JP3264263B2 - Overlay accuracy measuring device and measuring method - Google Patents

Overlay accuracy measuring device and measuring method

Info

Publication number
JP3264263B2
JP3264263B2 JP04780799A JP4780799A JP3264263B2 JP 3264263 B2 JP3264263 B2 JP 3264263B2 JP 04780799 A JP04780799 A JP 04780799A JP 4780799 A JP4780799 A JP 4780799A JP 3264263 B2 JP3264263 B2 JP 3264263B2
Authority
JP
Japan
Prior art keywords
overlay accuracy
wafer
mark
focus position
peak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04780799A
Other languages
Japanese (ja)
Other versions
JP2000241113A (en
Inventor
正晴 瀧澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12785648&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3264263(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP04780799A priority Critical patent/JP3264263B2/en
Publication of JP2000241113A publication Critical patent/JP2000241113A/en
Application granted granted Critical
Publication of JP3264263B2 publication Critical patent/JP3264263B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70633Overlay, i.e. relative alignment between patterns printed by separate exposures in different layers, or in the same layer in multiple exposures or stitching

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、フォトリソグラ
フィープロセスにおいて光学的に重ね合わせ精度を測定
する重ね合わせ精度測定装置および測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and a method for measuring overlay accuracy optically in a photolithography process.

【0002】[0002]

【従来の技術】半導体集積回路装置の製造時におけるフ
ォトリソグラフィープロセスでは、パターンルールの微
細化に伴い、重ね合わせ精度の向上がますます重要とな
ってきている。従来の重ね合わせ精度測定装置では、測
定マークからマーク波形を得るための光学系に通常の光
学顕微鏡とCCDカメラの組み合わせを使用していた。
図6は、従来の重ね合わせ精度測定装置を示す構成図で
ある。この光学系は、焦点深度が極めて深く、例えばマ
ーク側壁の底部のみに焦点を合わせることができない。
2. Description of the Related Art In a photolithography process at the time of manufacturing a semiconductor integrated circuit device, improvement in overlay accuracy has become more and more important with the miniaturization of pattern rules. In a conventional overlay accuracy measuring apparatus, a combination of a normal optical microscope and a CCD camera is used for an optical system for obtaining a mark waveform from a measurement mark.
FIG. 6 is a configuration diagram showing a conventional overlay accuracy measuring device. This optical system has a very large depth of focus, and cannot focus on, for example, only the bottom of the mark side wall.

【0003】[0003]

【発明が解決しようとする課題】上述したように、従来
の重ね合わせ精度測定装置では、光学系に通常の光学顕
微鏡とCCDカメラの組み合わせを使用していたため、
マーク側壁の底部のみに焦点を合わせることができなか
った。
As described above, in the conventional overlay accuracy measuring device, a combination of a normal optical microscope and a CCD camera is used for an optical system.
It was not possible to focus only on the bottom of the mark side wall.

【0004】また、特にホール工程では、レジストの断
面形状が露光機レンズのコマ収差の影響を強く受けるた
め、図7に示すように、測定マークのレジスト3の側壁
も非対称となる。
In particular, in the hole process, since the cross-sectional shape of the resist is strongly affected by the coma aberration of the exposure machine lens, the side wall of the resist 3 of the measurement mark is also asymmetric as shown in FIG.

【0005】従って、マーク波形のピーク位置が、測定
マークの側壁形状の非対称性の影響を受けてしまい、重
ね合わせ測定時に、最大で数十nmの測定誤差が生じて
いた。
[0005] Therefore, the peak position of the mark waveform is affected by the asymmetry of the side wall shape of the measurement mark, and a measurement error of several tens nm at the maximum occurs during overlay measurement.

【0006】この発明の目的は、重ね合わせの測定精度
を向上させることのできる重ね合わせ精度測定装置およ
び測定方法を提供することにある。
An object of the present invention is to provide an overlay accuracy measuring apparatus and a measuring method capable of improving the overlay measurement accuracy.

【0007】[0007]

【課題を解決するための手段】この発明は、測定マーク
のマーク波形を得るための光学系に共焦点走査法を用い
た光学顕微鏡とCCDカメラの組み合わせを用いた重ね
合わせ精度測定装置であって、ウェハの表面で反射され
た光を、対物レンズを経て、ニプコウディスク上のピン
ホールで結像して、ウェハ上の焦点以外の位置から反射
された光を遮断し、ピンホールで結像した光を、イメー
ジレンズを経た後に前記CCDカメラのイメージセンサ
上で再結像し、画像データとして取り込むことを特徴と
する。
SUMMARY OF THE INVENTION The present invention relates to a superposition accuracy measuring apparatus using a combination of an optical microscope using a confocal scanning method and a CCD camera as an optical system for obtaining a mark waveform of a measurement mark. The light reflected from the surface of the wafer passes through the objective lens and forms an image at the pinhole on the Nipkow disk. The light reflected from a position other than the focal point on the wafer is blocked, and the image is formed at the pinhole. After passing through an image lens, the formed light is re-imaged on the image sensor of the CCD camera, and is taken in as image data.

【0008】また、この発明の重ね合わせ精度測定方法
は、前記重ね合わせ精度測定装置を用い、おおよその焦
点位置を求めた後に、CCDカメラで得られるマーク波
形のピーク強度またはピーク位置を参照しながら焦点位
置を移動させ、真の焦点位置を定義して重ね合わせ精度
の測定を行う。
Further, according to the overlay accuracy measuring method of the present invention, an approximate focus position is obtained using the overlay accuracy measuring device, and then the peak intensity or peak position of a mark waveform obtained by a CCD camera is referred to. The focus position is moved, the true focus position is defined, and the overlay accuracy is measured.

【0009】この発明では、マーク側壁の任意の位置の
みに焦点を合わせることができるため、測定マークの側
壁形状非対称性による測定精度の悪化を防ぐことができ
る。
According to the present invention, it is possible to focus only on an arbitrary position of the mark side wall, so that it is possible to prevent deterioration of measurement accuracy due to asymmetry of the measurement mark side wall shape.

【0010】[0010]

【発明の実施の形態】次に、この発明の実施の形態につ
いて図面を参照して説明する。
Next, an embodiment of the present invention will be described with reference to the drawings.

【0011】図1は、この発明の重ね合わせ精度測定装
置の実施の形態を示す構成図である。マーク波形を得る
ための光学系には、共焦点走査法を用いた光学顕微鏡と
CCDカメラの組み合わせが用いられる。
FIG. 1 is a block diagram showing an embodiment of an overlay accuracy measuring apparatus according to the present invention. As an optical system for obtaining a mark waveform, a combination of an optical microscope using a confocal scanning method and a CCD camera is used.

【0012】水銀ランプなどの白色またはアルゴンレー
ザなどの単色の照明光源21から照射された照明光は、
ダイクロイックミラー24、ピンホールが渦巻き状に配
置された走査板であるニプコウディスク(Nipkow
Disk)27、対物レンズ23を経由してウェハ2
2上に導かれる。
Illumination light emitted from a white or monochromatic illumination light source 21 such as a mercury lamp or an argon laser is
The dichroic mirror 24 is a scanning plate having pinholes arranged in a spiral shape.
Disk) 27, the wafer 2 via the objective lens 23
Guided on 2.

【0013】ウェハ22は、ウェハ22と平行方向およ
び垂直方向に可動であるウェハステージ28に固定され
ている。
The wafer 22 is fixed to a wafer stage 28 which is movable in a direction parallel to and perpendicular to the wafer 22.

【0014】ウェハ22の表面で反射された光は、対物
レンズ23を経て、ニプコウディスク27上のピンホー
ルで結像する。このときウェハ22上の焦点以外の位置
から反射された光が遮断されるため、この実施の形態に
よる重ね合わせ精度測定装置では、z軸方向(基板に対
して垂直方向)に対し、最高5nm程度の解像度が得ら
れる。実際には、ピンホールを通過する際の光強度低下
を補い、かつ2次元の観察が可能なように、ニプコウデ
ィスク27には複数のピンホールが開けられており、高
速で回転している。
The light reflected on the surface of the wafer 22 passes through the objective lens 23 and forms an image on a pinhole on the Nipko disk 27. At this time, since the light reflected from a position other than the focal point on the wafer 22 is blocked, the overlay accuracy measuring apparatus according to this embodiment has a maximum of about 5 nm in the z-axis direction (perpendicular to the substrate). Is obtained. Actually, a plurality of pinholes are formed in the Nipko disk 27 so as to compensate for a decrease in light intensity when passing through the pinholes and to enable two-dimensional observation, and the Nipko disk 27 is rotating at high speed. .

【0015】ピンホールで結像した光は、イメージレン
ズ25を経た後にCCDイメージセンサ26上で再結像
し、画像データとして取り込まれる。
The light imaged by the pinhole passes through the image lens 25 and then forms an image again on the CCD image sensor 26, and is captured as image data.

【0016】以上のような共焦点走査法を用いた光学顕
微鏡とCCDカメラの組み合わせを用いることにより、
z軸方向(基板に対して垂直方向)に対し、最高5nm
程度の解像度が得られる。従って、例えばマーク側壁の
底部のみに焦点を合わせることが可能となるため、測定
マークの側壁形状非対称性による測定精度の悪化を防ぐ
ことができる。
By using a combination of an optical microscope and a CCD camera using the above confocal scanning method,
Up to 5 nm in z-axis direction (perpendicular to substrate)
A degree of resolution is obtained. Therefore, for example, since it is possible to focus only on the bottom of the mark side wall, it is possible to prevent the measurement accuracy from being deteriorated due to the asymmetry of the measurement mark side wall shape.

【0017】次に、図1に示す重ね合わせ精度測定装置
を用いて、測定マークの任意の位置に焦点を合わせ込む
第1の方法について説明する。
Next, a description will be given of a first method for focusing on an arbitrary position of a measurement mark using the overlay accuracy measuring device shown in FIG.

【0018】図2は、測定マークの断面形状とマーク波
形との関係を示す図であり、図3は、レーザで求めたお
およその焦点位置近傍でのピーク強度の変化の例を示す
図である。一例として、図2のマーク底部6に焦点を合
わせ込む場合について説明する。
FIG. 2 is a diagram showing the relationship between the cross-sectional shape of the measurement mark and the mark waveform, and FIG. 3 is a diagram showing an example of a change in peak intensity near the approximate focal position obtained by the laser. . As an example, a case where the focus is focused on the mark bottom 6 in FIG. 2 will be described.

【0019】まず、ウェハステージ28をz軸方向に上
下動させ、おおよその焦点位置をレーザ光などを用いて
求める。続いて、この焦点位置近傍を中心とし、CCD
カメラから得られるピーク強度を参照しながら、ウェハ
ステージ28をあらかじめ設定された範囲について、再
度z軸方向に上下動させる。このとき得られるウェハス
テージのz軸位置とピーク強度との関係をもとに、真の
焦点位置(マーク底部)を定義し、重ね合わせ精度の測
定を行う。
First, the wafer stage 28 is moved up and down in the z-axis direction, and an approximate focus position is obtained using a laser beam or the like. Then, focusing on the vicinity of the focal position, the CCD
The wafer stage 28 is moved up and down again in the z-axis direction within a preset range with reference to the peak intensity obtained from the camera. Based on the relationship between the z-axis position of the wafer stage obtained at this time and the peak intensity, the true focus position (the bottom of the mark) is defined, and the overlay accuracy is measured.

【0020】例えば、測定マーク2から得られるマーク
波形1のピーク4とピーク5のピーク強度に注目してみ
る。図3は、レーザで求めたおおよその焦点位置近傍で
のピーク強度の変化の例を表しているが、双方のピーク
強度とも、ある点を境に線形領域から非線形領域に変化
する。焦点位置がレジスト3の側壁にある場合は、z軸
位置を変化させてもピーク強度には大きな影響はない
(線形領域)。
For example, attention is paid to the peak intensities of the peaks 4 and 5 of the mark waveform 1 obtained from the measurement mark 2. FIG. 3 shows an example of a change in peak intensity near the approximate focal position obtained by the laser. Both peak intensities change from a linear region to a non-linear region at a certain point. When the focal position is on the side wall of the resist 3, changing the z-axis position does not significantly affect the peak intensity (linear region).

【0021】しかし、焦点位置をレジスト3の底部か
ら、さらにウェハ内部側に焦点位置が移動するようにz
軸位置を変化させると、焦点位置にレジスト3が存在し
なくなるため、ピーク強度が急激に減衰(非線形領域)
し、ある位置からはピークが消失する。したがって、線
形領域と非線形領域の境界にz軸を定め、ここを真の焦
点位置とすることにより、レジスト3の底部(=マーク
底部6)だけに正確に焦点を合わせることができる。
However, the focal position is set so that the focal position moves from the bottom of the resist 3 to the inside of the wafer.
When the axial position is changed, the resist 3 does not exist at the focal position, so that the peak intensity is rapidly attenuated (non-linear region).
However, the peak disappears from a certain position. Therefore, by defining the z-axis at the boundary between the linear region and the non-linear region and setting this as the true focal position, it is possible to accurately focus only on the bottom of the resist 3 (= the mark bottom 6).

【0022】したがって、レジスト3の側壁の状態とは
無関係にレジスト底部の位置情報を得ることが可能とな
るため、レジストの側壁形状非対称性による測定精度の
悪化を抑制することができる。
Therefore, it is possible to obtain positional information on the bottom of the resist irrespective of the state of the side wall of the resist 3, and it is possible to suppress deterioration in measurement accuracy due to the asymmetry of the side wall shape of the resist.

【0023】以上述べた方法は、マーク底部のみに焦点
を合わせる場合であるが、同様にマーク上部の位置情報
をもとに重ね合わせ検査を行うことや、マーク底部もし
くはマーク上部から任意の距離だけオフセットさせた場
所での位置情報をもとに重ね合わせ精度の測定を行うこ
とも可能であることは明白である。
The above-described method is for focusing only on the bottom of the mark. Similarly, the overlay inspection is performed based on the positional information on the top of the mark, or the overlay is inspected at an arbitrary distance from the bottom of the mark or the top of the mark. Obviously, it is also possible to measure the overlay accuracy based on the position information at the offset location.

【0024】上述のように、この方法では、測定マーク
の任意の位置のみに、焦点を合わせることができるた
め、測定マークの側壁形状非対称性による測定精度の悪
化を抑制することができる。
As described above, according to this method, it is possible to focus on only an arbitrary position of the measurement mark, so that it is possible to suppress deterioration of measurement accuracy due to asymmetry of the side wall shape of the measurement mark.

【0025】次に、測定マークの任意の位置に焦点を合
わせ込む第2の方法について説明する。図4は、測定マ
ークの断面形状とマーク波形との関係を示す図であり、
図5は、レーザで求めたおおよその焦点位置近傍でのピ
ーク位置の変化の例を表す図である。
Next, a second method for focusing on an arbitrary position of the measurement mark will be described. FIG. 4 is a diagram illustrating a relationship between a cross-sectional shape of a measurement mark and a mark waveform.
FIG. 5 is a diagram illustrating an example of a change in the peak position near the approximate focal position obtained by the laser.

【0026】上述した第1の方法ではピーク強度をもと
に真の焦点位置を定めたが、第2の方法は、ピーク強度
の代りにピーク位置をもとに真の焦点位置を定めるもの
である。
In the first method described above, the true focus position is determined based on the peak intensity. In the second method, the true focus position is determined based on the peak position instead of the peak intensity. is there.

【0027】重ね合わせ精度測定装置は、第1の方法と
同様に図1に示した共焦点走査法を用いた光学顕微鏡と
CCDカメラの組み合わせたものを用いる。
As in the first method, a combination of an optical microscope and a CCD camera using the confocal scanning method shown in FIG.

【0028】まず、ウェハステージ28をz軸方向に上
下動させ、おおよその焦点位置をレーザ光などを用いて
求め、この焦点位置近傍を中心とし、CCDカメラから
得られるピーク位置を参照しながら、ウェハステージ2
8をあらかじめ設定された範囲について、再度z軸方向
に上下動させる。このとき得られるウェハステージのz
軸位置と、ピーク位置との関係をもとに真の焦点位置
(レジスト53の底部付近で、かつ裾引き形状の影響を
受けることのない位置)を定義し、重ね合わせ精度の測
定を行う。
First, the wafer stage 28 is moved up and down in the z-axis direction, and an approximate focus position is obtained by using a laser beam or the like. Wafer stage 2
8 is moved up and down again in the z-axis direction within a preset range. The z of the wafer stage obtained at this time
Based on the relationship between the axial position and the peak position, a true focus position (a position near the bottom of the resist 53 and not affected by the footing shape) is defined, and the overlay accuracy is measured.

【0029】例えば、図4の測定マーク52から得られ
るマーク波形51のピーク54とピーク55のピーク位
置に注目してみる。図5は、レーザで求めたおおよその
焦点位置近傍でのピーク位置の変化の例を表している
が、双方のピーク位置ともに、ある点を境に線形領域か
ら非線形領域に変化する。これは、線形領域では焦点位
置がレジスト53の側壁にあるが、非線形領域ではレジ
スト底部付近に焦点位置があることに起因する。
For example, attention is paid to the peak positions of the peak 54 and the peak 55 of the mark waveform 51 obtained from the measurement mark 52 in FIG. FIG. 5 shows an example of a change in the peak position near the approximate focal position obtained by the laser. Both peak positions change from a linear region to a non-linear region at a certain point. This is because the focal position is on the side wall of the resist 53 in the linear region, but is located near the bottom of the resist in the non-linear region.

【0030】焦点位置がレジスト53の側壁にある場合
は、z軸位置を変化させてもピーク位置の変化は比較的
小さい(線形領域)。しかし、焦点位置がレジスト53
の底部近傍になるようにz軸位置を変化させると、レジ
スト53底部の裾引き形状に影響されて、ピーク位置が
大きく変化する(非線形領域)。
When the focal position is on the side wall of the resist 53, the change in the peak position is relatively small even if the z-axis position is changed (linear region). However, if the focal position is
When the z-axis position is changed so as to be near the bottom of the resist 53, the peak position greatly changes due to the bottoming shape of the bottom of the resist 53 (non-linear region).

【0031】ここで、線形領域と非線形領域の境界にz
軸を定め、ここを真の焦点位置とすることにより、レジ
スト53の底部(=マーク底部56)付近で、かつ裾引
き形状の影響を受けることのない位置に正確に焦点を合
わせることができる。
Here, z is defined at the boundary between the linear region and the nonlinear region.
By determining the axis and setting this as the true focal position, it is possible to accurately focus on a position near the bottom of the resist 53 (= the mark bottom 56) and not affected by the footing shape.

【0032】以上のように第2の方法は、レジスト53
の側壁の非対称性や裾引き形状とは無関係にレジストの
位置情報を正確に得ることが可能となるため、これらに
起因する側壁形状非対称性および底部の裾引き形状によ
る測定精度の悪化を抑制することができる。したがっ
て、第2の方法は、特に測定マークの側壁が非対称で、
かつマーク底部近傍が裾引き形状となっている場合に有
効である。
As described above, the second method uses the resist 53
It is possible to accurately obtain resist position information irrespective of the asymmetry of the side wall and the footing shape of the resist, thereby suppressing deterioration in measurement accuracy due to the asymmetry of the sidewall shape and the footing shape of the bottom due to these. be able to. Therefore, the second method is that the side wall of the measurement mark is particularly asymmetric,
This is effective when the bottom of the mark has a bottomed shape.

【0033】[0033]

【発明の効果】以上説明したように、この発明は、測定
マークの任意の位置のみに、焦点を合わせることができ
るため、測定マークの側壁形状非対称性による測定精度
の悪化を抑制することができる。
As described above, according to the present invention, it is possible to focus on only an arbitrary position of the measurement mark, and thus it is possible to suppress the deterioration of the measurement accuracy due to the side wall shape asymmetry of the measurement mark. .

【0034】また、この発明は、測定マークの側壁の非
対称性や裾引き形状とは無関係にレジストの位置情報を
正確に得ることが可能となるため、これらに起因する側
壁形状非対称性および底部の裾引き形状による測定精度
の悪化を抑制することができる。
Further, according to the present invention, it is possible to accurately obtain resist position information irrespective of the asymmetry of the side wall of the measurement mark or the footing shape. Deterioration of measurement accuracy due to the skirting shape can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の重ね合わせ精度測定装置の実施の形
態を示す構成図である。
FIG. 1 is a configuration diagram showing an embodiment of an overlay accuracy measuring device according to the present invention.

【図2】測定マークの断面形状とマーク波形との関係を
示す図である。
FIG. 2 is a diagram illustrating a relationship between a cross-sectional shape of a measurement mark and a mark waveform.

【図3】レーザで求めたおおよその焦点位置近傍でのピ
ーク強度の変化の例を示す図である。
FIG. 3 is a diagram illustrating an example of a change in peak intensity near an approximate focal position obtained by a laser.

【図4】測定マークの断面形状とマーク波形との関係を
示す図である。
FIG. 4 is a diagram showing a relationship between a cross-sectional shape of a measurement mark and a mark waveform.

【図5】レーザで求めたおおよその焦点位置近傍でのピ
ーク位置の変化の例を表す図である。
FIG. 5 is a diagram illustrating an example of a change in a peak position near an approximate focal position obtained by a laser.

【図6】従来の重ね合わせ精度測定装置を示す構成図で
ある。
FIG. 6 is a configuration diagram showing a conventional overlay accuracy measuring device.

【図7】測定マークの断面形状とマーク波形との関係を
示す図である。
FIG. 7 is a diagram showing a relationship between a cross-sectional shape of a measurement mark and a mark waveform.

【符号の説明】[Explanation of symbols]

1,51,71 マーク波形 2,52,72 測定マーク 3,53,73 レジスト 4,5,54,55 ピーク 6,56 マーク底部 21,61 照明光源 22,62 ウェハ 23,63 対物レンズ 24,64 ダイクロイックミラー 25,65 イメージレンズ 26,66 CCDイメージセンサ 27 ニプコウディスク 28 ウェハステージ 1, 51, 71 Mark waveform 2, 52, 72 Measurement mark 3, 53, 73 Resist 4, 5, 54, 55 Peak 6, 56 Mark bottom 21, 61 Illumination light source 22, 62 Wafer 23, 63 Objective lens 24, 64 Dichroic mirror 25,65 Image lens 26,66 CCD image sensor 27 Nipko disk 28 Wafer stage

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】測定マークのマーク波形を得るための光学
系に共焦点走査法を用いた光学顕微鏡とCCDカメラの
組み合わせを用いた重ね合わせ精度測定装置であって、 ウェハの表面で反射された光を、対物レンズを経て、ニ
プコウディスク上のピンホールで結像して、ウェハ上の
焦点以外の位置から反射された光を遮断し、ピンホール
で結像した光を、イメージレンズを経た後に前記CCD
カメラのイメージセンサ上で再結像し、画像データとし
て取り込むことを特徴とする重ね合わせ精度測定装置。
A superposition accuracy measuring apparatus using a combination of an optical microscope and a CCD camera using a confocal scanning method as an optical system for obtaining a mark waveform of a measurement mark, the apparatus being reflected on a surface of a wafer. The light passes through the objective lens, forms an image at a pinhole on the Nipko disk, blocks light reflected from a position other than the focal point on the wafer, and passes the image formed at the pinhole through the image lens. Later the CCD
An overlay accuracy measuring device characterized by re-imaging on an image sensor of a camera and taking in as image data.
【請求項2】請求項1に記載の重ね合わせ精度測定装置
を用い、おおよその焦点位置を求めた後に、CCDカメ
ラで得られるマーク波形のピーク強度を参照しながら焦
点位置を移動させ、真の焦点位置を定義して重ね合わせ
精度の測定を行うことを特徴とする重ね合わせ精度測定
方法。
2. An approximate focus position is obtained by using the overlay accuracy measuring apparatus according to claim 1, and then the focus position is moved while referring to a peak intensity of a mark waveform obtained by a CCD camera. A method for measuring overlay accuracy, wherein a focus position is defined and overlay accuracy is measured.
【請求項3】前記ウェハに対して垂直方向に変化させて
もピーク強度の変化が比較的小さい線形領域と、前記ウ
ェハに対して垂直方向に変化させるとピーク強度が大き
く変化する非線形領域との境界を前記真の焦点位置とす
ることを特徴とする請求項2に記載の重ね合わせ精度測
定方法。
3. A linear region in which a change in peak intensity is relatively small even when changed in a direction perpendicular to the wafer, and a non-linear region in which peak intensity changes greatly when changed in a direction perpendicular to the wafer. 3. The method according to claim 2, wherein a boundary is defined as the true focal position.
【請求項4】請求項1に記載の重ね合わせ精度測定装置
を用い、おおよその焦点位置を求めた後に、CCDカメ
ラで得られるマーク波形のピーク位置を参照しながら焦
点位置を移動させ、真の焦点位置を定義して重ね合わせ
精度の測定を行うことを特徴とする重ね合わせ精度測定
方法。
4. An approximate focus position is obtained by using the overlay accuracy measuring device according to claim 1, and then the focus position is moved while referring to a peak position of a mark waveform obtained by a CCD camera to obtain a true focus position. A method for measuring overlay accuracy, wherein a focus position is defined and overlay accuracy is measured.
【請求項5】前記ウェハに対して垂直方向に変化させて
もピーク位置の変化が比較的小さい線形領域と、前記ウ
ェハに対して垂直方向に変化させるとピーク位置が大き
く変化する非線形領域との境界を前記真の焦点位置とす
ることを特徴とする請求項4に記載の重ね合わせ精度測
定方法。
5. A linear region in which a change in peak position is relatively small even when changed in a direction perpendicular to the wafer, and a non-linear region in which a peak position changes greatly when changed in a direction perpendicular to the wafer. The method according to claim 4, wherein a boundary is defined as the true focal position.
JP04780799A 1999-02-25 1999-02-25 Overlay accuracy measuring device and measuring method Expired - Fee Related JP3264263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04780799A JP3264263B2 (en) 1999-02-25 1999-02-25 Overlay accuracy measuring device and measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04780799A JP3264263B2 (en) 1999-02-25 1999-02-25 Overlay accuracy measuring device and measuring method

Publications (2)

Publication Number Publication Date
JP2000241113A JP2000241113A (en) 2000-09-08
JP3264263B2 true JP3264263B2 (en) 2002-03-11

Family

ID=12785648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04780799A Expired - Fee Related JP3264263B2 (en) 1999-02-25 1999-02-25 Overlay accuracy measuring device and measuring method

Country Status (1)

Country Link
JP (1) JP3264263B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9102039B2 (en) 2012-12-31 2015-08-11 Saint-Gobain Abrasives, Inc. Bonded abrasive article and method of grinding
US9676077B2 (en) 2010-09-03 2017-06-13 Saint-Gobain Abrasives, Inc. Bonded abrasive article and method of forming
US9833877B2 (en) 2013-03-31 2017-12-05 Saint-Gobain Abrasives, Inc. Bonded abrasive article and method of grinding

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2017943A (en) 2015-12-23 2017-06-28 Asml Netherlands Bv Metrology methods, metrology apparatus and device manufacturing method
CN109884020B (en) * 2018-12-19 2021-07-09 长春理工大学 Nondestructive measurement method for micro-nano dielectric waveguide or step-type structure side wall angle by using confocal laser scanning microscope system
WO2024071532A1 (en) * 2022-09-29 2024-04-04 주식회사 고영테크놀러지 Three-dimensional shape inspection device and three-dimensional shape inspection method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9676077B2 (en) 2010-09-03 2017-06-13 Saint-Gobain Abrasives, Inc. Bonded abrasive article and method of forming
US10377017B2 (en) 2010-09-03 2019-08-13 Saint-Gobain Abrasives, Inc. Bonded abrasive article and method of forming
US9102039B2 (en) 2012-12-31 2015-08-11 Saint-Gobain Abrasives, Inc. Bonded abrasive article and method of grinding
US10377016B2 (en) 2012-12-31 2019-08-13 Saint-Gobain Abrasives, Inc. Bonded abrasive article and method of grinding
US9833877B2 (en) 2013-03-31 2017-12-05 Saint-Gobain Abrasives, Inc. Bonded abrasive article and method of grinding
US10946499B2 (en) 2013-03-31 2021-03-16 Saint-Gobain Abrasives, Inc. Bonded abrasive article and method of grinding

Also Published As

Publication number Publication date
JP2000241113A (en) 2000-09-08

Similar Documents

Publication Publication Date Title
JP4130531B2 (en) Apparatus and method for measuring structure on transparent substrate
US7127098B2 (en) Image detection method and its apparatus and defect detection method and its apparatus
JP3903889B2 (en) Defect inspection method and apparatus, and imaging method and apparatus
JP2530081B2 (en) Mask inspection equipment
JP2008275612A (en) Device equipped with high resolution measurement structure on substrate for manufacturing semiconductor, and use of aperture in measuring device
JP6595517B2 (en) Lithographic apparatus, device manufacturing method, and associated data processing apparatus and computer program product
JP2012078164A (en) Pattern inspection device
JP3211491B2 (en) Projection exposure apparatus and semiconductor manufacturing method and apparatus using the same
JP2008152065A (en) Focus control method
JP2010121960A (en) Measuring device and method of measuring subject
JP3264263B2 (en) Overlay accuracy measuring device and measuring method
CN117491285A (en) Image definition focusing-based method and device
JP2002231616A (en) Instrument and method for measuring position aligner and method of exposure, and method of manufacturing device
JP2002006226A (en) Inspecting device
JP2016090444A (en) Measurement device, lithography device, and article manufacturing method
JP3125534B2 (en) Exposure apparatus and method of manufacturing semiconductor chip using the same
JP2022531800A (en) Autofocus method for imaging devices
JP5261891B2 (en) Alignment mark and position measurement method
JP2011049400A (en) Position detector, exposure device and manufacturing method of device
JP2000146528A (en) Method for measuring optical aberration of positional deviation inspecting device and method for inspecting positional deviation
JP3287352B2 (en) Exposure apparatus and method of manufacturing semiconductor chip using the same
JP2005055217A (en) Method for measuring height
JP2004281904A (en) Position measuring apparatus, exposure apparatus, and manufacturing method of device
JP4214555B2 (en) Pattern position measuring device
JP4207689B2 (en) Misalignment measuring device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees