JP3270616B2 - Wave receiving piezoelectric element - Google Patents

Wave receiving piezoelectric element

Info

Publication number
JP3270616B2
JP3270616B2 JP05108694A JP5108694A JP3270616B2 JP 3270616 B2 JP3270616 B2 JP 3270616B2 JP 05108694 A JP05108694 A JP 05108694A JP 5108694 A JP5108694 A JP 5108694A JP 3270616 B2 JP3270616 B2 JP 3270616B2
Authority
JP
Japan
Prior art keywords
piezoelectric element
cylindrical
piezoelectric
piezoelectric body
wave receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05108694A
Other languages
Japanese (ja)
Other versions
JPH07240997A (en
Inventor
卓 佐藤
和元 鈴木
信宏 森山
謙一 中村
Original Assignee
呉羽化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 呉羽化学工業株式会社 filed Critical 呉羽化学工業株式会社
Priority to JP05108694A priority Critical patent/JP3270616B2/en
Priority to EP95300269A priority patent/EP0669169A3/en
Publication of JPH07240997A publication Critical patent/JPH07240997A/en
Application granted granted Critical
Publication of JP3270616B2 publication Critical patent/JP3270616B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0644Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element
    • B06B1/0655Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element of cylindrical shape
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、音波の受信感度を高め
た受波型圧電素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wave receiving type piezoelectric element having improved sound wave receiving sensitivity.

【0002】[0002]

【従来の技術】空気中または気体中を伝播する音波を受
信すべく通常はこれら媒体中に置かれて使用されるマイ
クロホン、ならびに水中または液体中を伝播する音波を
受信すべく通常はこれらの媒体中に置かれて使用される
ハイドロホン等の受波型圧電素子が知られている。
2. Description of the Related Art Microphones that are typically used to receive sound waves propagating in air or gas, as well as those that are used to receive sound waves propagating in water or liquids. 2. Description of the Related Art A receiving type piezoelectric element such as a hydrophone which is used by being placed inside is known.

【0003】これら圧電素子における音波の受信感度
は、圧電素子の大きさが音波の波長に比べて十分小さい
場合には、静水圧圧電ひずみ定数(dh 定数)によって
表現され、当然dh 定数が大きい程感度が優れる。
[0003] receiving sensitivity of acoustic waves in these piezoelectric elements, when the size of the piezoelectric element is sufficiently smaller than the wavelength of the acoustic wave is represented by the hydrostatic piezoelectric constant (d h constant), naturally d h constants The larger the value, the better the sensitivity.

【0004】一般に、圧電体のdh 定数は、分極方向の
寄与分(d33)と分極方向と直交する二方向の寄与分
(d31およびd32)の和として次式で与えられる。
Generally, the d h constant of a piezoelectric material is given by the following equation as the sum of the contribution in the polarization direction (d 33 ) and the contribution in two directions perpendicular to the polarization direction (d 31 and d 32 ).

【0005】dh =d31+d32+d33 そして、一般に用いられるシート状の圧電体にあって
は、分極の容易性の理由により、分極方向は厚さ方向に
採られることが多く、またその厚さ方向の寄与(d33
とそれと直交する二方向の寄与(d31およびd32)とで
は符号が逆、すなわち相反する作用を有することが多
い。
D h = d 31 + d 32 + d 33 In a generally used sheet-like piezoelectric material, the polarization direction is often taken in the thickness direction because of the ease of polarization. in the thickness direction contributes (d 33)
And the contributions in two directions (d 31 and d 32 ) orthogonal thereto are often opposite in sign, that is, have opposite actions.

【0006】このようなシート状圧電体の特性に着目し
て、シート状の圧電体の側方からの音圧の作用を枠体に
より遮断し、d31およびd32寄与分を除いて、厚さ方向
の変形の寄与分d33を優先的に採り出すことにより、結
果的にdh 定数の増大を図る素子構造が提案されている
(特開昭62−220099号)。また本発明者らの研
究によれば、この際に、シート状圧電体をより大面積の
一対の剛性部材により挾持すれば、該一対の剛性部材と
シート状圧電体との面積比(圧力増幅率)に応じて、作
用する音圧との対比において該シート状圧電体のd33
数を超える見かけのdh 定数を示す圧電素子が得られる
ことも見出されている。
[0006] Focusing on the characteristics of such a sheet-like piezoelectric element, the effects of sound pressure from the side of the sheet-shaped piezoelectric body is blocked by the frame, except for the d 31 and d 32 contributions, thickness It is by out take the contribution d 33 directions of deformation preferentially, device structure to reduce the increase in resulting in d h constant has been proposed (JP 62-220099). According to the study of the present inventors, at this time, if the sheet-like piezoelectric member is sandwiched between a pair of rigid members having a larger area, the area ratio between the pair of rigid members and the sheet-like piezoelectric member (pressure amplification). depending on the rate), has also been found that a piezoelectric element showing a d h constants of apparent excess of d 33 constant of the sheet-like piezoelectric element is obtained in comparison with the sound pressure to act.

【0007】しかしながら、上記のようにシート状圧電
体の厚さ方向の圧電定数d33を主として利用し、特にシ
ート状圧電体の両面を該両面に設けた電極を介してより
大面積の一対の剛性部材で挾持する構造の圧電素子にお
いては、一定の大きさの剛性部材を用いて圧力増幅率を
増大させるためには、圧電素子の電極面積を小さくせざ
るを得ない。従って、リード線の取り出しが困難となる
ほかに、圧電素子の静電容量が小さくなり、内部インピ
ーダンスが増大する。そして、かかる素子から電圧出力
を取り出す検出回路には、素子の内部インピーダンスよ
りも更に高い入力インピーダンスが要求される。従っ
て、前記検出回路は、電磁波等のノイズの影響を受け易
い、回路が不安定になり易い、リード線を長くとれない
などに対する対策を講じて構成されなければならないと
いう不利が生ずる。
However, the sheet-like piezoelectric element as described above in the thickness direction primarily utilizing a piezoelectric constant d 33, in particular of a sheet-like piezoelectric element both surfaces of a pair of large-area more through the electrode provided on the both surfaces In a piezoelectric element having a structure sandwiched by rigid members, the electrode area of the piezoelectric element must be reduced in order to increase the pressure amplification factor by using a rigid member having a certain size. Therefore, in addition to making it difficult to take out the lead wire, the capacitance of the piezoelectric element is reduced and the internal impedance is increased. A detection circuit that extracts a voltage output from such an element is required to have an input impedance that is higher than the internal impedance of the element. Therefore, the detection circuit has a disadvantage that it must be configured to take measures against the influence of noise such as electromagnetic waves, the circuit is likely to be unstable, and the lead wire cannot be long.

【0008】[0008]

【発明が解決すべき課題】本発明の目的は、上述したシ
ート状圧電体のd33定数を利用する圧電素子に見られる
検出回路等も含めた素子構成の問題点を解消しつつ、一
定の圧電体からより高い感度の受波型圧電素子を実現す
ることにある。
The object of the invention to be solved solved] The present invention, while eliminating the problems of device configuration, including the detection circuit and the like found in a piezoelectric element utilizing d 33 constant of the sheet-like piezoelectric element as described above, the constant An object of the present invention is to realize a wave receiving piezoelectric element having higher sensitivity from a piezoelectric body.

【0009】[0009]

【課題を解決するための手段】本発明者らの研究によれ
ば、上述の目的の達成のためには、肉厚方向に分極され
ている圧電体を用いる際にも、そのd33定数ではなく、
むしろこれと直交するd31あるいはd32定数の寄与を積
極的に利用した素子構成とすること、特に概ね中空の筒
状圧電体を用いてこのような素子構成を形成することが
有効であることが見出された。
According to the study of the present inventors, in order to achieve the above-mentioned object, even when a piezoelectric material polarized in the thickness direction is used, the d 33 constant is not sufficient. Not
It d 31 or d 32 contributions constants be positively used by an element structure, it is effective to particularly substantially form such device structure using a hollow cylindrical piezoelectric body rather perpendicular thereto Was found.

【0010】すなわち、本発明の受波型圧電素子は、あ
る肉厚を挾む主たる二表面を構成する外側表面および内
側表面と、該二表面にほぼ直交して対向する二側面とを
有し、前記肉厚に相当する断面形状が閉鎖環状、または
渦状であり、全体形状が概ね筒状である肉厚方向に分極
された圧電体と、該二表面にそれぞれ設けられた電極と
からなる筒状圧電要素と;前記筒状圧電体をその対向す
る二側面で挾持し、且つ該側面よりも大面積の一対の剛
性部材と;を有し、前記一対の剛性部材の外表面に作用
する音圧を前記圧電体の対向する二側面間距離を変化さ
せる応力として収束させるように構成したことを特徴と
するものである。
That is, the wave receiving type piezoelectric element of the present invention has an outer surface and an inner surface constituting two main surfaces sandwiching a certain thickness, and two side surfaces substantially orthogonal to and opposed to the two surfaces. A cross-sectional shape corresponding to the wall thickness is a closed annular shape or a spiral shape, and the entire shape is a substantially cylindrical shape. And a pair of rigid members which sandwich the cylindrical piezoelectric body between two opposite side surfaces thereof and have a larger area than the side surfaces, and which act on outer surfaces of the pair of rigid members. The pressure is converged as a stress that changes the distance between two opposing side surfaces of the piezoelectric body.

【0011】上記したように、音圧を概ね筒状の圧電体
の対向する二側面間距離を変化させる応力として収束さ
せるためには、一対の剛性部材が音圧により筒状圧電体
の軸方向に変位するのを妨げずに変位自在とすること、
筒状圧電体の内外二表面の少なくともいずれか一方への
音圧の作用は実質的に遮断されるように剛性部材を配置
することが好ましく、特に前記一対の剛性部材の筒状圧
電体の挾持に用いられずに外方に突出する部分の内表面
により気密な内部空間を形成することが好ましい。
As described above, in order to converge the sound pressure as a stress that changes the distance between the two opposing sides of the substantially cylindrical piezoelectric body, a pair of rigid members are moved in the axial direction of the cylindrical piezoelectric body by the sound pressure. Displaceable without hindering displacement,
It is preferable to dispose a rigid member so that the effect of sound pressure on at least one of the inner and outer surfaces of the cylindrical piezoelectric body is substantially cut off. In particular, the pair of rigid members sandwich the cylindrical piezoelectric body. It is preferable to form an airtight internal space by the inner surface of the portion that protrudes outward without being used.

【0012】本発明において、圧電体の面方向(軸方
向)変形応力として収束させることにより利用可能な音
圧の作用する剛性部材の外表面積(有効作用面積)は、
一般的な意味での外表面積そのものではなく、剛性部材
が圧電体を押圧する方向(押圧方向)に垂直な平面への
剛性部材の外表面の投影面積であり、且つそのうち外表
面と対向する内表面に音圧が作用することがある場合に
は、その音圧の作用する内表面の面積(同様に押圧方向
に垂直な平面への投影面積)を差し引いたものとなる。
筒状の圧電体の場合、上記の「圧電体を押圧する方向に
垂直な平面」は、一般に圧電体の側面に平行な平面、す
なわち筒状圧電体の軸方向に垂直な平面、とされる。
In the present invention, the outer surface area (effective operating area) of a rigid member on which sound pressure can be used by converging as a plane direction (axial direction) deformation stress of the piezoelectric body is:
It is not the outer surface area itself in a general sense, but the projected area of the outer surface of the rigid member on a plane perpendicular to the direction in which the rigid member presses the piezoelectric body (pressing direction). In the case where sound pressure acts on the surface, the area of the inner surface on which the sound pressure acts (similarly, the projected area on a plane perpendicular to the pressing direction) is subtracted.
In the case of a cylindrical piezoelectric body, the above-mentioned “plane perpendicular to the direction in which the piezoelectric body is pressed” is generally a plane parallel to the side surface of the piezoelectric body, that is, a plane perpendicular to the axial direction of the cylindrical piezoelectric body. .

【0013】また、本発明でいう音波は、圧力振動の波
と解釈されるべきであり、可聴域の音波に限定されるも
のではない。より正確には、本発明の音波は、その波長
が剛性部材の大きさと比較できる程度より長い圧力振動
の波である。また、音圧は上記振動の圧力である。
The sound wave in the present invention should be interpreted as a pressure vibration wave, and is not limited to an audible sound wave. More precisely, the sound wave of the present invention is a wave of pressure vibration whose wavelength is longer than that of the rigid member. The sound pressure is the pressure of the vibration.

【0014】[0014]

【作用】上述したように、本発明においては、筒状の圧
電体の一定の面積を有する対向する二側面をより大面積
の一対の剛性部材で挾持させて、筒状圧電体の軸方向変
形に寄与する音圧の有効作用面積を増大させることによ
り見掛け上dh 定数の著しい増大を図ることができる。
また、剛性部材の有効作用面積/筒状圧電体側面面積で
定まる圧力増幅率とは独立に、筒状圧電体の軸方向長さ
を変化させることによって、素子の電極面積を変化させ
ることができ、これに伴い素子の内部インピーダンスを
任意に設定することができる。更に、剛性部材による圧
力増幅のために行われる、剛性部材内表面への音圧の遮
断は、多くの場合において、圧電体のdh 定数のうち、
圧電体の分極方向と直交する成分(厚さ方向に分極した
圧電体のd31またはd32成分)と相反する作用を有する
厚さ方向成分(d33成分)の寄与、すなわち、圧電体の
厚さ方向への音圧の作用、を遮断する効果もありこの面
でもdh 定数の見掛けの増大に寄与するものと解され
る。
As described above, according to the present invention, two opposite sides of a cylindrical piezoelectric body having a certain area are sandwiched between a pair of rigid members having a larger area to deform the cylindrical piezoelectric body in the axial direction. By increasing the effective working area of the sound pressure that contributes to the above, the apparent d h constant can be significantly increased.
The electrode area of the element can be changed by changing the axial length of the cylindrical piezoelectric body independently of the pressure amplification rate determined by the effective working area of the rigid member / the area of the cylindrical piezoelectric body side surface. Accordingly, the internal impedance of the element can be arbitrarily set. Furthermore, performed for pressure amplification by the rigid member, blocking the sound pressure to the rigid member surface, in many cases, of the d h constant of the piezoelectric body,
The contribution of the component in the thickness direction (d 33 component) having an action opposite to the component orthogonal to the polarization direction of the piezoelectric material (d 31 or d 32 component of the piezoelectric material polarized in the thickness direction), that is, the thickness of the piezoelectric material It also has the effect of blocking the action of the sound pressure in the vertical direction, and it is understood that this also contributes to the apparent increase of the d h constant.

【0015】[0015]

【発明の具体的説明】以下、図面を参照しつつ本発明の
受波型圧電素子の好ましい態様を説明する。図面中、異
なる態様の説明に用いた同一参照符号は類似部分を示
す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the wave receiving piezoelectric element of the present invention will be described below with reference to the drawings. In the drawings, the same reference numerals used in the description of different embodiments indicate similar parts.

【0016】図1(a)は、本発明の受波型圧電素子
(以下、単に「圧電素子」と称す)の一実施例の部分切
欠き斜視図であり、図1(b)は対応する正断面図であ
る。また図2(a)および(b)は、それぞれこの実施
例で用いられる筒状圧電要素の拡大平面図および正面図
である。これら図面を参照して、この圧電素子10は、
ある肉厚tを挾む主たる二表面を構成する外側表面2a
および内側表面2bと、該二表面2aおよび2bと直交
して対向する二側面2cおよび2d(図中では上下面)
とを有し、前記肉厚に相する断面形状が閉鎖環状(本例
では円環状)であり、全体形状が概ね筒状である肉厚方
向に分極pを有する圧電体2と、該二表面にそれぞれ設
けられた電極3aおよび3bとを有する筒状圧電要素1
と;前記筒状圧電体2をその対向する二側面2cおよび
2dで挾持し、且つ該側面よりも大面積である一対の剛
性部材4および5と;を有し、前記一対の剛性部材4お
よび5に作用する音圧spを前記筒状圧電体2の対向す
る二側面2cおよび2d間の距離を変化(減少)させる
応力として収束させるように構成してなる。
FIG. 1A is a partially cutaway perspective view of an embodiment of a wave receiving type piezoelectric element (hereinafter, simply referred to as "piezoelectric element") of the present invention, and FIG. It is a front sectional view. FIGS. 2A and 2B are an enlarged plan view and a front view, respectively, of the cylindrical piezoelectric element used in this embodiment. Referring to these drawings, this piezoelectric element 10
Outer surface 2a constituting two main surfaces sandwiching a certain thickness t
And two side surfaces 2c and 2d (upper and lower surfaces in the figure) opposed to the inner surface 2b at right angles to the two surfaces 2a and 2b.
A piezoelectric body 2 having a polarization p in the thickness direction, the cross-sectional shape corresponding to the thickness being a closed annular shape (annular shape in this example), and having a generally cylindrical shape; Piezoelectric element 1 having electrodes 3a and 3b respectively provided on
And a pair of rigid members 4 and 5 sandwiching the cylindrical piezoelectric body 2 between two opposing side surfaces 2c and 2d and having a larger area than the side surfaces. 5 is converged as a stress that changes (decreases) the distance between two opposing side surfaces 2c and 2d of the cylindrical piezoelectric body 2.

【0017】この例では、筒状圧電体2は、その対向す
る二側面2cおよび2dを、円形の水平形状を持つボウ
ル状(碗状)の一対の剛性部材4、5で挾持されてい
る。剛性部材4、5は、それぞれ、曲面状の外表面4
a、5a、圧電体2の挾持に関与しない外方突出部4
b、5bを形成するように配置される。また剛性部材
4、5は、筒状圧電体2の平らな側面2cおよび2dの
表面に均一に当接し、また場合によっては接着されるよ
うに、その押圧面(底面)4c、5cが平坦に加工され
ている。そして、筒状圧電体2(従ってこれを含む筒状
圧電要素1)を挾持する一対の剛性部材4、5は、剛性
のある円筒6中に収容され、その側面4d、5dと、円
筒6との間の空隙はエラストマー樹脂7でシールされて
いる。
In this example, the cylindrical piezoelectric body 2 has two opposing side surfaces 2c and 2d sandwiched between a pair of bowl-shaped (bowl-shaped) rigid members 4, 5 having a circular horizontal shape. The rigid members 4 and 5 each have a curved outer surface 4.
a, 5a, outwardly protruding portions 4 not involved in holding the piezoelectric body 2
b, 5b. The rigid members 4 and 5 abut against the surfaces of the flat side surfaces 2c and 2d of the cylindrical piezoelectric body 2 uniformly, and in some cases, their pressing surfaces (bottom surfaces) 4c and 5c are flat so as to be bonded. It has been processed. A pair of rigid members 4 and 5 for holding the cylindrical piezoelectric body 2 (and thus the cylindrical piezoelectric element 1 including the same) are housed in a rigid cylinder 6, and its side surfaces 4d and 5d and the cylinder 6 are connected to each other. Are sealed with the elastomer resin 7.

【0018】本例において、一対の剛性部材4、5に
は、図1の上下方向から、その有効作用面積(剛性部材
の曲面をなす外表面4aおよび5aそのものではなく、
筒状圧電体の側面2c、2dと平行な水平面への投影面
積)に相当する音圧spが作用し、この音圧がより小面
積である筒状圧電体の側面に収束される。この有効作用
面積と筒状圧電体側面の面積との比が圧力増幅率にな
る。
In this embodiment, the pair of rigid members 4 and 5 have an effective working area (not the outer surfaces 4a and 5a forming the curved surfaces of the rigid members,
A sound pressure sp corresponding to an area projected on a horizontal plane parallel to the side surfaces 2c and 2d of the cylindrical piezoelectric body acts, and this sound pressure is converged on the side surface of the cylindrical piezoelectric body having a smaller area. The ratio between the effective working area and the area of the side surface of the cylindrical piezoelectric body is the pressure amplification rate.

【0019】また、本例において用いられるエラストマ
ー樹脂7は、一対の剛性部材4、5の内面4e、5e
と、剛性円筒6の内面で区画される内部空間8を音圧s
pの直接作用から遮断された気密空間として構成すると
ともに、筒状圧電体2の軸方向寸法変化を起すための一
対の剛性部材4、5の変位は妨げないという要請を満た
すものである。これにより、音圧により変形しない程度
の剛性を有する剛性部材4、5と、同様に剛性な円筒6
により区画された内容空間8内の圧力は実質的に一定に
保たれ、剛性部材の外方突出部内面4e、5eならびに
圧電要素1のd33定数に寄与する圧電要素1の外周ある
いは肉厚t変化方向への音圧spの作用は実質的に遮断
される。この内部空間8における音圧遮断作用を増強
し、あるいは制御するために、内部空間内を真空とし、
または任意の気体を充填し、あるいは発泡樹脂等の任意
の緩衝材を充填することもできる。
Further, the elastomer resin 7 used in the present embodiment is composed of inner surfaces 4e, 5e of a pair of rigid members 4, 5.
And the internal space 8 defined by the inner surface of the rigid cylinder 6
This structure satisfies the requirement that the airtight space is cut off from the direct action of p and that the displacement of the pair of rigid members 4 and 5 for causing the axial dimensional change of the cylindrical piezoelectric body 2 is not hindered. Thus, the rigid members 4 and 5 having such rigidity that they are not deformed by the sound pressure and the similarly rigid cylinder 6
The pressure in the content space 8 partitioned is kept substantially constant by, outward protrusion inner surface 4e of the rigid member, 5e and the outer peripheral or the thickness t of d 33 contributes to constant piezoelectric element 1 of the piezoelectric element 1 The effect of the sound pressure sp in the changing direction is substantially cut off. In order to enhance or control the sound pressure blocking action in the internal space 8, the interior space is evacuated,
Alternatively, an arbitrary gas may be filled, or an arbitrary buffer material such as a foamed resin may be filled.

【0020】図3は、本発明の受波型圧電素子の他の実
施例の正断面図である。この圧電素子20で用いる筒状
圧電要素1は、図1の例と同様のものであるが、異なる
形状の剛性部材14、15を用いる。すなわち、断面コ
の字状で周縁部に凸面14fおよび15fを形成した剛
性板材14、15が用いられている。図1の剛性部材
4、5に対応して、本発明の剛性部材たる剛性板材1
4、15は、それぞれ外表面14a、15a、突出部1
4b、15b、押圧面14c、15c、側面14d、1
5dおよび、突出部内面14e、15eをもって配置さ
れる。そして、剛性板材14、15のコの字状に突き出
た内面14fと15fとの間の空隙は、剛性板材14、
15が筒状圧電体2の軸方向へは音圧により変位自在な
ように、エラストマー樹脂17でシールされている。先
の例と同様にこのようにして形成された内部空間18に
は、気体または発泡樹脂などが充填されると共に、そこ
を真空とすることもできる。なお、圧電体2の圧縮変形
率よりも大きい変形率を有する材料であれば、空隙をシ
ールするエラストマー樹脂17あるいは内部空間18に
充填される発泡樹脂の代わりに用いることができる。
FIG. 3 is a front sectional view of another embodiment of the wave receiving type piezoelectric element of the present invention. The cylindrical piezoelectric element 1 used in the piezoelectric element 20 is the same as the example in FIG. 1, but uses rigid members 14 and 15 having different shapes. That is, rigid plate members 14 and 15 having a U-shaped cross section and having convex surfaces 14f and 15f formed on the periphery are used. The rigid plate 1 as the rigid member of the present invention corresponds to the rigid members 4 and 5 in FIG.
4 and 15 are outer surfaces 14a and 15a,
4b, 15b, pressing surfaces 14c, 15c, side surfaces 14d, 1
5d and the protrusion inner surfaces 14e, 15e. The gap between the inner surfaces 14f and 15f of the rigid plate members 14 and 15 protruding in a U-shape is
Reference numeral 15 is sealed with an elastomer resin 17 so as to be displaceable in the axial direction of the cylindrical piezoelectric body 2 by sound pressure. As in the previous example, the interior space 18 thus formed is filled with gas, foamed resin, or the like, and can be evacuated. Note that any material having a deformation rate greater than the compression deformation rate of the piezoelectric body 2 can be used instead of the elastomer resin 17 that seals the void or the foamed resin that fills the internal space 18.

【0021】図3の実施例においても、前記押圧方向は
圧電体側面に垂直な方向(筒状圧電体2の軸方向)であ
り、板材14、15の外表面14a、15aと対向する
内面の全領域に対する音圧の遮断が達成されている。従
って外表面14aおよび15aの全体が音圧の有効作用
面積として利用される。
Also in the embodiment shown in FIG. 3, the pressing direction is a direction perpendicular to the side surface of the piezoelectric body (the axial direction of the cylindrical piezoelectric body 2), and the inner surface facing the outer surfaces 14a and 15a of the plate members 14 and 15 is also used. Sound pressure cutoff is achieved for all regions. Therefore, the entire outer surfaces 14a and 15a are used as the effective working area of the sound pressure.

【0022】一対の剛性部材の端部でそれらを結合し、
かつその間をシールするためには、本実施例のようにエ
ラストマー樹脂17を充填する以外にジャバラ、板バネ
等の剛性と弾力性を併せ持つ部材を用いることでもよ
い。
At the ends of a pair of rigid members, they are joined,
Further, in order to seal the space therebetween, a member having both rigidity and elasticity, such as a bellows and a leaf spring, may be used instead of filling the elastomer resin 17 as in this embodiment.

【0023】図4は、本発明の圧電素子の別の実施例の
正断面図を示すものである。この圧電素子30に用いら
れる筒状圧電要素1も図1の例で用いたもの(図2に示
す)と同様である。この例で用いられる剛性部材は、一
対の平坦な剛性板材24、25であり、これらの押圧面
24e、25eは、筒状圧電体2の一対の側面(図の上
下面)2cおよび2dに当接され、好ましくは接着され
ることにより、筒状圧電体2の内部空間2eを気密にす
る。これにより、押圧面24e、25eを含む一対の剛
性部材の内面は、音圧の作用を受けることがなく、剛性
部材24、25の外表面24a、25aの全面積が、音
圧の有効作用面積として使用されるために、より小なる
筒状圧電体の被押圧面2c、2dの面積との比に相当す
る圧力増幅率が得られる。しかし、この例の圧電素子3
0の場合、素子構成は簡単であるが、図1あるいは図3
の圧電素子に比べて、一対の剛性部材による有効作用面
積がそれ程増大しないため、効果的な圧力増幅が期待で
きないこと、また、圧電体2の外周面に作用する静水圧
spによるd33定数の寄与分が、本発明の意図するd31
またはd32定数の出力を減殺する効果を抑制できないと
いう不利がある。
FIG. 4 is a front sectional view of another embodiment of the piezoelectric element of the present invention. The cylindrical piezoelectric element 1 used in the piezoelectric element 30 is the same as that used in the example of FIG. 1 (shown in FIG. 2). The rigid members used in this example are a pair of flat rigid plate members 24 and 25, and their pressing surfaces 24e and 25e correspond to a pair of side surfaces (upper and lower surfaces) 2c and 2d of the cylindrical piezoelectric body 2. The inner space 2e of the cylindrical piezoelectric body 2 is made airtight by being in contact with and preferably being bonded. Thus, the inner surfaces of the pair of rigid members including the pressing surfaces 24e and 25e are not affected by the sound pressure, and the entire area of the outer surfaces 24a and 25a of the rigid members 24 and 25 is reduced to the effective working area of the sound pressure. As a result, a pressure amplification factor corresponding to the ratio of the area of the pressed surfaces 2c and 2d of the smaller cylindrical piezoelectric body can be obtained. However, the piezoelectric element 3 of this example
In the case of 0, the element configuration is simple, but FIG.
Since the effective working area of the pair of rigid members does not increase so much as compared with the piezoelectric element of the above, effective pressure amplification cannot be expected, and the d 33 constant of the hydrostatic pressure sp acting on the outer peripheral surface of the piezoelectric body 2 The contribution is d 31 as intended by the present invention.
Or there is a disadvantage that it can not suppress the effect of offsetting the output of the d 32 constant.

【0024】図2に示した上述の各例に用いられるよう
な厚み方向に分極方向pを有する中空筒状圧電体2の両
面に電極を設けた筒状圧電要素1で、セラミック圧電体
2を用いるものは、市販もされており(例えば(株)ト
ーキン製円筒形PZT圧電素子)、本発明において好適
に用いられる。他方、ポリマー系圧電素子を用いる場合
には、例えば図5に断面図を示すように、厚さ方向に分
極pを有するポリマー圧電体フィルム12の両面に電極
13a、13bを有するフィルムないしシート状圧電要
素を、その可撓性を利用して、ある軸のまわりに捲回し
て、図6((a)は平面図、(b)は正面図)に示すよ
うに、フィルム両端をエポキシ樹脂27等で接着するこ
とにより、図2のセラミック系圧電要素1と類似の機能
を有するポリマー系圧電要素11を形成し得る。必要に
応じて捲回後に熱固定を行い、筒形状を固定することが
望ましい。
The ceramic piezoelectric element 2 is a cylindrical piezoelectric element 1 having electrodes provided on both sides of a hollow cylindrical piezoelectric element 2 having a polarization direction p in the thickness direction as used in each of the above-described examples shown in FIG. Those used are commercially available (for example, a cylindrical PZT piezoelectric element manufactured by Tokin Co., Ltd.) and are suitably used in the present invention. On the other hand, when a polymer piezoelectric element is used, for example, as shown in a sectional view of FIG. 5, a film or sheet-like piezoelectric film having electrodes 13a and 13b on both surfaces of a polymer piezoelectric film 12 having polarization p in the thickness direction. The element is wound around a certain axis by using its flexibility, and as shown in FIG. 6 ((a) is a plan view, (b) is a front view), both ends of the film are epoxy resin 27 or the like. By bonding, the polymer-based piezoelectric element 11 having a function similar to that of the ceramic-based piezoelectric element 1 in FIG. 2 can be formed. It is desirable to perform heat setting after winding as necessary to fix the cylindrical shape.

【0025】ポリマー系圧電体としては、比較的高い耐
熱性を有するシアン化ビニリデン−酢酸ビニル共重合体
が好適に用いられるほか、優れた圧電特性のフッ化ビニ
リデン系樹脂圧電体が好ましく、なかでも圧電性発現に
適したβ型結晶化のために一軸延伸の必要なフッ化ビニ
リデン(VDF)単独重合体に比べて、通常の結晶条件
化でβ型結晶化の可能なVDF系共重合体(例えば優位
量のVDFと劣位量のフッ化ビニル(VF)、トリフル
オロエチレン(TrFE)あるいはテトラフルオロエチ
レン(TFE)との共重合体)が好ましく、更には優位
量(特に70〜80モル%)のVDFと劣位量(特に3
0〜20モル%)のTrFEとの共重合体がもっとも好
ましく用いられる。
As the polymer piezoelectric material, a vinylidene cyanide-vinyl acetate copolymer having relatively high heat resistance is preferably used, and a vinylidene fluoride resin piezoelectric material having excellent piezoelectric properties is preferable. Compared to vinylidene fluoride (VDF) homopolymer, which requires uniaxial stretching for β-type crystallization suitable for piezoelectricity development, VDF copolymer ( For example, a copolymer of a superior amount of VDF and an inferior amount of vinyl fluoride (VF), trifluoroethylene (TrFE) or tetrafluoroethylene (TFE) is preferable, and a superior amount (particularly 70 to 80 mol%) is preferable. VDF and inferior amount (especially 3
(0 to 20 mol%) of a copolymer with TrFE is most preferably used.

【0026】これらポリマー圧電材料は、溶融押出等に
より成膜後、必要に応じて一軸延伸あるいは軟化温度以
下での熱処理、軟化温度以下での電界印加により分極処
理に付されて、フィルムないしシート12として形成さ
れる。本発明に用いられるポリマー系圧電体は、これら
フィルムまたはシートを単層で用いることができるほ
か、分極方向を同一として、あるいは中間電極層を介し
て逆方向に積層して、例えば2〜20層程度の積層体と
して用いられる。
These polymer piezoelectric materials are formed into a film by melt extrusion or the like, and then subjected to a uniaxial stretching or a heat treatment at a temperature lower than the softening temperature and a polarization treatment by applying an electric field at a temperature lower than the softening temperature, if necessary, to form a film or sheet 12. Is formed as In the polymer-based piezoelectric material used in the present invention, these films or sheets can be used as a single layer, or the same polarization direction is used, or two or more layers are stacked in the opposite direction via an intermediate electrode layer. It is used as a laminate of a degree.

【0027】上述の各例から分かるように、大面積の外
表面で受けた音圧を相対的に小面積の筒状圧電体の側面
に収束する機能を持つ本発明の剛性部材を音圧増幅器と
して捉えることもできる。この場合、増幅率の一つの目
安は、上記で定義した剛性部材の有効作用面積と圧電体
の側面(被押圧面)の面積との比である。勿論、この増
幅率あるいは面積比は1を越える値であるが、その上限
は圧電体に加わる応力(増幅された音圧)が圧電体に塑
性変形を引き起こさない範囲で選ばれるのがよい。
As can be seen from the above examples, the rigid member of the present invention having the function of converging the sound pressure received on the outer surface of the large area to the side surface of the cylindrical piezoelectric body having a relatively small area is used as the sound pressure amplifier. Can also be considered as In this case, one measure of the amplification factor is the ratio between the effective working area of the rigid member defined above and the area of the side surface (pressed surface) of the piezoelectric body. Of course, the amplification factor or area ratio is a value exceeding 1, but the upper limit is preferably selected within a range in which the stress (amplified sound pressure) applied to the piezoelectric material does not cause plastic deformation of the piezoelectric material.

【0028】また、別の観点として、本発明の圧電素子
では、大表面の剛性部材の外表面で受けた音圧は小面積
の筒状圧電要素の側面に増幅されて収束する。そこで、
31またはd32増幅が有効に働くためには(圧力増幅率
と、圧電特性(dh定数)の向上が一致するには)、上
述の増幅されて収束する音圧が筒状圧電体の面方向(な
いしは軸方向)の圧縮変形応力に有効に変換されなけれ
ばならない。即ち、筒状圧電素子の厚さないしは半径方
向の撓みや膨らみなどd33成分の寄与を増加させる変形
はででき得る限り避けることが望ましい。
As another aspect, in the piezoelectric element of the present invention, the sound pressure received on the outer surface of the large-sized rigid member is amplified and converged on the side surface of the cylindrical piezoelectric element having a small area. Therefore,
For d 31 or d 32 amplification works effectively is (a pressure amplification factor, to improve the piezoelectric characteristics (d h constant) are coincident), the sound pressure converging the above amplification of the cylindrical piezoelectric body It must be effectively converted to a compressive deformation stress in the plane direction (or axial direction). That is, it is desirable to avoid as far as it is capable possible in a variant to increase the contribution of the d 33 component, such as bending or swelling in the thickness or radial direction of the cylindrical piezoelectric element.

【0029】このような観点から、上記したポリマー系
圧電体12を捲回して筒状圧電要素11を形成する際に
は、必要に応じて積層構成を採るなどにより肉厚tを増
大することが好ましい。またポリマー系圧電体を用い
て、得られる筒状圧電要素の厚さないしは半径方向変形
を抑えるためには、図5に示すような圧電体12の両面
に一般に用いられるような蒸着電極13a、13bを設
けた一般のポリマー系圧電要素の代りに、特願平4−1
58844ならびに同4−203160の明細書に提案
されており、図7に示すような、圧電体シートの表面に
網状・多孔板状等の多孔シート状電極を埋入した圧電要
素を用い、その柔軟性を維持する範囲での補強効果を利
用すること;更には、図5あるいは図7に示すシート状
圧電要素を多重に捲回して図8((a)は平面図、
(b)は正面図)に示すような渦巻状断面(平面)形状
を有し、全体として概ね筒状の圧電要素21を形成する
ことが好ましい。
From such a viewpoint, when the above-mentioned polymer-based piezoelectric material 12 is wound to form the cylindrical piezoelectric element 11, the thickness t may be increased by adopting a laminated structure as necessary. preferable. In order to suppress the thickness or radial deformation of the obtained cylindrical piezoelectric element using a polymer piezoelectric material, vapor deposition electrodes 13a and 13b generally used on both surfaces of the piezoelectric material 12 as shown in FIG. In place of the general polymer piezoelectric element provided with
58844 and 4-203160. As shown in FIG. 7, a piezoelectric element in which a porous sheet-like electrode such as a net-like or perforated plate is embedded in the surface of a piezoelectric sheet is used. Utilizing the reinforcing effect in a range that maintains the property; furthermore, the sheet-like piezoelectric element shown in FIG. 5 or FIG.
It is preferable that the piezoelectric element 21 has a spiral cross section (planar shape) as shown in FIG.

【0030】本発明で用いる筒状圧電要素を形成する電
極3a、3b、13a、13b(23a、23b)とし
ては、蒸着電極、接着剤で貼付された箔電極或いは特願
平3−356668号の明細書に記載のような金属溶射
電極を用いることができる。しかし、好ましくは、
(1)増幅された音圧による圧電体の面方向の圧縮変形
を阻害しない、(2)ポリマー圧電体の場合、筒状或い
は渦巻状の賦形が容易であるなどの要件を満たすもの、
例示すれば、蒸着電極、塗布された導電塗料、上述した
多孔シート状電極23a、23bなどの柔軟性を担保し
得る電極が好適である。
As the electrodes 3a, 3b, 13a, 13b (23a, 23b) forming the cylindrical piezoelectric element used in the present invention, a vapor deposition electrode, a foil electrode stuck with an adhesive, or Japanese Patent Application No. 3-356668. A metal spray electrode as described in the specification can be used. However, preferably,
(1) those which do not inhibit the compressive deformation of the piezoelectric body in the plane direction due to the amplified sound pressure; and (2) in the case of a polymer piezoelectric body, those which satisfy requirements such as easy cylindrical or spiral shaping.
For example, an electrode capable of ensuring flexibility such as a vapor deposition electrode, a coated conductive paint, and the above-described porous sheet electrodes 23a and 23b is preferable.

【0031】本発明の圧電体には、絶えず面方向の圧縮
変形応力が働く。従って、電極は、(3)圧電体との間
の層間剥離強度が強いことが更に好ましい。この意味
で、前記多孔シート状電極、その中でもメッシュ状電極
が特に好ましいものである。
The piezoelectric body of the present invention is constantly subjected to compressive deformation stress in the plane direction. Therefore, it is more preferable that the electrode has a strong delamination strength between the electrode and (3) the piezoelectric body. In this sense, the above-mentioned porous sheet-like electrode, and among them, the mesh-like electrode is particularly preferable.

【0032】[0032]

【製造例】以下に、本発明の受波型圧電素子の具体例と
してのハイドロホンの製造例および比較製造例を説明す
る。
Production Examples Hereinafter, production examples and comparative production examples of hydrophones as specific examples of the wave receiving piezoelectric element of the present invention will be described.

【0033】製造した測定用試料片およびハイドロホン
については、以下の方法で静水圧圧電ひずみ定数(dh
定数)を測定して求めた。耐圧容器に入れたシリコン油
等の電気絶縁性液体中に試料を浸漬し、容器に窒素ガス
源から圧力P(ニュートン(N)/m2 )を加えながら
試料の電荷量Q(クーロン(C))を測定する。そし
て、ゲージ圧2kg/cm2 近辺での圧力上昇dPに対
する電荷の増加量dQを得、下式で計算した。
With respect to the manufactured measurement sample and hydrophone, the hydrostatic pressure piezoelectric strain constant (d h
Constant). The sample is immersed in an electrically insulating liquid such as silicon oil in a pressure-resistant container, and the charge amount Q (coulomb (C)) of the sample is applied to the container while applying a pressure P (Newton (N) / m 2 ) from a nitrogen gas source. ) Is measured. Then, the charge increase dQ with respect to the pressure rise dP near the gauge pressure of 2 kg / cm 2 was obtained, and was calculated by the following equation.

【0034】dh =(dQ/dP)/A 単位は、C/Nである。ここで、Aは電極面積(m2
である。
Dh= (DQ / dP) / A The unit is C / N. Here, A is the electrode area (mTwo )
It is.

【0035】さらに、測定用試料片のd31およびd32
数は、以下の方法で測定して求めた。すなわち、動的粘
弾性・圧電性測定装置((株)東洋精機製作所製「レオ
ログラフ・ソリッド」)を用い、試料片を長さ方向にク
ランプ距離18mmでクランプした。クランプの一方
(固定側)はロードセルに、他方(移動側)は該測定装
置の加振機に接続した。まず、試料片に0.35kgの
静止荷重をかけ、続いて加振機により周波数0.8Hz
の微小変位振動を重畳・印加した。そして、試料片の電
極間に誘起される電荷量の変動値△Q(C)とロードセ
ルによる単位断面積あたりの張力の変動値△T(N/
2)を得、下式で計算した。
Further, d of the measurement sample piece31And d32Set
The number was determined by measuring according to the following method. That is, dynamic viscosity
Elasticity / piezoelectricity measuring device (Leo manufactured by Toyo Seiki Seisaku-sho, Ltd.)
The specimen in the longitudinal direction using
It was clamped at a lamp distance of 18 mm. One side of the clamp
The (fixed side) is on the load cell and the other (moving side) is on the measuring device.
Connected to the shaker. First, add 0.35 kg
A static load is applied, followed by a frequency of 0.8 Hz by a shaker
Was superimposed and applied. Then, charge the sample
The variation of the charge induced between the poles △ Q (C) and the load cell
Of the tension per unit cross-sectional area due to m
Two) Was calculated by the following equation.

【0036】d31またはd32=(△Q/△T)/A 単位は、C/Nである。D 31 or d 32 = (△ Q / △ T) / A The unit is C / N.

【0037】ここで、測定用試料片の作成は、ポリマー
圧電体フィルムの両面に厚さ0.03μmでアルミニウ
ム蒸着膜を形成し、それから幅5mm、長さ25mmの
短冊シートを切り出して行なった。短冊シートは、その
長手方向が圧電体フィルムの延伸方向(MD)に平行
(d31方向)或いは垂直(d32方向)となるように、そ
れぞれ切り出し、二種類を用意した。
Here, the measurement sample piece was prepared by forming an aluminum vapor-deposited film having a thickness of 0.03 μm on both sides of the polymer piezoelectric film, and cutting out a strip sheet having a width of 5 mm and a length of 25 mm. The slit sheet is so longitudinal direction parallel to the stretching direction (MD) of the piezoelectric film (d 31 direction) or perpendicular (d 32 direction), cut out respectively, were prepared two kinds.

【0038】比較例1 まず、VDF単独重合体(呉羽化学工業(株)製「KF
#1000」)をダイス温度265℃でシート押出し
し、シート温度80〜120℃で1軸延伸しながら(延
伸倍率約4倍)、コロナ放電により50〜90V/μm
の電界を印加して分極処理を行ない、厚さ250μmの
ポリマー圧電体フィルムを得た。このポリマー圧電体フ
ィルムから作成された測定用試料片の圧電定数は、dh
=−11.5pC/N、d31=+16.6pC/N、d
32=+1.5pC/Nであった。
Comparative Example 1 First, a VDF homopolymer ("KF" manufactured by Kureha Chemical Industry Co., Ltd.)
# 1000 ”) at a die temperature of 265 ° C., and while being uniaxially stretched at a sheet temperature of 80 to 120 ° C. (drawing ratio of about 4), 50 to 90 V / μm by corona discharge.
The electric field was applied to perform a polarization treatment to obtain a polymer piezoelectric film having a thickness of 250 μm. The piezoelectric constant of the measurement sample piece prepared from this polymer piezoelectric film is d h
= -11.5 pC / N, d 31 = + 16.6 pC / N, d
32 = + 1.5 pC / N.

【0039】次いで、該ポリマー圧電体フィルムの両面
に導電性ニッケル塗料((株)シントーケミトロン製
「Shintron E−63」)をスプレーして、厚
さ30〜40μmの電極を形成した後、それを幅方向が
MD方向(d31方向)となるように、幅20mm、長さ
80mmに切断して、図5に断面構造を示す帯状圧電素
子を得た。
Next, a conductive nickel paint (“Shintron E-63” manufactured by Shinto Chemitron Co., Ltd.) was sprayed on both surfaces of the polymer piezoelectric film to form electrodes having a thickness of 30 to 40 μm. the so that the width direction is MD direction (d 31 direction), it was cut to a width 20 mm, length 80 mm, to obtain a strip-like piezoelectric element showing a sectional structure in FIG.

【0040】別途、図9に示すように、内径16mmφ
の円筒状内面を有する二つ割りの金型101a、101
bを用意して、上記で得られた帯状圧電素子を長さ方向
に渦巻き状に捲回して、両金型101a、101b中に
挿入しボルト穴103により結合保持した(渦巻き状圧
電素子の両端は金型内部で開放されている)。そして、
金型を70℃の乾燥機に入れて24時間保持して、熱固
定した後金型より取り出し、高さh(ロール幅)=20
mm、断面積(被押圧面面積)20mm2の図8に示す
ような渦巻き状の圧電素子(外径は20mmφ程度)を
得、該渦巻き状圧電素子の内面と外面が接触していない
ことを確認した。さらに、導電性瞬間接着剤(厚木中央
研究所(株)製「サイコロン」)を用いて両電極13
a、13bにリード線を接続して筒状圧電要素21を完
成させた。この筒状圧電要素21のdh定数は−11.
3pC/Nであった。
Separately, as shown in FIG.
Mold 101a, 101 having a cylindrical inner surface
b, the strip-shaped piezoelectric element obtained above is spirally wound in the longitudinal direction, inserted into both the molds 101a and 101b, and connected and held by bolt holes 103 (both ends of the spiral piezoelectric element). Is open inside the mold). And
The mold was placed in a dryer at 70 ° C., held for 24 hours, heat-fixed, taken out of the mold, and the height h (roll width) = 20.
8 and a cross-sectional area (pressed surface area) of 20 mm 2 as shown in FIG. 8 to obtain a spiral-shaped piezoelectric element (outer diameter is about 20 mmφ), and confirm that the inner and outer surfaces of the spiral-shaped piezoelectric element are not in contact with each other. confirmed. Further, both electrodes 13 are formed by using a conductive instant adhesive (“Sycolon” manufactured by Atsugi Central Research Institute Co., Ltd.).
The lead wires were connected to a and 13b to complete the cylindrical piezoelectric element 21. D h constant of the cylindrical piezoelectric element 21 -11.
It was 3 pC / N.

【0041】実施例1 続いて、以下のようにして実質的に図1に示すようなハ
イドロホンとしての圧電素子10(但し、圧電要素1の
代りに図8に示す圧電要素21を含む)を得た。
Embodiment 1 Subsequently, a piezoelectric element 10 (including a piezoelectric element 21 shown in FIG. 8 instead of the piezoelectric element 1) substantially as a hydrophone as shown in FIG. Obtained.

【0042】まず、比較例1で得られた筒状圧電要素2
1の軸方向端面に接着剤を塗布した。そして、接着剤が
塗布された筒状圧電要素21を水平断面形状が円形でボ
ウル状(碗状)の一対の剛性板材4、5で挾持して互い
に接着固定し、続いて剛性板材4、5を長さ52mm、
内径80mmφ、厚み5mmの塩化ビニール樹脂製の円
筒6中に収容した。さらに、剛性部材4、5と円筒6の
隙間にウレタンゴム接着剤7を充填して両者を固定する
と共に、内部空間8を密封して圧電素子10を得た。実
際には、ボウル状の剛性板材4、5としては、押圧面4
e、5eを平らに加工したアクリル樹脂製のプラスチッ
クレンズ成形品が用いられ、その厚みは5mm、その側
面4d、5dの水平断面の直径は75mmφ(受圧面積
として4420mm2)であった。筒状圧電要素21に
接続されたリード線は、剛性部材4、5をそれぞれ貫通
して設けられた孔を通して別々に外部に引き出され、孔
はその後シールされた。この圧電素子10のdh定数
は、+1,160pC/Nであった。
First, the cylindrical piezoelectric element 2 obtained in Comparative Example 1
An adhesive was applied to the end face in the axial direction of No. 1. Then, the cylindrical piezoelectric element 21 to which the adhesive is applied is sandwiched between a pair of rigid plate members 4 and 5 having a circular horizontal cross-sectional shape and a bowl shape (bowl shape) and adhered and fixed to each other. Is 52 mm in length,
It was housed in a vinyl chloride resin cylinder 6 having an inner diameter of 80 mm and a thickness of 5 mm. Further, the gap between the rigid members 4 and 5 and the cylinder 6 was filled with a urethane rubber adhesive 7 to fix them, and the internal space 8 was sealed to obtain the piezoelectric element 10. Actually, the bowl-shaped rigid plate members 4 and 5 include the pressing surface 4
A plastic lens molded product made of acrylic resin obtained by flattening e and 5e was used, the thickness was 5 mm, and the diameter of the horizontal cross section of the side surfaces 4d and 5d was 75 mmφ (4420 mm 2 as a pressure receiving area). The lead wires connected to the cylindrical piezoelectric element 21 were separately drawn out through holes provided through the rigid members 4 and 5, respectively, and the holes were thereafter sealed. The d h constant of the piezoelectric element 10 was + 1,160pC / N.

【0043】比較例2 比較例1と同じポリマー圧電体フィルムを用い、同じ電
極形成を行なった後、幅20mm、長さ140mmに切
断して、図5に断面構造を示す板状圧電素子を得た。次
いで、比較例1と同様な渦巻き賦形操作により、高さh
=20mm、断面積(被押圧面面積)35mm2の円筒
渦巻き状の圧電要素(外径は30mmφ程度)21を完
成させた。この筒状圧電要素21のdh定数は−11.
3pC/Nであった。
Comparative Example 2 The same electrode was formed using the same polymer piezoelectric film as in Comparative Example 1, and then cut into a width of 20 mm and a length of 140 mm to obtain a plate-like piezoelectric element having a sectional structure shown in FIG. Was. Then, the height h was increased by the same spiral shaping operation as in Comparative Example 1.
= 20 mm, and a cylindrical spiral-shaped piezoelectric element (outer diameter of about 30 mmφ) 21 having a cross-sectional area (pressed surface area) of 35 mm 2 was completed. D h constant of the cylindrical piezoelectric element 21 -11.
It was 3 pC / N.

【0044】実施例2 比較例2で得られたのと同様な円筒渦巻き状の圧電要素
21を用いたことを除いて、実施例1と同様にして圧電
素子10を得た。この圧電素子10のdh定数は、+6
90pC/Nであった。
Example 2 A piezoelectric element 10 was obtained in the same manner as in Example 1, except that a cylindrical spiral piezoelectric element 21 similar to that obtained in Comparative Example 2 was used. The d h constant of the piezoelectric element 10 is +6
It was 90 pC / N.

【0045】比較例3 まず、VDF/TrFE(75/25モル比)共重合体
(呉羽化学工業(株)製)をダイス温度265℃でシー
ト押出しし、125℃で13時間の熱処理後、60V/
μmの電界下、123℃での保持時間5分、昇温時間を
含めて全1時間の分極処理を行ない、厚さ500μmの
ポリマー圧電体フィルムを得た。このポリマー圧電体フ
ィルムから作成された測定用試料片の圧電定数は、dh
=−12.4pC/N、d31=+13.2pC/N、d
32=+13.0C/Nであった。
Comparative Example 3 First, a VDF / TrFE (75/25 molar ratio) copolymer (manufactured by Kureha Chemical Industry Co., Ltd.) was extruded in a sheet at a die temperature of 265 ° C., and after a heat treatment at 125 ° C. for 13 hours, 60 V /
A polarization treatment was performed under a μm electric field for a total of 1 hour including a holding time at 123 ° C. for 5 minutes and a heating time to obtain a polymer piezoelectric film having a thickness of 500 μm. The piezoelectric constant of the measurement sample piece prepared from this polymer piezoelectric film is d h
= -12.4 pC / N, d 31 = + 13.2 pC / N, d
32 = + 13.0 C / N.

【0046】次いで、該ポリマー圧電体フィルムの両面
に30℃のアセトンを塗布し30秒間保持後、アセトン
処理面に300メッシュ(綾織り、目開き45μm、線
径40μm、開口率27.8%)の燐青銅金網を置き、
これらの積層体を、温度90℃、圧力50kg/c
2、時間2分の条件で圧着して、ポリマー圧電体フィ
ルムの表層に金網電極を埋入させた。そして、このよう
に電極形成した圧電体フィルムを幅20mm、長さ14
0mmに切断して、図7に断面構造を示す帯状圧電要素
を得た。次いで、比較例1と同様な渦巻き賦形操作によ
り、高さ20mm、断面積(被押圧面面積)35mm2
の円筒渦巻き状の圧電要素(外径は30mmφ程度)2
1を完成させた。この圧電要素21のdh定数は−1
2.1pC/Nであった。
Next, acetone at 30 ° C. was applied to both surfaces of the polymer piezoelectric film and held for 30 seconds, and then 300 mesh (twill weave, 45 μm mesh, 40 μm wire diameter, 27.8% aperture ratio) was applied to the acetone-treated surface. Put the phosphor bronze wire mesh
These laminates were subjected to a temperature of 90 ° C. and a pressure of 50 kg / c.
The metal wire electrode was embedded in the surface layer of the polymer piezoelectric film by pressure bonding under conditions of m 2 and time of 2 minutes. Then, the piezoelectric film on which the electrodes are formed as described above is made to have a width of 20 mm and a length of 14 mm.
By cutting to 0 mm, a band-shaped piezoelectric element having a sectional structure shown in FIG. 7 was obtained. Next, by the same spiral shaping operation as in Comparative Example 1, the height was 20 mm, and the cross-sectional area (pressed surface area) was 35 mm 2.
Cylindrical spiral element (outer diameter is about 30 mmφ) 2
1 was completed. The d h constant of this piezoelectric element 21 is -1.
2.1 pC / N.

【0047】実施例3 比較例3で得られたのと同様な円筒渦巻き状の圧電要素
21を用いたことを除いて、実施例1と同様にして圧電
素子10を得た。この圧電素子10のdh定数は、+6
30pC/Nであった。
Example 3 A piezoelectric element 10 was obtained in the same manner as in Example 1 except that a cylindrical spiral piezoelectric element 21 similar to that obtained in Comparative Example 3 was used. The d h constant of the piezoelectric element 10 is +6
It was 30 pC / N.

【0048】比較例4 内径12.3mmφ、外径16.3mmφ、長さ10m
mの寸法を有する、厚み方向に分極された円筒形PZT
圧電素子((株)トーキン製、断面積90mm2、d33
=+302pC/N、d31=d32=−133pC/N)
の筒内面と外面に形成されている電極に、比較例1と同
様な導電性瞬間接着剤を用いてリード線を接続して図2
に示すような筒状圧電要素1を完成させた。この筒状圧
電要素1のdh定数は+26.7pC/Nであった。
Comparative Example 4 Inner diameter 12.3 mmφ, outer diameter 16.3 mmφ, length 10 m
Thickness-polarized cylindrical PZT with dimensions of m
Piezoelectric element (manufactured by Tokin Co., Ltd., cross-sectional area 90 mm 2 , d 33
= + 302 pC / N, d 31 = d 32 = −133 pC / N)
A lead wire is connected to the electrodes formed on the inner and outer surfaces of the cylinder by using the same conductive instant adhesive as in Comparative Example 1, and FIG.
The completed cylindrical piezoelectric element 1 as shown in FIG. D h constant of the cylindrical piezoelectric element 1 was + 26.7pC / N.

【0049】実施例4 比較例4で得られたのと同様な筒状圧電要素1の軸方向
端面を、接着剤を用いて外径17mmφ、厚み2mmの
アクリル樹脂円盤(受圧面積として209mm2)で封
止して図4に示すような圧電素子30を得た。この圧電
素子30のdh定数は、−550pC/Nであった。
Example 4 An axial end face of a cylindrical piezoelectric element 1 similar to that obtained in Comparative Example 4 was coated with an acrylic resin disk having an outer diameter of 17 mmφ and a thickness of 2 mm (a pressure receiving area of 209 mm 2 ) using an adhesive. Then, a piezoelectric element 30 as shown in FIG. 4 was obtained. The d h constant of the piezoelectric element 30 was -550pC / N.

【0050】実施例5 比較例4で得られたのと同様な筒状圧電要素1を、実施
例1と同様な一対の剛性板材4、5と円筒6を用いて、
実施例1と同様にして圧電素子10を得た。この圧電素
子10のdh定数は、−6,480pC/Nであった。
Example 5 A cylindrical piezoelectric element 1 similar to that obtained in Comparative Example 4 was used by using a pair of rigid plate members 4 and 5 and a cylinder 6 similar to those in Example 1.
A piezoelectric element 10 was obtained in the same manner as in Example 1. The d h constant of the piezoelectric element 10 was -6,480pC / N.

【0051】上述の測定結果は、本発明の受波型圧電素
子の圧電定数がブランク(剛性部材を配置しない状態の
圧電素子)に比べて、実に数百倍の値にまで増加するこ
とを示している。さらに、この圧電定数の増加率が所謂
面積比と強い相関があることから、上述の圧電体の幅方
向の変形に注意して、面積比を更に増やせば、より大き
な増加率が得られることを示唆している。
The above measurement results show that the piezoelectric constant of the wave-receiving piezoelectric element of the present invention actually increases to a value several hundred times larger than that of a blank (piezoelectric element in which no rigid member is disposed). ing. Further, since the rate of increase of the piezoelectric constant has a strong correlation with the so-called area ratio, it is important to pay attention to the above-described deformation in the width direction of the piezoelectric body, and if the area ratio is further increased, a larger increase rate can be obtained. Suggests.

【0052】結局のところ、圧電体の面方向へは少ない
力で変位自在であり、且つ圧電体表面への音圧の作用は
有効に遮断されるように、剛性部材を注意深く設計・配
置すれば、大面積の剛性部材の外表面で受けた音圧を圧
電体側面に効率よく収束することができ、結果として圧
電定数を著しく増加できることは理解できよう。
After all, if the rigid member is carefully designed and arranged so that it can be displaced in the surface direction of the piezoelectric body with a small force and the action of sound pressure on the surface of the piezoelectric body is effectively cut off. It can be understood that the sound pressure received on the outer surface of the large-area rigid member can be efficiently converged on the side surface of the piezoelectric body, and as a result, the piezoelectric constant can be significantly increased.

【0053】[0053]

【発明の効果】上述したように、本発明によれば、肉厚
方向に分極され一定のdh定数を有する圧電体の軸と直
交する端面をより大面積の一対の剛性部材で挾持させ
て、圧電体の軸方向変形(d31またはd32変形)に寄与
する音圧の有効作用面積を増大させることにより、内部
インピーダンスの増大を招くことなく、dh 定数の見掛
け上の著しい増大を図り、これにより、音波の受信感度
を著しく向上したマイクロホン、ハイドロホン等に有効
な受波型圧電素子が得られる。
As described above, according to the present invention, the end face of the piezoelectric body polarized in the thickness direction and having a constant dh constant, which is perpendicular to the axis, is sandwiched between a pair of rigid members having a larger area. , by increasing the effective active area contributing sound pressure in the axial direction deformation of the piezoelectric body (d 31 or d 32 variations), without causing an increase in internal impedance, achieving a significant increase of the apparent d h constants Thus, it is possible to obtain a wave-receiving piezoelectric element that is effective for microphones, hydrophones, and the like in which the reception sensitivity of sound waves is significantly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の受波型圧電素子の一実施例の(a)部
分切欠斜視図、(b)正断面図。
FIG. 1A is a partially cutaway perspective view and FIG. 1B is a front sectional view of an embodiment of a wave receiving type piezoelectric element according to the present invention.

【図2】図1に示す筒状圧電要素の拡大(a)平面図お
よび(b)正断面図。
FIG. 2 is an enlarged (a) plan view and (b) front sectional view of the cylindrical piezoelectric element shown in FIG.

【図3】本発明の受波型圧電素子の他の実施例の正断面
図。
FIG. 3 is a front sectional view of another embodiment of the wave receiving piezoelectric element of the present invention.

【図4】本発明の受波型圧電素子の他の実施例の正断面
図。
FIG. 4 is a front sectional view of another embodiment of the wave receiving piezoelectric element of the present invention.

【図5】本発明で用いる筒状圧電要素への賦形前のシー
ト状ポリマー系圧電要素の一例の模式断面図。
FIG. 5 is a schematic cross-sectional view of an example of a sheet-shaped polymer piezoelectric element before being shaped into a cylindrical piezoelectric element used in the present invention.

【図6】図5のシート状圧電要素の賦形による筒状圧電
要素の(a)平面図および(b)正面図。
6A is a plan view and FIG. 5B is a front view of a cylindrical piezoelectric element obtained by shaping the sheet piezoelectric element of FIG.

【図7】本発明で用いる筒状圧電要素への賦形前のシー
ト状ポリマー系圧電要素の他の例の模式断面図。
FIG. 7 is a schematic cross-sectional view of another example of a sheet-shaped polymer piezoelectric element before being shaped into a cylindrical piezoelectric element used in the present invention.

【図8】図5または図7のシート状圧電要素の賦形によ
る円筒渦巻き状の圧電要素の(a)平面図および(b)
正面図。
8 (a) is a plan view of a cylindrical spiral piezoelectric element obtained by shaping the sheet-like piezoelectric element of FIG. 5 or FIG. 7, and FIG.
Front view.

【図9】実施例において渦状断面を有する筒状圧電要素
の賦形に用いた金型の断面図。
FIG. 9 is a cross-sectional view of a mold used for shaping a cylindrical piezoelectric element having a spiral cross section in the embodiment.

【符号の説明】[Explanation of symbols]

1、11、21:筒状圧電要素 2、12:(筒状)圧電体 3a、3b、13a、13b:電極 4、5、14、15、24、25:剛性部材 6:剛性円筒 7:シール材 8、18:内部空間 10、20、30:受波型圧電素子 p:分極方向 sp:音圧 1, 11, 21: cylindrical piezoelectric element 2, 12: (cylindrical) piezoelectric body 3a, 3b, 13a, 13b: electrode 4, 5, 14, 15, 24, 25: rigid member 6: rigid cylinder 7: seal Material 8, 18: Internal space 10, 20, 30: Receiving piezoelectric element p: Polarization direction sp: Sound pressure

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−309799(JP,A) 米国特許5267223(US,A) (58)調査した分野(Int.Cl.7,DB名) H04R 17/00 330 G01S 7/521 H04R 1/44 330 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-2-309799 (JP, A) US Patent 5,267,223 (US, A) (58) Fields investigated (Int. Cl. 7 , DB name) H04R 17 / 00 330 G01S 7/521 H04R 1/44 330

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ある肉厚を挾む主たる二表面を構成する
外側表面および内側表面と、該二表面にほぼ直交して対
向する二側面とを有し、前記肉厚に相当する断面形状が
閉鎖環状、または渦状であり、全体形状が概ね筒状であ
る肉厚方向に分極された圧電体と、該二表面にそれぞれ
設けられた電極とからなる筒状圧電要素と;前記筒状圧
電体をその対向する二側面で挾持し、且つ該側面よりも
大面積の一対の剛性部材と;を有し、前記一対の剛性部
材の外表面に作用する音圧を前記圧電体の対向する二側
面間距離を変化させる応力として収束させるように構成
したことを特徴とする受波型圧電素子。
An outer surface and an inner surface constituting two main surfaces sandwiching a certain thickness, and two side surfaces substantially orthogonal to and opposed to the two surfaces, and a cross-sectional shape corresponding to the thickness is provided. A cylindrical piezoelectric element comprising a closed-circular or vortex-shaped, generally cylindrically-polarized piezoelectric body having a generally cylindrical shape, and electrodes provided on the two surfaces, respectively; And a pair of rigid members having a larger area than the side surfaces of the piezoelectric member, and applying a sound pressure acting on the outer surfaces of the pair of rigid members to the two opposite side surfaces of the piezoelectric body. A wave receiving type piezoelectric element configured to converge as a stress for changing an inter-distance.
【請求項2】 前記筒状圧電要素が、ある厚さを挾む主
たる二表面と該二表面にほぼ直交する側面を有し、且つ
分極方向が厚さ方向であるポリマー系である帯状圧電体
を、前記二表面にそれぞれ設けられた電極とともにある
軸のまわりに捲回して筒状あるいは渦巻状に賦形したも
のである請求項1に記載の受波型圧電素子。
2. A belt-shaped piezoelectric body made of a polymer, wherein the cylindrical piezoelectric element has two main surfaces sandwiching a certain thickness and side surfaces substantially orthogonal to the two surfaces, and the polarization direction is the thickness direction. 2. The wave receiving piezoelectric element according to claim 1, wherein the piezoelectric element is wound around a certain axis together with electrodes provided on the two surfaces and shaped into a cylindrical or spiral shape. 3.
【請求項3】 前記筒状圧電要素が、ある厚さを挾む主
たる二表面を構成する外側表面および内側表面と、該二
表面にほぼ直交する側面を有し、分極方向が厚さ方向で
あるセラミック系の筒状圧電体の前記二表面にそれぞれ
電極を設けてなる請求項1に記載の受波型圧電素子。
3. The cylindrical piezoelectric element has an outer surface and an inner surface constituting two main surfaces sandwiching a certain thickness, and a side surface substantially orthogonal to the two surfaces, and the polarization direction is the thickness direction. 2. The wave receiving piezoelectric element according to claim 1, wherein electrodes are provided on the two surfaces of a certain ceramic cylindrical piezoelectric body.
【請求項4】 前記一対の剛性部材の筒状圧電体挾持に
用いられない外方突出部の内表面により気密な内部空間
を区画・形成させ、該内部空間を真空とするか、気体ま
たは発泡樹脂のいずれかを充填してなる請求項1乃至3
のいずれかに記載の受波型圧電素子。
4. An airtight internal space is defined and formed by an inner surface of an outwardly protruding portion of the pair of rigid members, which is not used for holding a cylindrical piezoelectric body. 4. A resin filled with any one of the resins.
The piezoelectric element according to any one of the above.
【請求項5】 液体中を伝播する音波を受信するハイド
ロホンとして機能する請求項1乃至4のいずれかに記載
の受波型圧電素子。
5. The wave receiving piezoelectric element according to claim 1, which functions as a hydrophone that receives a sound wave propagating in a liquid.
【請求項6】 気体中を伝播する音波を受信するマイク
ロホンとして機能する請求項1乃至4のいずれかに記載
の受波型圧電素子。
6. The wave receiving piezoelectric element according to claim 1, which functions as a microphone that receives a sound wave propagating in a gas.
JP05108694A 1994-02-25 1994-02-25 Wave receiving piezoelectric element Expired - Fee Related JP3270616B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP05108694A JP3270616B2 (en) 1994-02-25 1994-02-25 Wave receiving piezoelectric element
EP95300269A EP0669169A3 (en) 1994-02-25 1995-01-17 Wave-receiving piezoelectric device.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05108694A JP3270616B2 (en) 1994-02-25 1994-02-25 Wave receiving piezoelectric element

Publications (2)

Publication Number Publication Date
JPH07240997A JPH07240997A (en) 1995-09-12
JP3270616B2 true JP3270616B2 (en) 2002-04-02

Family

ID=12877016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05108694A Expired - Fee Related JP3270616B2 (en) 1994-02-25 1994-02-25 Wave receiving piezoelectric element

Country Status (2)

Country Link
EP (1) EP0669169A3 (en)
JP (1) JP3270616B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6111818A (en) * 1997-04-28 2000-08-29 Materials Systems Inc. Low voltage piezoelectric actuator
AU6092400A (en) * 1999-08-03 2001-02-19 Virtual Ink Corporation Transcription system with ceramic transducer
US7170822B2 (en) 2004-10-07 2007-01-30 Undersea Systems International, Inc. Laminated piezoelectric transducer and method of manufacturing the same
US7295494B2 (en) 2004-11-04 2007-11-13 Exxonmobil Upstream Research Company Diamagnetic current response transducer for sensing pressure gradient in a fluid medium
EP1819191B1 (en) * 2005-12-14 2010-09-15 Undersea Systems International, Inc. Dba Ocean Technology Systems Laminated piezoelectric transducer
WO2012001901A1 (en) * 2010-06-30 2012-01-05 日本電気株式会社 Vibration device
US11079506B2 (en) 2016-12-16 2021-08-03 Pgs Geophysical As Multicomponent streamer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3215977A (en) * 1960-07-27 1965-11-02 Clevite Corp Acoustic transducer
FR1299547A (en) * 1961-05-04 1962-07-27 Csf New compact acoustic vibrator
US3266011A (en) * 1961-12-18 1966-08-09 Dynamics Corp America Hydrophone
US3715713A (en) * 1970-02-19 1973-02-06 Dynamics Corp Massa Div Pressure gradient transducer
FR2709395A1 (en) * 1985-03-22 1995-03-03 Sintra Hydrophone operating in hydrostatic mode

Also Published As

Publication number Publication date
JPH07240997A (en) 1995-09-12
EP0669169A2 (en) 1995-08-30
EP0669169A3 (en) 1996-08-07

Similar Documents

Publication Publication Date Title
Kressmann New piezoelectric polymer for air-borne and water-borne sound transducers
US9621997B2 (en) Electroacoustic transduction film
US10038134B2 (en) Electroacoustic transduction film and manufacturing method of electroacoustic transduction film
US6411014B1 (en) Cylindrical transducer apparatus
US3798473A (en) Polymer type electroacoustic transducer element
US10681473B2 (en) High performance sealed-gap capacitive microphone
US9723412B2 (en) Speaker system
JPS6132879B2 (en)
US5570428A (en) Transducer assembly
JP7355819B2 (en) piezoelectric film
JP3270616B2 (en) Wave receiving piezoelectric element
WO1991010334A1 (en) Acoustic transducer and method of making the same
JP3243047B2 (en) Wave receiving piezoelectric element
EP4149119A1 (en) Polymer piezoelectric film
EP4102857A1 (en) Piezoelectric film
JP6297365B2 (en) Wave-receiving piezoelectric element
US10757510B2 (en) High performance sealed-gap capacitive microphone with various gap geometries
JP3079175B2 (en) Piezoelectric element and hydrophone using the same
JP3348902B2 (en) Wave receiving piezoelectric element
JP3301812B2 (en) Wave receiving piezoelectric element
Ren et al. Planar microphone based on piezoelectric electrospun poly (γ-benzyl-α, L-glutamate) nanofibers
JPS5841000A (en) Condenser type electroacoustic converter with polarized solid dielectric
JPS6130899A (en) Piezoelectric speaker
JP6514079B2 (en) Sound generator
JP3121416B2 (en) Flexible piezoelectric element

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090118

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090118

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100118

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees