JP3272116B2 - Method for monitoring first stage nozzle erosion in steam turbine - Google Patents

Method for monitoring first stage nozzle erosion in steam turbine

Info

Publication number
JP3272116B2
JP3272116B2 JP23499693A JP23499693A JP3272116B2 JP 3272116 B2 JP3272116 B2 JP 3272116B2 JP 23499693 A JP23499693 A JP 23499693A JP 23499693 A JP23499693 A JP 23499693A JP 3272116 B2 JP3272116 B2 JP 3272116B2
Authority
JP
Japan
Prior art keywords
stage
nozzle
pressure
shell pressure
erosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23499693A
Other languages
Japanese (ja)
Other versions
JPH0791208A (en
Inventor
尾 泉 松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP23499693A priority Critical patent/JP3272116B2/en
Publication of JPH0791208A publication Critical patent/JPH0791208A/en
Application granted granted Critical
Publication of JP3272116B2 publication Critical patent/JP3272116B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、蒸気タービンにおける
運転中の第1段ノズルの浸食量監視方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for monitoring the amount of erosion of a first stage nozzle in a steam turbine during operation.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】図8は
火力プラントにおける蒸気タービンの一般的な第1段の
構造を示す部分図であって、ボイラ1から発生した蒸気
は蒸気止め弁2及び蒸気加減弁3を経て第1段ノズルボ
ックス4に供給され、第1段ノズル5から第1段羽根6
に噴射され、ロータ7に回転力が与えられる。
2. Description of the Related Art FIG. 8 is a partial view showing a general first stage structure of a steam turbine in a thermal power plant. The steam is supplied to the first-stage nozzle box 4 through the steam control valve 3, and is supplied from the first-stage nozzle 5 to the first-stage blade 6.
And a rotational force is applied to the rotor 7.

【0003】ところが、ボイラ1で発生する蒸気の中に
は一般にスケール等の固形物が含まれているため、その
固形物によって第1段ノズル5の出口端に、図9に示す
ように浸食aが生じ、その結果として第1段ノズル5の
出口の蒸気流路面積が増加することがある。そして、こ
のように蒸気流路面積が増加すると、第1段ノズルから
の噴出蒸気の噴出量、噴出方向等の状態が設計値から変
化し、著しい場合は第1段の回転体側の第1段羽根6や
カバー8が損傷するトラブルの原因となる。
However, since the steam generated by the boiler 1 generally contains solid matter such as scale, the solid matter causes the erosion a at the outlet end of the first stage nozzle 5 as shown in FIG. May occur, and as a result, the steam flow area at the outlet of the first stage nozzle 5 may increase. When the area of the steam flow path increases in this way, the state such as the amount and direction of the ejected steam from the first-stage nozzle changes from the design value. This causes a trouble that the blade 6 and the cover 8 are damaged.

【0004】従来、このような第1段ノズルの浸食は、
タービンを停止させて分解し、目視等による直接的な検
査以外にはそれを検知する方法がなかった。
Conventionally, such erosion of the first stage nozzle is
There was no method other than direct inspection such as visual inspection to stop the turbine and disassemble it.

【0005】ところが、最近のように電力需要に対する
電力設備の予備率が少ない状況では、第1段ノズルの浸
食量を確認するためにタービンを止めて点検することは
困難である。しかも、ノズル浸食の復旧方法はノズルボ
ックス4を交換する等、比較的短期間ですむが、第1段
羽根6やカバー8が損傷した場合にその復旧を行なうに
は長期間を必要とする。このため、羽根やカバーに損傷
が生じるまで第1段ノズルの浸食を放置すると復旧期間
が延びて電力の安定供給にも支障をきたす等の問題があ
る。
[0005] However, in a situation where the reserve ratio of the power equipment with respect to the power demand is small recently, it is difficult to stop and inspect the turbine in order to check the erosion amount of the first stage nozzle. In addition, the method of restoring the nozzle erosion is relatively short, such as replacing the nozzle box 4. However, if the first stage blade 6 or the cover 8 is damaged, it takes a long time to restore the damage. For this reason, if the erosion of the first-stage nozzle is left until the blades and the cover are damaged, there is a problem that the recovery period is extended and the stable supply of electric power is hindered.

【0006】本発明はこのような点に鑑み、運転中の各
部状態値により第1段ノズルの浸食量を監視できるよう
にしたものであり、羽根等に損傷が発生する以前にノズ
ルの浸食に対する対策を施こすことができるようにした
第1段ノズル浸食量監視方法を得ることを目的とする。
In view of the foregoing, the present invention has been made to monitor the erosion amount of the first stage nozzle based on the state value of each part during operation, and to prevent erosion of the nozzle before damage to the blades or the like occurs. It is an object of the present invention to obtain a first-stage nozzle erosion monitoring method capable of taking measures.

【0007】[0007]

【課題を解決するための手段】本願の第1の発明は、第
1段ノズルの補修を完了した直後の運転時点の加減弁開
度に対する第1段シェル圧力を多数計測することにより
上記加減弁開度と第1段シェル圧力の関係を初期基準値
となる近似式として準備し、経時後における加減弁開度
と第1段シェル圧力を計測するとともに上記経時後に計
測した加減弁開度に対する第1段シェル圧力を上記初期
基準値となる近似式から求め、上記計測した第1段シェ
ル圧力と上記近似式から求められた第1段シェル圧力と
からその増加量を相対的に求め、予め過去の運転実績よ
り求められた上記加減弁の同一開度に対する上記第1段
ノズルの浸食前と浸食後の第1段シェル圧力の変化の関
係から第1段ノズルの浸食量を検知することを特徴とす
る。
According to a first aspect of the present invention, the control valve is measured by measuring a large number of first stage shell pressures with respect to the control valve opening at the time of operation immediately after the repair of the first stage nozzle is completed. The relationship between the opening and the first-stage shell pressure is prepared as an approximate expression to be an initial reference value, and the adjustable valve opening and the first-stage shell pressure after aging are measured. The first-stage shell pressure is obtained from the approximate expression serving as the initial reference value, and the increase amount is relatively determined from the measured first-stage shell pressure and the first-stage shell pressure obtained from the approximate expression. Detecting the amount of erosion of the first-stage nozzle from the relationship between changes in the first-stage shell pressure before and after erosion of the first-stage nozzle with respect to the same opening of the control valve determined from the operation results of the first stage. And

【0008】第2の発明は、第1の発明において、第1
段シェル圧力を主蒸気圧力、主蒸気温度により修正する
ことを特徴とする。
[0008] In a second aspect based on the first aspect, the first aspect is the first aspect.
The stage shell pressure is corrected by the main steam pressure and the main steam temperature.

【0009】第3の発明は、第1の発明において、経時
後の一定期間における計測された多数のデータにより、
加減弁開度に対する第1段シェル圧力の平均的な値を近
似式として求め、計測データの加減弁開度の最多点近傍
における第1段シェル圧力と初期基準値となる上記近似
式から求められる値との比較を行うことを特徴とする。
In a third aspect based on the first aspect, a large number of data measured in a certain period after the lapse of time are used to calculate
The average value of the first stage shell pressure with respect to the opening / closing valve opening is obtained as an approximate expression, and the average value of the first stage shell pressure in the vicinity of the maximum point of the opening / closing valve opening of the measured data is obtained from the above approximate expression serving as the initial reference value. It is characterized in that it is compared with a value.

【0010】さらに第4の発明は、多用される加減弁開
度を観測点として複数点を決め、その各開度に対する第
1段シェル圧力にもとずく第1段ノズル出口面積の増加
量の経時的な変化を近似式に表わし、その近似式によっ
て現時点のノズル面積増加率を求め、第1段ノズルの浸
食量を検知することを特徴とする。
In a fourth aspect of the present invention, a plurality of points are determined by using the frequently used control valve opening as an observation point, and the increase in the first-stage nozzle outlet area based on the first-stage shell pressure for each of the openings is determined. It is characterized in that the change with time is represented by an approximate expression, the current nozzle area increase rate is obtained by the approximate expression, and the erosion amount of the first stage nozzle is detected.

【0011】[0011]

【作用】一般に、ノズル板の浸食量はノズル板出口端部
が構成する蒸気流路面積により評価することができる。
In general, the amount of erosion of the nozzle plate can be evaluated by the area of the steam flow path formed by the nozzle plate outlet end.

【0012】すなわち、ノズル出口面積が大きくなる
と、加減弁の開度が一定であってもノズルを通過する蒸
気量が増加するため、第1段羽根6を通過した直後の蒸
気の圧力である第1段シェル圧力Pは蒸気量が増加した
分だけ大きくなる。そして、加減弁開度CVと第1段シ
ェル圧力P、及び浸食前の第1段ノズル出口面積NA
0、浸食後の第1段ノズル出口面積NA1、NA2との
間には図10に示す関係があり、また加減弁開度CVに
対し、ノズル出口面積の増加量ΔNAと第1段シェル圧
力の増加量ΔPとの間には図11に示す関係がある。
That is, when the nozzle outlet area increases, the amount of steam passing through the nozzle increases even if the opening degree of the control valve is constant, so that the steam pressure immediately after passing through the first stage blade 6 The first-stage shell pressure P increases by an amount corresponding to the increase in the amount of steam. Then, the control valve opening CV, the first-stage shell pressure P, and the first-stage nozzle exit area NA before erosion.
0, the first-stage nozzle outlet areas NA1 and NA2 after erosion have the relationship shown in FIG. There is a relationship shown in FIG. 11 with the increase amount ΔP.

【0013】したがって、このような加減弁開度CVと
第1段シェル圧力Pの特性を利用して、加減弁開度CV
に対する第1段シェル圧力の増加量△Paを監視するこ
とによりノズル出口面積の増加分つまりノズル板の浸食
量を監視することができる。
Therefore, utilizing the characteristics of the control valve opening CV and the first stage shell pressure P, the control valve opening CV is used.
By monitoring the increase ΔPa in the first-stage shell pressure with respect to the pressure, it is possible to monitor the increase in the nozzle exit area, that is, the amount of erosion of the nozzle plate.

【0014】[0014]

【実施例】図1は、本発明のノズル板監視方法のフロー
チャートであって、大きくわけて初期基準値の作成とタ
ービン運転中の監視の2つの部分からなっている。
FIG. 1 is a flow chart of a method for monitoring a nozzle plate according to the present invention, which mainly includes two parts, that is, preparation of an initial reference value and monitoring during operation of a turbine.

【0015】まず、初期基準値の作成については、蒸気
タービンを停止させて第1段ノズルの保修を完了した直
後の運転において、初期値のデータとして加減弁開度C
Vと第1段シェル圧力Pを計測する。そして、この計測
値には計測上の問題によりばらつきが生じるため、図2
に示すようにこれらの計測値の平均的な値を示す近似式
を作成し、これを初期基準値Pbとする。
First, regarding the creation of the initial reference value, in the operation immediately after the steam turbine is stopped and the maintenance of the first stage nozzle is completed, the control valve opening degree C is used as the initial value data.
V and the first stage shell pressure P are measured. Since the measured values vary due to measurement problems, FIG.
, An approximate expression indicating an average value of these measured values is created, and this is set as an initial reference value Pb.

【0016】一方、タービン運転中の監視については、
初期基準値作成後の運転中における加減弁開度CVaと
第1段シェル圧力Paを計測する。そして、上記計測さ
れた加減弁開度CVaに対して第1段シェル圧力の初期
基準値Pbを前記近似式より求める。
On the other hand, for monitoring during operation of the turbine,
During the operation after the creation of the initial reference value, the control valve opening CVa and the first stage shell pressure Pa are measured. Then, the initial reference value Pb 1 of the first stage shell pressure on the measured acceleration valve opening CVa obtained from the approximate expression.

【0017】すなわち、Pb=f(CVa) そこで、上記計測された第1段シェル圧力Paの初期基
準値Pbに対する増加割合△Paを求める。
That is, Pb 1 = f (CVa) Therefore, the rate of increase ΔPa of the measured first stage shell pressure Pa with respect to the initial reference value Pb 1 is determined.

【0018】すなわち、△Pa=(Pa−Pb)/P
・100% となる。
That is, ΔPa = (Pa−Pb 1 ) / P
b become 1 - 100%.

【0019】そして、計測された加減弁開度CVaと第
1段シェル圧力増加割合△Paから図1により第1段ノ
ズル面積増加割合△NAを求め、それを表示する。
Then, the first-stage nozzle area increase ratio △ NA 1 is obtained from FIG. 1 from the measured control valve opening CVa and the first-stage shell pressure increase ratio △ Pa, and is displayed.

【0020】一方、第1段ノズルの増加割合ΔNA1に
対して第1段の羽根やカバーが損傷を受けずに済む範囲
を予め検討しておき、図3に示すような制限値ΔNAL
を作成しておき、上記計測値から算出されたノズル面積
の増加割合ΔNA1を図3で評価し、制限値を超えてい
る場合には、早期に第1段ノズル板の補修を行うような
指示が与えられる。
On the other hand, a range in which the blades and the cover of the first stage are not damaged is considered in advance with respect to the increase ratio ΔNA1 of the first-stage nozzle, and a limit value ΔNAL as shown in FIG.
Is prepared, and the increase rate ΔNA1 of the nozzle area calculated from the above measured value is evaluated in FIG. 3. If the limit value is exceeded, an instruction to repair the first stage nozzle plate as soon as possible is given. Is given.

【0021】このようにして、従来はタービンを停止さ
せてから分解しなければ確認することができなかった第
1段ノズル板の浸食量を、タービンの運転中に知ること
ができる。すなわち、本発明はノズル板浸食量をノズル
出口面積の増加割合として表示し、ノズル出口面積の増
加割合が羽根やカバーの損傷を生じさせる可能性から決
めた制限値を越えた場合は、タービンを停止させ、比較
的短期間に復旧できるノズル板の保修を行なうように指
示するので、復旧に要する期間の長い羽根やカバーの損
傷が発生することを未然に防止することができる。
In this way, the amount of erosion of the first-stage nozzle plate, which could not be confirmed without disassembling after stopping the turbine in the past, can be known during the operation of the turbine. That is, the present invention displays the nozzle plate erosion amount as an increase rate of the nozzle outlet area, and if the increase rate of the nozzle outlet area exceeds a limit value determined from the possibility of causing damage to the blades and the cover, the turbine is turned off. Since it is instructed to stop and repair the nozzle plate which can be restored in a relatively short period of time, it is possible to prevent the blades and the cover, which require a long period of time for restoration, from being damaged.

【0022】図4は本発明の他の実施例を示すフローチ
ャートであり、第1段シェル圧力Pが主蒸気圧力PM
S、主蒸気温度TMS、等の影響を受けることから、計
測された第1段シェル圧力Pをこれら計測時の状態値で
修正した値を用いる。すなわち、初期基準値の作成時、
及び運転中の監視中において、それぞれ第1段シェル圧
力を主蒸気圧力等によって補正し、監視時には上記補正
された第1段シェル圧力Pa′と基準値Pb1との比較
が行われる。
FIG. 4 is a flow chart showing another embodiment of the present invention, in which the first stage shell pressure P is equal to the main steam pressure PM.
Since the influence of S, the main steam temperature TMS, and the like is given, a value obtained by correcting the measured first stage shell pressure P with the state value at the time of measurement is used. That is, when creating the initial reference value,
During the monitoring during operation, the first-stage shell pressure is corrected by the main steam pressure or the like, and at the time of monitoring, the corrected first-stage shell pressure Pa ′ is compared with the reference value Pb1.

【0023】図5は本発明のさらに他の実施例を示すフ
ローチャートであって、図4に示すように第1段シェル
圧力Pを主蒸気圧力PMS、主蒸気温度TMS等によっ
て修正するとともに、経時後の一定期間における多数の
計測点から、加減弁開度CVに対する第1段シェル圧力
の平均的な値を近似式として求め、次に計測データの加
減弁開度CVの最多点近傍のシェル圧力を第1段シェル
圧力の代表値Pa′とし、これと初期基準値との差によ
って第1段シェル圧力の増加割合ΔPaを求め、これに
よってノズル出口面積の増加割合ΔNA1を求める。
FIG. 5 is a flowchart showing still another embodiment of the present invention. As shown in FIG. 4, the first stage shell pressure P is corrected by the main steam pressure PMS, the main steam temperature TMS, etc. An average value of the first stage shell pressure with respect to the control valve opening CV is obtained as an approximate expression from a number of measurement points during a certain period later, and then the shell pressure near the maximum point of the control valve opening CV in the measurement data is obtained. Is used as the representative value Pa 'of the first stage shell pressure, and the increase ratio ΔPa of the first stage shell pressure is obtained from the difference between this and the initial reference value, thereby obtaining the increase ratio ΔNA1 of the nozzle outlet area.

【0024】さらに、図6は本発明のさらに他の実施例
を示すフローチャートであって、多用される加減弁開度
CVを観測点として数点決めておき、第1段ノズル出口
面積を経時的にプロットし、その経時的な変化を複数の
数式で近似し、その近似式の上での現時点の値をノズル
面積の増加率とする。
FIG. 6 is a flow chart showing still another embodiment of the present invention. The frequently used control valve opening CV is determined as an observation point at several points, and the exit area of the first-stage nozzle is changed over time. , The change over time is approximated by a plurality of mathematical expressions, and the current value on the approximate expression is defined as the increase rate of the nozzle area.

【0025】このノズル出口面積の増加量の経時的変化
のグラフの例を図7に示す。
FIG. 7 shows an example of a graph of the change with time of the increase amount of the nozzle outlet area.

【0026】[0026]

【発明の効果】以上説明したように本発明は第1段シェ
ル圧力の変化によってノズル出口面積の増加割合を求
め、これによって第1段ノズルの浸食量を検知するよう
にしたので、第1段ノズル板の浸食量をタービンの運転
中に知ることができ、第1段の羽根やそのカバーの損傷
を未然に防止することができる等の効果を奏する。
As described above, according to the present invention, the rate of increase in the nozzle exit area is determined by the change in the first-stage shell pressure, and the erosion amount of the first-stage nozzle is detected. The amount of erosion of the nozzle plate can be known during the operation of the turbine, and effects such as prevention of damage to the first stage blade and its cover can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1段ノズル浸食量監視方法の一実施
例を示すフローチャート。
FIG. 1 is a flowchart showing one embodiment of a first stage nozzle erosion amount monitoring method of the present invention.

【図2】加減弁開度に対する第1段シェル圧力計測値の
初期計測値と初期基準値の一例を示す図。
FIG. 2 is a diagram showing an example of an initial measurement value and an initial reference value of a first-stage shell pressure measurement value with respect to a control valve opening degree.

【図3】加減弁開度と第1段ノズル出口面積増加量制限
値の関係の一例を示す図。
FIG. 3 is a diagram showing an example of a relationship between a control valve opening and a first-stage nozzle outlet area increase limit value;

【図4】本発明の他の実施例を示すフローチャート。FIG. 4 is a flowchart showing another embodiment of the present invention.

【図5】本発明のさらに他の実施例を示すフローチャー
ト。
FIG. 5 is a flowchart showing still another embodiment of the present invention.

【図6】本発明の他の実施例を示すフローチャート。FIG. 6 is a flowchart showing another embodiment of the present invention.

【図7】ノズル出口面積の経時的な変化の一例を示すグ
ラフ。
FIG. 7 is a graph showing an example of a change with time of a nozzle outlet area.

【図8】一般的な蒸気タービンの第1段落部の概略構成
を示す断面図。
FIG. 8 is a sectional view showing a schematic configuration of a first stage section of a general steam turbine.

【図9】第1段ノズル板の浸食の例を示す図。FIG. 9 is a diagram showing an example of erosion of the first stage nozzle plate.

【図10】加減弁開度、第1段シェル圧力、第1段ノズ
ル出口面積の関係を示す線図。
FIG. 10 is a diagram showing a relationship between a control valve opening, a first-stage shell pressure, and a first-stage nozzle outlet area.

【図11】加減弁開度、第1段シェル圧力増加割合、及
び第1段ノズル出口面積増加割合の関係を示す線図。
FIG. 11 is a diagram showing a relationship between a control valve opening, a first-stage shell pressure increase ratio, and a first-stage nozzle outlet area increase ratio.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F01D 21/14 F01D 9/02 101 F01D 25/00 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) F01D 21/14 F01D 9/02 101 F01D 25/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】第1段ノズルの補修を完了した直後の運転
時点の加減弁開度に対する第1段シェル圧力を多数計測
することにより上記加減弁開度と第1段シェル圧力の関
係を初期基準値となる近似式として準備し、経時後にお
ける加減弁開度と第1段シェル圧力を計測するとともに
上記経時後に計測した加減弁開度に対する第1段シェル
圧力を上記初期基準値となる近似式から求め、上記計測
した第1段シェル圧力と上記近似式から求められた第1
段シェル圧力とからその増加量を相対的に求め、予め過
去の運転実績より求められた上記加減弁の同一開度に対
する上記第1段ノズルの浸食前と浸食後の第1段シェル
圧力の変化の関係から第1段ノズルの浸食量を検知する
ことを特徴とする、蒸気タービンにおける第1段ノズル
浸食量監視方法。
A large number of first-stage shell pressures are measured with respect to the opening / closing valve opening at the time of operation immediately after completion of repair of the first-stage nozzle.
By doing so, the relationship between the control valve opening and the first stage shell pressure is prepared as an approximate expression to be an initial reference value, and after a lapse of time, the control valve opening and the first stage shell pressure are measured.
First-stage shell for opening and closing valve measured after the lapse of time
Obtain the pressure from the approximation formula used as the initial reference value,
1st stage shell pressure and the 1st stage
Calculated relative the increment from the stage shell pressure, advance over
In response to the same opening of the control valve
First stage shell before and after erosion of the first stage nozzle
A method for monitoring the erosion amount of a first-stage nozzle in a steam turbine, comprising detecting an erosion amount of a first-stage nozzle from a relationship of a change in pressure .
【請求項2】第1段シェル圧力を主蒸気圧力、主蒸気温
度により修正することを特徴とする、請求項1記載の蒸
気タービンにおける第1段ノズル浸食量監視方法。
2. The first stage shell pressure is set to a main steam pressure and a main steam temperature.
Characterized in that it further modified whenever, the first stage nozzle erosion amount monitoring method in a steam turbine according to claim 1, wherein.
【請求項3】経時後の一定期間における計測された多数
のデータにより、加減弁開度に対する第1段シェル圧力
の平均的な値を近似式として求め、計測データの加減弁
開度の最多点近傍における第1段シェル圧力と初期基準
となる上記近似式から求められる値との比較を行うこ
とを特徴とする、請求項1記載の蒸気タービンにおける
第1段ノズル浸食量監視方法。
3. An average value of the first-stage shell pressure with respect to the opening / closing valve opening is obtained as an approximate expression from a large number of data measured over a certain period of time after lapse of time. The method for monitoring the erosion amount of a first-stage nozzle in a steam turbine according to claim 1, wherein a comparison is made between a first-stage shell pressure in the vicinity and a value obtained from the approximate expression as an initial reference value.
【請求項4】多用される加減弁開度を観測点として複数
点を決め、その各開度に対する第1段シェル圧力に基づ
く第1段ノズル出口面積の増加量の経時的な変化を近似
式に表し、その近似式によって現時点のノズル面積増加
率を求め、第1段ノズルの浸食量を検知することを特徴
とする、蒸気タービンにおける第1段ノズル浸食量監視
方法。
A plurality of points are determined using the frequently used control valve opening as an observation point, and the change with time of the increase amount of the first-stage nozzle outlet area based on the first-stage shell pressure for each of the openings is approximated. And a method for monitoring the erosion amount of the first stage nozzle in the steam turbine, wherein the erosion amount of the first stage nozzle is detected by calculating the current nozzle area increase rate by the approximate expression.
JP23499693A 1993-09-21 1993-09-21 Method for monitoring first stage nozzle erosion in steam turbine Expired - Fee Related JP3272116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23499693A JP3272116B2 (en) 1993-09-21 1993-09-21 Method for monitoring first stage nozzle erosion in steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23499693A JP3272116B2 (en) 1993-09-21 1993-09-21 Method for monitoring first stage nozzle erosion in steam turbine

Publications (2)

Publication Number Publication Date
JPH0791208A JPH0791208A (en) 1995-04-04
JP3272116B2 true JP3272116B2 (en) 2002-04-08

Family

ID=16979520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23499693A Expired - Fee Related JP3272116B2 (en) 1993-09-21 1993-09-21 Method for monitoring first stage nozzle erosion in steam turbine

Country Status (1)

Country Link
JP (1) JP3272116B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102678192B (en) * 2012-05-28 2014-12-31 哈尔滨工业大学 Optimized design method for nozzle number of nozzle sets considering turbine actual operation binding

Also Published As

Publication number Publication date
JPH0791208A (en) 1995-04-04

Similar Documents

Publication Publication Date Title
Ogaji et al. Parameter selection for diagnosing a gas-turbine's performance-deterioration
EP2179422B1 (en) Pressure diagnostic for rotary equipment
US7065468B2 (en) Methods and apparatus for assessing gas turbine engine damage
EP1655590B1 (en) Method for determining the mass averaged temperature across a flow section of a gas stream in a gas turbine
EP2038517B1 (en) Method for operating a gas turbine and gas turbine for carrying out said method
US8770913B1 (en) Apparatus and process for rotor creep monitoring
EP2108830A2 (en) Method for determining fatigue load of a wind turbine and for fatigue load control, and wind turbines therefor
CN101676559B (en) Method of alarm mask generation and condition monitoring of wind turbines
JPH0579351A (en) Ignition diagnostic device for combustible turbine
KR20020081119A (en) Method and apparatus for continuous prediction, monitoring and control of compressor health via detection of precursors to rotating stall and surge
US6506010B1 (en) Method and apparatus for compressor control and operation in industrial gas turbines using stall precursors
EP3396137B1 (en) Gas turbine system and method of controlling the same
GB1573834A (en) Method and apparatus for determining life expenditure of a turbomachine part
JP3272116B2 (en) Method for monitoring first stage nozzle erosion in steam turbine
US20120141251A1 (en) Method and device for predicting the instability of an axial compressor
EP3968111B1 (en) Method for monitoring the operation of a machine and computer-implemented monitoring system for implementing it
JP4350196B2 (en) Turbine operational reliability inspection method and apparatus
Pinelli et al. Application of methodologies to evaluate the health state of gas turbines in a cogenerative combined cycle power plant
JP5544864B2 (en) Air compressor monitoring device
US5699267A (en) Hot gas expander power recovery and control
EP4012160A1 (en) Method for estimating the consumed life of a rotating component
JP2731228B2 (en) Abnormal vibration monitoring method in hydropower facilities
WO2022255229A1 (en) Steam turbine damage evaluating device, method, and program
WO2022071189A1 (en) State-monitoring device and state-monitoring method
JP2022077540A (en) Evaluation device for power generator, and evaluation method for power generator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080125

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100125

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees