径:0.305μ
m)に示した。この図において縦軸はガラスビーズを除
いた分散後の全粒子(単一粒子および凝集粒子)数に対
するN個(Nは自然数)の一次粒子から構成される凝集
体の割合を示し、横軸は供給したPSL粒子とガラスビ
ーズの一次粒子の個数比を示す。The test results are shown in FIG. 4 (PSL particle size:
493 μm) and FIG. 5 (PSL particle diameter: 0.305 μm)
m). In this figure, the vertical axis indicates the ratio of aggregates composed of N (N is a natural number) primary particles to the total number of particles (single particles and aggregated particles) after dispersion excluding glass beads, and the horizontal axis indicates The number ratio between the supplied PSL particles and the primary particles of the glass beads is shown.
【0023】この図4、図5の結果から分かるように、
ガラスビーズを加えていない時にはPSL粒子はあまり
分散されていないが、ガラスビーズを加え、またその加
えるガラスビーズの割合が増加すると共に分散効果の向
上することが確認された。また窒素圧力が1.1〜2M
Pa,abs.程度で85〜90%の単一粒子の得られ
ることが分かる。As can be seen from the results of FIGS. 4 and 5,
When the glass beads were not added, the PSL particles were not so dispersed, but it was confirmed that the glass beads were added and the ratio of the added glass beads was increased, and the dispersing effect was improved. The nitrogen pressure is 1.1-2M
Pa, abs. It can be seen that about 85 to 90% of single particles are obtained.
【0024】上記の各粒径のPSL粒子のいずれの場合
にも、最良の分散結果が得られたPSL粒子とガラスビ
ーズの個数比は、PSL粒子がガラスビーズ表面に単一
層六方最密状態で付着すると仮定したときの約1/2で
あり、このときの粒子の付着状態を、図6の顕微鏡写真
で分散前(a)と分散後(b)を対比して示した。これ
により分散前にはPSL粒子がガラスビーズ表面に部分
的に薄く付着しているが、分散後にはほとんどのPSL
粒子が分離していることが分かる。In each case of the PSL particles having the above-mentioned particle diameters, the number ratio between the PSL particles and the glass beads for which the best dispersion results were obtained is as follows. It is about の of the case where it is assumed that the particles are attached, and the attachment state of the particles at this time is shown in the micrograph of FIG. 6 before (a) and after (b) after dispersion. As a result, the PSL particles are partially thinly attached to the surface of the glass beads before the dispersion, but almost all the PSL particles are dispersed after the dispersion.
It can be seen that the particles are separated.
【0025】なお、上記の大径のガラスビーズのは、終
末沈降速度がPSL粒子よりも十分に速く(上記例のガ
ラスビーズでは0.5m/s)、該PSL粒子等の微粒
子と容易に分級できる。例えば、分散後にガラスビーズ
よりもやや小さい目開きの篩を通す方法や、サイクロン
デ分離する方法を用いることができる。The large-diameter glass beads have a terminal sedimentation velocity sufficiently higher than that of the PSL particles (0.5 m / s for the glass beads in the above example), and are easily classified from the fine particles such as the PSL particles. it can. For example, a method of passing through a sieve having openings slightly smaller than glass beads after dispersion, or a method of cyclone separation can be used.
【0026】[0026]
【発明の効果】本発明によれば、微粒子特にサブミクロ
ンの微粒子を、気相中で殆どを一次粒子にまで分散でき
ることができるという効果がある。According to the present invention, there is an effect that most of fine particles, particularly submicron fine particles, can be dispersed to primary particles in a gas phase.
【0027】またサブミクロン程度の微粒子が、例えば
100μm程度のガラスビーズ等の分散媒体粒子の表面
に1層で被覆する程度に混合している場合には、気流加
速の供給圧力1〜2Ma程度で容易に分散させることが
でき、分散装置としても比較的簡単な構成で優れた分散
性を得ることができるという効果もある。Further fine submicron, for example if the engaged mixed to the extent that covers one layer on the surface of the dispersing medium particles such as glass beads of 100μm extent, supply pressure of 1 to airflow acceleration Dispersion can be easily performed at about 2 Ma, and there is also an effect that excellent dispersibility can be obtained with a relatively simple configuration as a dispersing device.
【図面の簡単な説明】[Brief description of the drawings]
【図l】図1は、大小2個の粒子凝集体をモデル的に示
した図、FIG. 1 is a diagram schematically showing two large and small particle aggregates,
【図2】図2は、PSL粒子の付着したガラスビーズが
流体から受ける分散力Fd を式から求めて示した図、FIG. 2 is a diagram showing a dispersing force F d received from a fluid by a glass bead to which PSL particles are adhered, obtained from an equation,
【図3】図3は、分散試験に使用した装置の構成概要
図、FIG. 3 is a schematic configuration diagram of an apparatus used for a dispersion test;
【図4】図4は、試験結果(PSL粒子dp1=0.49
3μm)を示した図、FIG. 4 shows the test results (PSL particles d p1 = 0.49).
3 μm),
【図5】図5は、試験結果(PSL粒子dp1=0.30
5μm)を示した図、FIG. 5 shows the test results (PSL particles d p1 = 0.30)
5 μm),
【図6】図6は、ガラスビーズ表面のPSL粒子の付着
状態を、分散前(a)と分散後(b)で対比して示した
図である。FIG. 6 is a diagram showing the adhesion state of PSL particles on the surface of glass beads before dispersion (a) and after dispersion (b).
───────────────────────────────────────────────────── フロントページの続き (72)発明者 村田 博 埼玉県入間郡大井町鶴ケ岡5丁目3番1 号 日清製粉株式会社 研究総括部 生 産技術研究所内 (56)参考文献 特開 昭54−37951(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 19/00 B07B 11/06 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Hiroshi Murata 5-3-1 Tsurugaoka, Oi-machi, Iruma-gun, Saitama Prefecture Nisshin Flour Milling Co., Ltd., Research and Development Department, Production Technology Research Institute (56) References JP-A Sho 54- 37951 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B01J 19/00 B07B 11/06
Claims (4)
ブミクロン径の一次粒子径の微粒子凝集体と、この微粒
子凝集体が表面に付着した50μm径以上の分散媒体粒
子との混合体を、これらの微粒子凝集体と分散媒体粒子
の上記混合体を気流中で加速させてサブミクロン径の一
次粒子を得ることを特徴とする凝集微粒子の分散法。1. A which is an object to be distributed target 1.0 [mu] m diameter or less of a support
Aggregates of fine particles with a primary particle diameter of Bmicron diameter and these fine particles
A mixture of the dispersion medium particles having a diameter of 50 μm or more with the particle aggregate adhered to the surface thereof is mixed with the fine particle aggregate and the dispersion medium particle.
Of the above sub-micron diameter
Dispersion method of aggregated fine particles, wherein Rukoto give the following particle.
m〜150μm径であることを特徴とする凝集微粒子の
分散法。2. The method according to claim 1, wherein the dispersion medium flow is 50 μm.
dispersion method of aggregated fine particles, which is a m~150μm diameter.
スビーズであることを特徴とする凝集微粒子の分散法。3. The method of claim 2, dispersion method of aggregated fine particles, wherein the dispersion medium particles are glass beads.
分散媒体粒子を気流中で加速させる手段がエジェクター
であることを特徴とする凝集微粒子の分散法。4. In any of claims 1 to 3,
Dispersion method of aggregated fine particles, characterized in that means for the dispersing medium particles are accelerated in a gas stream is ejector.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12630893A JP3274230B2 (en) | 1993-05-27 | 1993-05-27 | Aggregated fine particle dispersion method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12630893A JP3274230B2 (en) | 1993-05-27 | 1993-05-27 | Aggregated fine particle dispersion method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06327962A JPH06327962A (en) | 1994-11-29 |
JP3274230B2 true JP3274230B2 (en) | 2002-04-15 |
Family
ID=14931979
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12630893A Expired - Lifetime JP3274230B2 (en) | 1993-05-27 | 1993-05-27 | Aggregated fine particle dispersion method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3274230B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9354242B2 (en) * | 2012-10-16 | 2016-05-31 | Ortho-Clinical Diagnostics, Inc. | Glass bead flow rates to facilitate immunodiagnostic test element manufacture |
-
1993
- 1993-05-27 JP JP12630893A patent/JP3274230B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH06327962A (en) | 1994-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6616734B2 (en) | Dynamic filtration method and apparatus for separating nano powders | |
US10065194B2 (en) | Ultrafine nepheline syenite | |
CN101583414B (en) | Method and apparatus for uniformly dispersing additive particles in a fine powder | |
KR101443166B1 (en) | Fluidized bed systems and methods including secondary gas flow | |
JPH08505834A (en) | Fine particle classifier | |
JP3274230B2 (en) | Aggregated fine particle dispersion method | |
JP4990326B2 (en) | Equipment for producing a mixture of soil and water using high-pressure water | |
JP4092568B2 (en) | Method for producing fine powder silicon or silicon compound | |
JPS61268351A (en) | Auxiliary filter material comprising ash of chaff and methodand apparatus for producing the same | |
KR102650449B1 (en) | Separation and recovery method | |
JP3753287B2 (en) | Airflow classification method | |
Hales et al. | Radio Frequency Plasma Synthesis of Boron Nitride Nanotubes (BNNTs) for Structural Applications: Part III | |
Silverman et al. | Methods of generating solid aerosols | |
IINOYA et al. | Dry submicron classification by a small blow down cyclone | |
CN1301785C (en) | Fluidized bed dry type aerosal generating method and aerosol generator | |
JP2742541B2 (en) | Powder dispersing machine | |
JPS63166421A (en) | Dispersion machine | |
US20100304952A1 (en) | Method of processing nepheline syenite | |
JP3647018B2 (en) | Classification device | |
JPH0574681U (en) | Multi-stage classifier | |
JPH01317555A (en) | Air-blast crushed material classifying apparatus | |
Nishii et al. | Dry granulation | |
JPH03217258A (en) | Classification of powder and production of composite material | |
JPH0760194A (en) | Pneumatic classifier and pneumatic classifying method | |
JP3493489B2 (en) | Airflow classification system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080201 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090201 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090201 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100201 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100201 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110201 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110201 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120201 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120201 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130201 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140201 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term |