JP3260497B2 - Superconducting magnet for MRI equipment - Google Patents

Superconducting magnet for MRI equipment

Info

Publication number
JP3260497B2
JP3260497B2 JP18485893A JP18485893A JP3260497B2 JP 3260497 B2 JP3260497 B2 JP 3260497B2 JP 18485893 A JP18485893 A JP 18485893A JP 18485893 A JP18485893 A JP 18485893A JP 3260497 B2 JP3260497 B2 JP 3260497B2
Authority
JP
Japan
Prior art keywords
radiation shield
superconducting magnet
heat
plate
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18485893A
Other languages
Japanese (ja)
Other versions
JPH0745423A (en
Inventor
克時 佐々木
善康 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP18485893A priority Critical patent/JP3260497B2/en
Publication of JPH0745423A publication Critical patent/JPH0745423A/en
Application granted granted Critical
Publication of JP3260497B2 publication Critical patent/JP3260497B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、冷凍機により輻射シー
ルドを冷却してなるMRI装置用の超電導磁石に係り、
特に輻射シールドの温度を下げて液体ヘリウムの消費量
を低減すると共に、良好なMRI画像が得られるように
した小形でかつ安価なMRI装置用超電導磁石に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting magnet for an MRI apparatus in which a radiation shield is cooled by a refrigerator.
In particular, the present invention relates to a small and inexpensive superconducting magnet for an MRI apparatus capable of lowering the temperature of a radiation shield to reduce the consumption of liquid helium and obtaining a good MRI image.

【0002】[0002]

【従来の技術】図5は、この種の従来のMRI装置用超
電導磁石の全体組立構成例を示す断面図である。図5に
おいて、MRI装置用超電導磁石は、真空容器1と、真
空容器1の内部に収納された第1の輻射シールド2a、
第2の輻射シールド2b、およびヘリウム容器3と、ヘ
リウム容器3の内部に収納された超電導コイル4と、真
空容器1の外部に設置された冷凍機5と、冷凍機5と第
1の輻射シールド2aおよび第2の輻射シールド2bと
をそれぞれ結合する第1の伝熱板6aおよび第2の伝熱
板6bと、ヘリウム容器3の内部に収容された液体ヘリ
ウム7とから構成されている。
2. Description of the Related Art FIG. 5 is a cross-sectional view showing an example of the overall assembly of a conventional superconducting magnet for an MRI apparatus of this kind. In FIG. 5, a superconducting magnet for an MRI apparatus includes a vacuum vessel 1, a first radiation shield 2a housed inside the vacuum vessel 1,
A second radiation shield 2b, a helium container 3, a superconducting coil 4 housed inside the helium container 3, a refrigerator 5 installed outside the vacuum container 1, a refrigerator 5 and the first radiation shield The helium container 3 includes a first heat transfer plate 6a and a second heat transfer plate 6b for connecting the second radiation shield 2b and the second radiation shield 2b, respectively, and a liquid helium 7 accommodated in the helium container 3.

【0003】第1の輻射シールド2aおよび第2の輻射
シールド2bは、冷凍機5と、第1の伝熱板6aおよび
第2の伝熱板6bを介して熱的結合がなされており、冷
却されている。
[0003] The first radiation shield 2a and the second radiation shield 2b are thermally coupled to the refrigerator 5 through the first heat transfer plate 6a and the second heat transfer plate 6b. Have been.

【0004】すなわち、各輻射シールド2a,2bの定
常温度は、第1の輻射シールド2aが60k 〜80k
第2の輻射シールド2bが15k 〜20k に冷却され
る。しかしながら、このようなMRI装置用超電導磁石
では、液体ヘリウム7の消費量が0.02l/h以上と
なり、液体ヘリウム7の消費量と液体ヘリウム7の注液
間隔の低減化、および超電導磁石のコンパクト化を図る
上で、大きな支障となっている。
That is, the steady temperature of each of the radiation shields 2a and 2b is 60 k to 80 k for the first radiation shield 2 a,
Second radiation shield 2b is cooled to 15 k to 20 k. However, in such a superconducting magnet for an MRI apparatus, the consumption of the liquid helium 7 is 0.02 l / h or more, the consumption of the liquid helium 7 and the injection interval of the liquid helium 7 are reduced, and the superconducting magnet is compact. This has been a major obstacle in achieving the goal.

【0005】[0005]

【発明が解決しようとする課題】以上のように、従来の
MRI装置用超電導磁石においては、液体ヘリウムの消
費量が多いばかりでなく、超電導磁石のコンパクト化を
図れないという問題があった。
As described above, the conventional superconducting magnet for an MRI apparatus not only consumes a large amount of liquid helium but also has a problem that the superconducting magnet cannot be made compact.

【0006】本発明の目的は、輻射シールドの温度を下
げて液体ヘリウムの消費量を低減すると共に、良好なM
RI画像を得ることが可能な小形でかつ安価なMRI装
置用超電導磁石を提供することにある。
[0006] It is an object of the present invention to reduce the temperature of the radiation shield to reduce the consumption of liquid helium and to obtain a good M
An object of the present invention is to provide a small and inexpensive superconducting magnet for an MRI apparatus capable of obtaining an RI image.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに本発明では、冷凍機により輻射シールドを冷却して
なるMRI装置用超電導磁石において、上記冷凍機に、
蓄冷材の材質としてEr3 Ni合金等の磁性材料を用い
ると共に、上記輻射シールドとして、純度99.99%
以上の高純度アルミニウム材からなる熱伝導板を設けた
輻射シールドを備え、上記熱伝導板として、冷凍機との
結合部または熱集中部から、軸方向および円周方向に軸
熱伝導板および周熱伝導板を設けるようにしている。
In order to achieve the above object, the present invention provides a superconducting magnet for an MRI apparatus in which a radiation shield is cooled by a refrigerator.
A magnetic material such as an Er 3 Ni alloy is used as the material of the cold storage material, and the radiation shield has a purity of 99.99%.
Comprises a radiation shield having a heat conductive plate having the above high-purity aluminum material, as the heat conducting plate, the refrigerator
Axial and circumferential directions from joints or heat concentrators
A heat conduction plate and a peripheral heat conduction plate are provided.

【0008】ここで、特に上記軸熱伝導板を円周方向に
対称位置に取付けると共に、上記周熱伝導板を軸方向に
対称位置に取付けるようにしている。
Here, in particular, the shaft heat conducting plate is arranged in a circumferential direction.
Attach it in a symmetrical position and attach
They are installed in symmetrical positions.

【0009】[0009]

【作用】従って、本発明のMRI装置用超電導磁石にお
いては、冷凍機には、蓄冷材の材質としてEr3 Ni合
金等の磁性材料を用いて、冷凍機の到達温度を下げると
共に、輻射シールドには、純度99.99%以上の高純
度アルミニウム材からなる軸熱伝導板および周熱伝導板
を、冷凍機との結合部または熱集中部から、軸方向およ
び円周方向に設けることにより、輻射シールド温度は1
k 以下にすることが可能となるため、MRI画像が良
好で、かつクエンチ時の機械的強度もあり、液体ヘリウ
ムの消費量を低減することができる。さらに、特に円周
方向に1枚の板で周熱伝導板を設けることにより 機械
的強度も良好であり、機械的破損、変形を防止すること
ができる。
Therefore, in the superconducting magnet for an MRI apparatus of the present invention, a magnetic material such as an Er 3 Ni alloy is used as a material of the regenerator material for the refrigerator to lower the temperature reached by the refrigerator and to provide a radiation shield. Is to provide a shaft heat conduction plate and a peripheral heat conduction plate made of a high-purity aluminum material having a purity of 99.99% or more in an axial direction and a circumferential direction from a coupling portion with a refrigerator or a heat concentration portion. Therefore, the radiation shield temperature is 1
Since it can be set to 0 k or less, the MRI image is good, and there is also a mechanical strength at the time of quenching, so that the consumption of liquid helium can be reduced. Furthermore, especially the circumference
By providing the circumferential heat conduction plates with one plate in direction, the machine
Good mechanical strength and prevent mechanical damage and deformation
Can be.

【0010】[0010]

【実施例】以下、本発明の一実施例について図面を参照
して詳細に説明する。本実施例によるMRI装置用超電
導磁石の全体組立構成は、前述した図5の断面図と同様
である。但し、冷凍機には、蓄冷材の材質として、Er
3 Ni合金等の磁性材料を一部または全部用いたものと
し、かつ到達温度が10k 以下のものとしている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the drawings. The overall assembling configuration of the superconducting magnet for the MRI apparatus according to the present embodiment is the same as the cross-sectional view of FIG. 5 described above. However, the refrigerator has Er as a material of the cold storage material.
The magnetic material such as 3 Ni alloy and that used part or the whole, and the ultimate temperature is set to the following 10 k.

【0011】図1は、本実施例のMRI装置用超電導磁
石における輻射シールドの外筒の構成例を示す斜視図で
ある。図1において、21は輻射シールド外筒板であ
り、アルミニウム合金板(例えば、A5083他)によ
り製作している。これは、図示しない傾斜磁場コイルか
らの印加磁場による渦電流の低減、および超電導コイル
のクエンチ時に発生する電磁力の低減のため、材質を選
定しているものである。
FIG. 1 is a perspective view showing a configuration example of an outer cylinder of a radiation shield in a superconducting magnet for an MRI apparatus according to this embodiment. In FIG. 1, reference numeral 21 denotes a radiation shield outer cylinder plate, which is manufactured from an aluminum alloy plate (for example, A5083 or the like). The material is selected in order to reduce eddy current due to a magnetic field applied from a gradient magnetic field coil (not shown) and to reduce electromagnetic force generated when the superconducting coil is quenched.

【0012】また、22は純度99.99%以上の高純
度アルミニウム材からなる軸熱伝導板であり、輻射シー
ルド外筒板21に軸方向に、熱伝導が良好な取付け手
法、例えば溶接取付けまたは接着取付け等の手法で、取
付けを行なっている。
Reference numeral 22 denotes a shaft heat conducting plate made of a high-purity aluminum material having a purity of 99.99% or more. Mounting is performed by a method such as adhesive mounting.

【0013】さらに、23は軸熱伝導板22と同様に、
純度99.99%以上の高純度アルミニウム材からなる
周熱伝導板であり、輻射シールド外筒板21に円周方向
に、上記と同様に熱伝導が良好な取付け手法、例えば溶
接取付けまたは接着取付け等の手法で、取付けを行なっ
ている。
Further, 23 is similar to the shaft heat conducting plate 22,
A circumferential heat conducting plate made of a high-purity aluminum material having a purity of 99.99% or more, which is attached to the radiation shield outer cylinder plate 21 in the circumferential direction in the same manner as described above, with good heat conduction, for example, welding attachment or adhesive attachment. Installation is performed by such methods.

【0014】さらにまた、6は伝熱板であり、一端は冷
凍機5のヒートステーションに、また他端は軸熱伝導板
22にそれぞれ結合し、輻射シールドと冷凍機5とを熱
的に結合している。
Further, reference numeral 6 denotes a heat transfer plate, one end of which is connected to the heat station of the refrigerator 5 and the other end of which is connected to the shaft heat conduction plate 22, respectively, for thermally connecting the radiation shield and the refrigerator 5 to each other. are doing.

【0015】次に、以上のように構成した本実施例のM
RI装置用超電導磁石においては、輻射シールドの熱量
は、主に軸熱伝導板22,周熱伝導板23を通って伝熱
板6へ流れ、冷凍機5で冷却される。
Next, M of the present embodiment constructed as described above is used.
In the superconducting magnet for the RI device, the heat of the radiation shield mainly flows to the heat transfer plate 6 through the shaft heat conduction plate 22 and the peripheral heat conduction plate 23, and is cooled by the refrigerator 5.

【0016】この場合、高純度アルミニウムとアルミニ
ウム合金の10k 以下での熱伝導率の比は、約100倍
以上あるため、輻射シールド内の温度差を低減すること
が可能となり、輻射シールドの温度を下げることができ
る。このため、液体ヘリウムの消費量の低減ができる。
特に、熱量が集中する伝熱板6との結合部または熱集中
部付近の温度差を少なくすることができる。
In this case, since the ratio of the thermal conductivity of high-purity aluminum to an aluminum alloy at 10 k or less is about 100 times or more, the temperature difference in the radiation shield can be reduced, and the temperature of the radiation shield can be reduced. Can be lowered. Therefore, the consumption of liquid helium can be reduced.
In particular, it is possible to reduce the temperature difference in the vicinity of the joint with the heat transfer plate 6 where heat is concentrated or in the vicinity of the heat concentrated portion.

【0017】また、輻射シールド本体には、アルミニウ
ム合金を使用しているため、超電導コイル4のクエンチ
発生の場合にも、輻射シールドに発生する電磁力は比較
的小さな値に抑えることができると共に、機械的強度も
良好であるので、機械的破損、変形を防止することがで
きる。
Since the radiation shield body is made of an aluminum alloy, the electromagnetic force generated in the radiation shield can be suppressed to a relatively small value even when the quench of the superconducting coil 4 occurs. Since the mechanical strength is also good, mechanical breakage and deformation can be prevented.

【0018】さらに、輻射シールド本体にアルミニウム
合金を使用しているため、傾斜磁場コイルの運転時に発
生する渦電流も低減でき、良好なMRI画像を得ること
ができる。
Further, since an aluminum alloy is used for the radiation shield main body, eddy current generated during operation of the gradient magnetic field coil can be reduced, and a good MRI image can be obtained.

【0019】上述したように、本実施例のMRI装置用
超電導磁石においては、次のような効果を得ることがで
きる。すなわち、冷凍機5には、蓄冷材の材質としてE
3 Ni合金等の磁性材料を用い、また純度99.99
%以上の高純度アルミニウム材からなる熱伝導板22,
23を、冷凍機5との結合部または熱集中部から軸方向
および円周方向に設けているので、輻射シールドの温度
を下げることができ、液体ヘリウム7の消費量を低減す
ることが可能になると共に、十分な機械的強度を有し、
良好なMRI画像を得ることが可能となる。
As described above, the following effects can be obtained in the superconducting magnet for an MRI apparatus according to the present embodiment. That is, the refrigerator 5 has E as a material of the cold storage material.
Using a magnetic material such as r 3 Ni alloy, and having a purity of 99.99
% Or more of the heat conductive plate 22 made of high-purity aluminum material.
23 is provided in the axial direction and the circumferential direction from the connection portion with the refrigerator 5 or the heat concentration portion, so that the temperature of the radiation shield can be reduced, and the consumption of the liquid helium 7 can be reduced. While having sufficient mechanical strength,
A good MRI image can be obtained.

【0020】より詳しくは、次のような効果を得ること
ができる。 (a)蓄冷材の材質としてEr3 Ni合金等の磁性材料
を用いた冷凍機5と、高純度アルミニウム材からなる軸
熱伝導板22および周熱伝導板23とを設けているの
で、輻射シールド温度を10k 以下の極低温に冷却で
き、液体ヘリウム7の消費量を0.01l/h以下に低
減することが可能となる。
More specifically, the following effects can be obtained. (A) Since the refrigerator 5 using a magnetic material such as an Er 3 Ni alloy as the material of the cold storage material and the axial heat conduction plate 22 and the peripheral heat conduction plate 23 made of a high-purity aluminum material are provided, a radiation shield is provided. The temperature can be cooled to an extremely low temperature of 10 k or less, and the consumption of liquid helium 7 can be reduced to 0.01 l / h or less.

【0021】(b)輻射シールド本体にアルミニウム合
金を使用しているので、良好な機械的強度を有すると共
に、良好なMRI画像を得ることが可能となる。 (c)輻射シールド本体にアルミニウム合金を使用して
いるので、超電導コイル4のクエンチ時の電磁力をより
一層低減することが可能となる。
(B) Since the radiation shield body is made of an aluminum alloy, it has good mechanical strength and can obtain a good MRI image. (C) Since an aluminum alloy is used for the radiation shield main body, the electromagnetic force at the time of quench of the superconducting coil 4 can be further reduced.

【0022】尚、本発明は上記実施例に限定されるもの
ではなく、次のようにしても同様に実施できるものであ
る。 (a)図2は、本発明のMRI装置用超電導磁石におけ
る輻射シールドの外筒の他の構成例を示す斜視図であ
り、図1と同一要素には同一符号を付して示している。
It should be noted that the present invention is not limited to the above-described embodiment, but can be similarly implemented in the following manner. (A) FIG. 2 is a perspective view showing another configuration example of a radiation shield outer cylinder in a superconducting magnet for an MRI apparatus of the present invention, and the same elements as those in FIG. 1 are denoted by the same reference numerals.

【0023】図2において、2つの軸熱伝導板22を上
下方向に(円周方向に)対称位置に取付け、2つの周熱
伝導板23を軸方向に対称位置に取付けている。かかる
構成とすることにより、2つの軸熱伝導板22、2つの
周熱伝導板23を軸方向および円周方向に対称位置に取
付けているため、輻射シールド内の温度差をより一層低
減することが可能になるのは勿論のこと、傾斜磁場コイ
ル運転時の渦電流分布が対称となるため、より一層良好
なMRI画像を得ることが可能となる。
In FIG. 2, two axial heat conductive plates 22 are mounted at vertically symmetric (circumferential) positions, and two peripheral heat conductive plates 23 are mounted at symmetric positions in the axial direction. With this configuration, since the two axial heat conductive plates 22 and the two peripheral heat conductive plates 23 are mounted at symmetric positions in the axial direction and the circumferential direction, the temperature difference in the radiation shield can be further reduced. As a matter of course, since the eddy current distribution during the operation of the gradient magnetic field coil becomes symmetrical, it is possible to obtain an even better MRI image.

【0024】(b)図3は、本発明のMRI装置用超電
導磁石における輻射シールドの外筒の他の構成例を示す
斜視図であり、図1と同一要素には同一符号を付して示
している。
(B) FIG. 3 is a perspective view showing another configuration example of the outer cylinder of the radiation shield in the superconducting magnet for an MRI apparatus of the present invention, and the same elements as those in FIG. ing.

【0025】図3において、24は結合用熱伝導板であ
り、他の軸熱伝導板22,および周熱伝導板23より
も、その厚さ、幅寸法等を大きくしている。かかる構成
とすることにより、輻射シールドの熱量の最も集中する
場所の厚さ、幅寸法を大きくしているため、輻射シール
ド内の温度差をより一層低減することができ、より一層
低温の輻射シールド温度を得ることが可能となる。
In FIG. 3, reference numeral 24 denotes a heat conducting plate for coupling, which is larger in thickness, width and the like than the other heat conducting plates 22 and 23. By adopting such a configuration, the thickness and the width of the location where the amount of heat of the radiation shield is most concentrated are increased, so that the temperature difference in the radiation shield can be further reduced, and the radiation shield at a lower temperature can be further reduced. It is possible to obtain the temperature.

【0026】(c)図4は、本発明のMRI装置用超電
導磁石における円周方向に設ける周熱伝導板の他の構成
例を示す一部拡大図であり、図1と同一要素には同一符
号を付して示している。
(C) FIG. 4 is a partially enlarged view showing another example of the configuration of the circumferential heat conducting plate provided in the circumferential direction in the superconducting magnet for an MRI apparatus according to the present invention. The reference numerals are attached.

【0027】図4において、周熱伝導板23と輻射シー
ルド外筒板21との間にスリットを入れ、電気的1ター
ンカット25を設けている。かかる構成とすることによ
り、周熱伝導板23に電気的1ターンカットを設けてい
るため、超電導コイル4のクエンチ発生時の電磁力をよ
り一層低減することが可能となる。
In FIG. 4, a slit is formed between the peripheral heat conduction plate 23 and the radiation shield outer cylinder plate 21 to provide an electric one-turn cut 25. With such a configuration, since the peripheral heat conductive plate 23 is provided with one electric turn cut, it is possible to further reduce the electromagnetic force of the superconducting coil 4 when quench occurs.

【0028】[0028]

【発明の効果】以上説明したように本発明のMRI装置
用超電導磁石によれば、冷凍機により輻射シールドを冷
却してなるMRI装置用超電導磁石において、上記冷凍
機に、蓄冷材の材質としてEr3 Ni合金等の磁性材料
を用いると共に、上記輻射シールドとして、純度99.
99%以上の高純度アルミニウム材からなる熱伝導板を
設けた輻射シールドを備え、上記熱伝導板として、冷凍
機との結合部または熱集中部から、軸方向および円周方
向に軸熱伝導板および周熱伝導板を設けるようにしたの
で、輻射シールドの温度を下げて液体ヘリウムの消費量
を低減すると共に、良好なMRI画像を得ることが
き、装置の小形化かつ安価化を図ることが可能となる。
さらに、特に円周方向に1枚の板で周熱伝導板を設ける
ようにしたので、機械的強度も良好であり、機械的破
損、変形を防止することも可能となる。
As described above, the MRI apparatus of the present invention
According to use superconducting magnets, in the MRI apparatus for a superconducting magnet comprising cooling the radiation shield by the refrigerator, in the refrigerator, with using a magnetic material such as Er 3 Ni alloy as the material of the cold accumulating material, as the radiation shield , Purity 99.
It comprises a radiation shield having a heat conductive plate made of more than 99% of the high purity aluminum material, as the heat conducting plate, frozen
From the connection with the machine or the heat concentration area,
Since as provided Jikunetsu conductive plate and Shunetsu conductive plate in direction, while reducing the consumption of the liquid helium lowers the temperature of the radiation shield, to obtain good MRI image
This makes it possible to reduce the size and cost of the device.
Furthermore, the peripheral heat conduction plate is provided by a single plate, particularly in the circumferential direction.
The mechanical strength is good and the mechanical
Loss and deformation can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるMRI装置用超電導磁石における
輻射シールドの外筒の一実施例を示す斜視図。
FIG. 1 is a perspective view showing an embodiment of an outer cylinder of a radiation shield in a superconducting magnet for an MRI apparatus according to the present invention.

【図2】本発明によるMRI装置用超電導磁石における
輻射シールドの外筒の他の実施例を示す斜視図。
FIG. 2 is a perspective view showing another embodiment of an outer cylinder of a radiation shield in a superconducting magnet for an MRI apparatus according to the present invention.

【図3】本発明によるMRI装置用超電導磁石における
輻射シールドの外筒の他の実施例を示す斜視図。
FIG. 3 is a perspective view showing another embodiment of an outer cylinder of a radiation shield in a superconducting magnet for an MRI apparatus according to the present invention.

【図4】本発明によるMRI装置用超電導磁石における
円周方向に設ける周熱伝導板の他の構成例を示す一部拡
大図。
FIG. 4 is a partially enlarged view showing another configuration example of the circumferential heat conduction plate provided in the circumferential direction in the superconducting magnet for the MRI apparatus according to the present invention.

【図5】MRI装置用超電導磁石の全体組立構成例を示
す断面図。
FIG. 5 is a sectional view showing an example of the overall assembly configuration of a superconducting magnet for an MRI apparatus.

【符号の説明】[Explanation of symbols]

1…真空容器、2a…第1の輻射シールド、2b…第2
の輻射シールド、3…ヘリウム容器、4…超電導コイ
ル、5…冷凍機、6…伝熱板、6a…第1の伝熱板、6
b…第2の伝熱板、7…液体ヘリウム、21…輻射シー
ルド外筒板、22…軸熱伝導板、23…周熱伝導板、2
4…結合用熱伝導板、25…電気的1ターンカット。
DESCRIPTION OF SYMBOLS 1 ... Vacuum container, 2a ... 1st radiation shield, 2b ... 2nd
3, a helium container, 4, a superconducting coil, 5, a refrigerator, 6, a heat transfer plate, 6a, a first heat transfer plate, 6
b: second heat transfer plate, 7: liquid helium, 21: radiation shield outer tube plate, 22: axial heat conductive plate, 23: peripheral heat conductive plate, 2
4 ... Heat conduction plate for coupling, 25 ... Electrical one-turn cut.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01F 6/00 - 6/06 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01F 6/00-6/06

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 冷凍機により輻射シールドを冷却してな
るMRI装置用超電導磁石において、 前記冷凍機に、蓄冷材の材質としてEr3 Ni合金等の
磁性材料を用いると共に、 前記輻射シールドとして、純度99.99%以上の高純
度アルミニウム材からなる熱伝導板を設けた輻射シール
ドを備え、 前記熱伝導板として、前記冷凍機との結合部または熱集
中部から、軸方向および円周方向に軸熱伝導板および周
熱伝導板を設けるようにしたことを特徴とするMRI装
置用超電導磁石。
1. A superconducting magnet for an MRI apparatus in which a radiation shield is cooled by a refrigerator, wherein a magnetic material such as an Er 3 Ni alloy is used as a material of a cold storage material for the refrigerator, and a purity is used as the radiation shield. A radiation shield provided with a heat conductive plate made of a high-purity aluminum material of 99.99% or more, wherein the heat conductive plate is axially and circumferentially connected from a joint with the refrigerator or a heat concentrated portion; A superconducting magnet for an MRI apparatus, wherein a heat conducting plate and a peripheral heat conducting plate are provided.
【請求項2】 前記軸熱伝導板を円周方向に対称位置に
取付けると共に、前記周熱伝導板を軸方向に対称位置に
取付けるようにしたことを特徴とする請求項1に記載の
MRI装置用超電導磁石。
2. The MRI apparatus according to claim 1, wherein the axial heat conductive plate is mounted at a position symmetrical in the circumferential direction, and the peripheral heat conductive plate is mounted at a position symmetrical in the axial direction. For superconducting magnets.
JP18485893A 1993-07-27 1993-07-27 Superconducting magnet for MRI equipment Expired - Lifetime JP3260497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18485893A JP3260497B2 (en) 1993-07-27 1993-07-27 Superconducting magnet for MRI equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18485893A JP3260497B2 (en) 1993-07-27 1993-07-27 Superconducting magnet for MRI equipment

Publications (2)

Publication Number Publication Date
JPH0745423A JPH0745423A (en) 1995-02-14
JP3260497B2 true JP3260497B2 (en) 2002-02-25

Family

ID=16160543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18485893A Expired - Lifetime JP3260497B2 (en) 1993-07-27 1993-07-27 Superconducting magnet for MRI equipment

Country Status (1)

Country Link
JP (1) JP3260497B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013150951A1 (en) * 2012-04-06 2015-12-17 株式会社日立メディコ Superconducting magnet and magnetic resonance imaging system
CN102930946B (en) * 2012-09-27 2014-12-24 湖北省电力公司电力科学研究院 Conduction cooling device for high-temperature superconducting magnet
JP2022133593A (en) * 2021-03-02 2022-09-14 株式会社東芝 Superconducting electromagnet device and cooling method for superconducting electromagnet device

Also Published As

Publication number Publication date
JPH0745423A (en) 1995-02-14

Similar Documents

Publication Publication Date Title
US7397244B2 (en) Gradient bore cooling providing RF shield in an MRI system
JP3673556B2 (en) Open magnetic resonance imaging magnet with superconducting shield
EP0681189B1 (en) Superconducting gradient coil shields in magnetic resonance imaging magnets
JPH065643B2 (en) Open MRI magnet
JP4412760B2 (en) Superconducting shield of helium recondensation magnetic resonance imaging system
US5045826A (en) Actively shielded magnetic resonance magnet without cryogens
JPH09187440A (en) Open type magnetic resonance imaging magnet
US5179338A (en) Refrigerated superconducting MR magnet with integrated gradient coils
GB2259773A (en) Superconducting MR magnet with integrated cryogenic gradient coils
CN1957429B (en) Electrically conductive shield for refrigerator
JP3711660B2 (en) Open magnetic resonance imaging magnet
JP2000279394A (en) Open style magnet with shield
JP3260497B2 (en) Superconducting magnet for MRI equipment
GB2326527A (en) Superconducting magnet
US5333464A (en) Cold head sleeve and high-TC superconducting lead assemblies for a superconducting magnet which images human limbs
JPH0722231A (en) Superconducting magnet for mri system
JP2010272745A (en) Superconducting coil and superconducting magnet device
JPH08321418A (en) Superconducting electromagnet to use it in mri system
JPH10256027A (en) Superconducting magnet system
JPS6293914A (en) Superconducting magnet
CN218497880U (en) Superconducting magnet equipment and radiotherapy system
JP2003347115A (en) Superconductive current lead device
JP2739159B2 (en) Toroidal magnet
JP2756552B2 (en) Conduction-cooled superconducting magnet device
JPH0786642A (en) Conduction cooling superconduction magnet device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 12

EXPY Cancellation because of completion of term