JP3253391B2 - Method for producing titanium oxide enriched material - Google Patents

Method for producing titanium oxide enriched material

Info

Publication number
JP3253391B2
JP3253391B2 JP35758792A JP35758792A JP3253391B2 JP 3253391 B2 JP3253391 B2 JP 3253391B2 JP 35758792 A JP35758792 A JP 35758792A JP 35758792 A JP35758792 A JP 35758792A JP 3253391 B2 JP3253391 B2 JP 3253391B2
Authority
JP
Japan
Prior art keywords
titanium
raw material
titanium oxide
weight
selective chlorination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35758792A
Other languages
Japanese (ja)
Other versions
JPH06191847A (en
Inventor
賢一 市村
信治 岡
芳典 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP35758792A priority Critical patent/JP3253391B2/en
Publication of JPH06191847A publication Critical patent/JPH06191847A/en
Application granted granted Critical
Publication of JP3253391B2 publication Critical patent/JP3253391B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、二酸化チタン顔料、金
属チタン等の原料である四塩化チタンの製造用チタン富
化物の工業的製造方法に関し、詳細には不純物として鉄
酸化物を多く含有するチタン原料で上記組成のもの、あ
るいはそのような組成に混用調製された原料を、塩素化
用ガスで選択的に塩素化し、鉄分等をガス状の塩素化物
として分離することにより、酸化チタン富化物を製造す
る方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an industrial production method of a titanium-rich product for producing titanium tetrachloride, which is a raw material of titanium dioxide pigment, metallic titanium and the like, and more specifically, contains a large amount of iron oxide as an impurity. A titanium raw material having the above composition, or a raw material mixed and prepared with such a composition, is selectively chlorinated with a chlorinating gas, and by separating iron and the like as a gaseous chlorinated product, a titanium oxide-rich product And a method for producing the same.

【0002】[0002]

【従来の技術】四塩化チタンは、通常、チタン品位90
%以上の微粉を含まない高品位チタン原料を流動塩素化
して製造されている。しかしながら、近年、資源の減少
から、不純物として鉄酸化物を多く含有する低品位チタ
ン原料をも四塩化チタン製造用原料として使用しなけれ
ばならないような状況になってきている。このような低
品位チタン原料から四塩化チタンを製造する方法の一つ
として、低品位チタン原料中の鉄成分を選択塩素化によ
り脱鉄し、酸化チタン富化物を製造した後、これを四塩
化チタンガス生成反応に供する方法である。この方法と
しては、還元剤を使用しないで高温下で選択塩素化を
行い、次いで得られた塩化鉄を酸化分解してその回収塩
素を選択塩素化工程へ循環使用する方法、前記の方
法に於いてコークス、カーボン、一酸化炭素等を還元剤
として使用し、反応温度を下げて選択塩素化を行う方法
等がある。
2. Description of the Related Art Titanium tetrachloride usually has a titanium grade of 90%.
% Is produced by fluid chlorination of a high-grade titanium raw material that does not contain fine powder of more than 10%. However, in recent years, due to a decrease in resources, a situation has arisen in which a low-grade titanium raw material containing a large amount of iron oxide as an impurity must be used as a raw material for producing titanium tetrachloride. As one of the methods for producing titanium tetrachloride from such low-grade titanium raw material, the iron component in the low-grade titanium raw material is removed by selective chlorination to produce a titanium oxide-enriched product, which is then subjected to tetrachloride. This is a method for providing a titanium gas generation reaction. In this method, selective chlorination is performed at a high temperature without using a reducing agent, and then the obtained iron chloride is oxidized and decomposed, and the recovered chlorine is recycled and used in a selective chlorination step. In addition, there is a method in which coke, carbon, carbon monoxide or the like is used as a reducing agent and the reaction temperature is lowered to perform selective chlorination.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、の方
法においては、選択塩素化部の反応温度が、例えば90
0℃以上の高温である場合には酸化鉄の塩素化反応が吸
熱反応である為、反応器に直接熱供給を行わない限り、
原料を1100℃以上に予熱することが必要となる。と
ころが、工業的には反応器外部からこういった高温の熱
供給を行うことや、このような高温下で粉粒体を取り扱
うことは容易でない。またの方法では、選択塩素化部
の反応を比較的低い温度で行うことができるものの、選
択塩素化後の生成ガス中に塩化第二鉄ガスの他に一酸化
炭素、二酸化炭素等のガスを含むことになる。この為
に、該塩化第二鉄ガスを酸化分解して塩素ガスを回収使
用する場合に、該酸化分解反応の進行が抑制されたり、
回収塩素ガスを該選択塩素化部へリサイクルする場合、
更には酸化チタン富化物の塩素化部へリサイクルする場
合、二酸化炭素の分離負担が大きくなったりする等種々
の問題がある。
However, in the above method, the reaction temperature of the selective chlorination section is, for example, 90 ° C.
When the temperature is higher than 0 ° C., the chlorination reaction of iron oxide is an endothermic reaction, so unless heat is directly supplied to the reactor,
It is necessary to preheat the raw material to 1100 ° C. or higher. However, industrially, it is not easy to supply such a high-temperature heat from the outside of the reactor or to handle the powder or granules at such a high temperature. In the other method, although the reaction in the selective chlorination unit can be performed at a relatively low temperature, gases such as carbon monoxide and carbon dioxide in addition to ferric chloride gas in the product gas after the selective chlorination. Will be included. For this reason, when recovering and using chlorine gas by oxidative decomposition of the ferric chloride gas, the progress of the oxidative decomposition reaction is suppressed,
When recycling recovered chlorine gas to the selective chlorination unit,
Further, when the titanium oxide-rich product is recycled to the chlorinated part, there are various problems such as an increase in the burden of separating carbon dioxide.

【0004】[0004]

【課題を解決するための手段】本発明者らは前記問題点
を解決する為、種々研究した結果、低級チタン酸化物を
特定量含有するもの又はそれと低品位チタン原料との混
合調製物を用い、このものを選択塩素化すると、炭素系
の還元剤を使用することなく選択塩素化を比較的低い温
度で行うことができること、更には生成する塩化第二鉄
の酸化分解による塩素ガスの回収利用が極めて容易に行
えることの知見を得た。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have conducted various studies, and as a result, have found that a low-grade titanium oxide containing a specific amount or a mixed preparation thereof with a low-grade titanium raw material is used. By selectively chlorinating this, the selective chlorination can be performed at a relatively low temperature without using a carbon-based reducing agent, and furthermore, the recovery and utilization of chlorine gas by oxidative decomposition of the generated ferric chloride. Was found to be extremely easy.

【0005】即ち、本発明は、T.Fe(金属鉄に換算
した場合の重量百分率)が7重量%以上であって、T.
TiO2(二酸化チタンに換算した場合の重量百分率)
が50重量%以上、且つ低級チタン酸化物TiOX(0
<X<2)が10重量%以上であるチタン原料を900
℃以下で主に鉄成分を選択的に塩素化して、塩化第二鉄
を主体とする塩素化物を生成させて分離することを特徴
とする酸化チタン富化物の製造方法である。尚、前記T
iOXの重量%は、低級チタン酸化物を全てTiO1.5
した場合の換算基準である。
That is, the present invention relates to T.I. Fe (weight percentage in terms of metallic iron) of 7% by weight or more;
TiO 2 (weight percentage when converted to titanium dioxide)
Is not less than 50% by weight and the lower titanium oxide TiO x (0
<X <2) is a titanium raw material having 10% by weight or more of 900%
This is a method for producing a titanium oxide-rich product, characterized by selectively chlorinating mainly an iron component at a temperature of not more than ° C to generate and separate a chlorinated substance mainly composed of ferric chloride. In addition, the T
iO X wt% is equivalent value in the case where all the lower titanium oxide TiO 1.5.

【0006】上記で示した原料組成のものは、チタン原
料単独又は低品位チタン原料との特定量混合により得ら
れる。例えば(1)T.Feが7〜11重量%、T.T
iO2が75〜90重量%、TiOXが12〜35重量%
であるチタンスラグ単独、(2)チタンスラグとイルメ
ナイト鉱石とを前記特定組成範囲になるように混合した
もの、(3)T.Fe 0〜2重量%、T.TiO2
100〜110重量%、TiOXが90〜100重量%
であるアナターゼ鉱とイルメナイト鉱石とを前記特定組
成範囲になるように混合したもの等が挙げられる。
The above-mentioned raw material composition can be obtained by mixing a titanium raw material alone or in a specific amount with a low-grade titanium raw material. For example, (1) T. Fe is 7 to 11% by weight; T
75 to 90% by weight of TiO 2 and 12 to 35% by weight of TiO X
Titanium slag alone, (2) a mixture of titanium slag and ilmenite ore so as to be in the specific composition range, (3) T. Fe 0 to 2% by weight; TiO 2 100-110% by weight, TiO X 90-100% by weight
And a mixture of anatase ore and ilmenite ore so as to have the above-mentioned specific composition range.

【0007】本発明における選択塩素化反応は900℃
以下の温度、普通700〜900℃の温度で実施する。
本発明に於いてチタン原料中の低級チタン酸化物量が特
定範囲よりも少なすぎると、前記の温度範囲では塩素化
反応が実質的に進行せず、更に例えば1000℃以上の
反応温度では反応の進行は見られるものの、装置的にも
負担が大きく、且つ高温の反応温度を維持することが困
難である。
The selective chlorination reaction in the present invention is 900 ° C.
It is carried out at the following temperatures, usually between 700 and 900C.
In the present invention, if the amount of lower titanium oxide in the titanium raw material is too small than the specific range, the chlorination reaction does not substantially proceed in the above-mentioned temperature range, and furthermore, the reaction proceeds at a reaction temperature of, for example, 1000 ° C. or more. However, it is difficult to maintain a high reaction temperature because of the heavy load on the apparatus.

【0008】原料供給温度及び選択塩素化反応温度は、
使用するチタン原料中の低級チタン酸化物含有量に応じ
て決定されるが、低級チタン酸化物含有量が多いほど、
同じ塩素化反応率を得る反応温度は低くなり、その反応
温度を維持するために必要な原料供給温度を、さらに低
くすることができる。例えば、前記(1)のチタンスラ
グとイルメナイト(例えば、T.TiO250重量%以
上でFe23が30重量%以下)を混合使用する場合に
は、後者が50重量%以下であって、経済的には30重
量%以上であるのが有利である。選択塩素化に使用する
塩素化ガスとしては、塩素ガス、四塩化チタンガス等の
塩素含有ガスが挙げられるが、塩素ガスを使用するのが
望ましい。
[0008] The raw material supply temperature and the selective chlorination reaction temperature are as follows:
It is determined according to the lower titanium oxide content in the titanium raw material used, but as the lower titanium oxide content increases,
The reaction temperature for obtaining the same chlorination reaction rate is lower, and the raw material supply temperature required for maintaining the reaction temperature can be further reduced. For example, when titanium slag and ilmenite (for example, T.TiO 2 is 50% by weight or more and Fe 2 O 3 is 30% by weight or less) are used, the latter is 50% by weight or less. It is economically advantageous that the content is 30% by weight or more. Examples of the chlorinated gas used for the selective chlorination include a chlorine-containing gas such as a chlorine gas and a titanium tetrachloride gas, and it is desirable to use a chlorine gas.

【0009】選択塩素化によって得られる塩化第二鉄を
主体とする生成ガスは、酸化チタン富化物と固−気分離
した後、酸素により酸化分解されて塩素ガスと酸化第二
鉄として回収される。該生成ガスは一酸化炭素や二酸化
炭素を含有していないので、大過剰の酸素を要すること
なく、高い酸化分解速度で、高濃度の塩素ガスを回収す
ることが可能となる。生成する塩素ガス中には、未反応
酸素がほとんど存在しない。
The product gas mainly composed of ferric chloride obtained by the selective chlorination is solid-gas separated from the titanium oxide enriched product, and then oxidized and decomposed by oxygen to be recovered as chlorine gas and ferric oxide. . Since the generated gas does not contain carbon monoxide or carbon dioxide, it is possible to recover a high concentration of chlorine gas at a high oxidative decomposition rate without requiring a large excess of oxygen. The unreacted oxygen hardly exists in the generated chlorine gas.

【0010】一方、脱鉄分離された酸化チタン富化物
は、高沸点塩化物と共にピストンフローによって排出さ
れる。その為、従来流動反応器の流動阻害物質とされる
高沸点塩化物が、反応器内に濃縮されること無く、反応
を継続することができる。得られた酸化チタン富化物を
四塩化チタン製造用に用いるにあたっては、水洗等の処
理によって、当該高沸点塩化物を容易に除去することも
できる。
[0010] On the other hand, the titanium oxide enriched material that has been deiron-separated is discharged together with a high-boiling chloride by a piston flow. Therefore, the reaction can be continued without the high-boiling-point chloride conventionally regarded as a flow inhibiting substance in the flow reactor being concentrated in the reactor. When using the obtained titanium oxide-enriched product for the production of titanium tetrachloride, the high-boiling-point chloride can be easily removed by a treatment such as washing with water.

【0011】次に、本発明を図面に従って説明する。図
1は、本発明の酸化チタン富化物を製造するために使用
される装置及び適用装置構成を例示する模式図である。
は選択塩素化−酸化反応器を示す。チタン原料5は選
択塩素化部2に供給され、底部から導入される塩素ガス
6によって塩素化され、塩化第二鉄7を主体とするガス
及び酸化チタン富化物11を生成する。
Next, the present invention will be described with reference to the drawings. FIG. 1 is a schematic view illustrating an apparatus used to produce the titanium oxide-enriched product of the present invention and a configuration of an applied apparatus.
1 shows a selective chlorination-oxidation reactor. The titanium raw material 5 is supplied to the selective chlorination unit 2 and chlorinated by a chlorine gas 6 introduced from the bottom to generate a gas mainly composed of ferric chloride 7 and a titanium oxide-rich product 11.

【0012】塩化第二鉄ガス7は他のガス状物質(マン
ガンやマグネシウム等の不純物金属の塩化物ガス及び未
反応の塩素ガス等)と共に反応器上部の酸化分解部3へ
送られ、酸素によって酸化分解された後、回収塩素10
と酸化第二鉄9が回収される。回収塩素10は、選択塩
素化炉2又は四塩化チタン製造用塩化炉4等で再利用す
ることができる。なお、選択塩素化部の圧力は、予熱部
>選択塩素化部>酸化分解部の様な圧力バランスを保つ
ように設定するのが望ましく、これによって圧力による
物質移動が可能となり、設備が単純化される。
The ferric chloride gas 7 is sent to the oxidative decomposition section 3 in the upper part of the reactor together with other gaseous substances (chloride gas of an impurity metal such as manganese and magnesium and unreacted chlorine gas). After oxidative decomposition, recovered chlorine 10
And ferric oxide 9 are recovered. The recovered chlorine 10 can be reused in the selective chlorination furnace 2 or the chlorination furnace 4 for producing titanium tetrachloride. The pressure in the selective chlorination section is desirably set so as to maintain a pressure balance such as preheating section> selective chlorination section> oxidative decomposition section, which enables mass transfer by pressure and simplifies equipment. Is done.

【0013】一方、選択塩素化部2で生成された酸化チ
タン富化物11は、反応器から排出され、回収される。
このようにして得られた酸化チタン富化物11は、必要
に応じて高沸点塩化物の除去処理の後、種々の用途に供
しえるが、四塩化チタン製造用原料として供される場合
にはとりわけ好適なものである。尚、本発明の目的を損
なわない範囲に於いて、種々の還元剤の若干量を選択塩
素化時に使用してもよい。
On the other hand, the titanium oxide-rich product 11 generated in the selective chlorination section 2 is discharged from the reactor and recovered.
The titanium oxide-enriched product 11 thus obtained can be used for various applications after the high-boiling-point chloride removal treatment, if necessary. However, when it is used as a raw material for producing titanium tetrachloride, It is suitable. Incidentally, some amounts of various reducing agents may be used in the selective chlorination as long as the object of the present invention is not impaired.

【0014】[0014]

【実施例】【Example】

実施例1 表1の高品位チタンスラグ(チタン原料A)を選択塩素
部2で700℃に予熱し、反応器底部から、277kg/
時間で塩素ガスを供給して流動塩素化させた。発熱反応
によって反応器内の温度は上昇し、850℃に達した時
点で400℃に予熱されたチタン原料Aの供給を123
0kg/時間で開始した。これによって反応器の温度はほ
ぼ850℃で一定となり、所定の滞留時間選択塩素化反
応させた後、11より酸化チタン富化物が1060kg/
時間で反応器からオーバーフローして、富化物Aを回収
した。その組成等を表2に示した。
Example 1 A high-grade titanium slag (titanium raw material A) shown in Table 1 was preheated to 700 ° C. in a selective chlorine section 2 and 277 kg / kg was fed from the bottom of the reactor.
Chlorine gas was supplied over a period of time to perform fluid chlorination. The temperature inside the reactor rises due to the exothermic reaction, and when the temperature reaches 850 ° C., the supply of the titanium raw material A preheated to 400 ° C. is reduced to 123 ° C.
Started at 0 kg / hr. As a result, the temperature of the reactor was kept constant at approximately 850 ° C., and after the selective chlorination reaction for a predetermined residence time, the titanium oxide-enriched product became 1060 kg /
Over time the reactor overflowed and the enrichment A was recovered. The composition and the like are shown in Table 2.

【0015】実施例2 表1の高品位チタンスラグ(チタン原料A)とインド産
イルメナイト(チタン原料C)を重量比で7:3の割合
で混合してチタン原料Bを得た。このものを選択塩素化
部2で800℃に予熱し、反応器低部から塩素ガスを4
87kg/時間で供給を開始して流動塩素化させた選択塩
素化部が850℃の温度に達した時点で、チタン原料B
の供給を1350kg/時間で開始した。これによって反
応器の温度はほぼ850℃で一定になり、所定の滞留時
間選択塩素化反応させた後、11より酸化チタン富化物
が1170kg/時間で反応器からオーバーフローして、
富化物Bを回収した。その組成等を表2に示した。
Example 2 A titanium raw material B was obtained by mixing a high-grade titanium slag (titanium raw material A) and Indian ilmenite (titanium raw material C) shown in Table 1 at a weight ratio of 7: 3. This is preheated to 800 ° C. in the selective chlorination section 2 and 4 chlorine gases are supplied from the lower part of the reactor.
When the temperature of the selective chlorination unit, which started supplying at 87 kg / hr and was fluidized and chlorinated, reached 850 ° C., the titanium raw material B
Was started at 1350 kg / h. As a result, the temperature of the reactor becomes constant at approximately 850 ° C., and after performing a selective chlorination reaction for a predetermined residence time, the titanium oxide-rich product overflows from the reactor at 1170 kg / hour from 11;
Enrichment B was recovered. The composition and the like are shown in Table 2.

【0016】比較例 選択塩素化反応器内に1000℃に予熱した表1のイン
ド産イルメナイト(チタン原料C)を充填し、塩素ガス
を供給して流動塩素化させた。1000℃に加熱コント
ロールしながら1740g/時間で常温のチタン原料C
の供給を開始した。この後も反応器の温度を1000℃
に加熱コントロールしながら所定の滞留時間選択塩素化
反応させた後、11から酸化チタン富化物が1390g
/時間でオーバーフローして、富化物Cを回収した。そ
の組成等を表2に示した。
Comparative Example A selective chlorination reactor was filled with Indian ilmenite (titanium raw material C) shown in Table 1 which was preheated to 1000 ° C., and chlorine gas was supplied to perform fluid chlorination. Titanium raw material C at room temperature at 1740 g / hour while controlling heating to 1000 ° C
Supply has begun. After this, keep the temperature of the reactor at 1000 ° C.
After performing a selective chlorination reaction for a predetermined residence time while heating and controlling the temperature, 1390 g of the titanium oxide-enriched product from 11
/ H and the enrichment C was recovered. The composition and the like are shown in Table 2.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】実施例、比較例の実験条件は、表3にまと
めた。表2で明らかなように、実施例1で得られた富化
物A及び実施例2で得られた富化物Bは、高い脱鉄率を
示し、四塩化チタン製造用原料として好適なものである
が、とりわけ富化物Bは低品位チタン原料を混用してチ
タン原料の多様化と経済性を図りながら、十分な濃縮度
がもたらされるものであって、工業的に極めて有利なも
のである。これに対して、比較例で得られた富化物C
は、1000℃で反応させても十分な脱鉄率が得られ
ず、所望の酸化チタン富化物を得るにはより高温の反応
温度が必要である。尚、脱鉄率は、原料鉱石中の鉄量に
対する選択塩素化によって除去された鉄量の割合を百分
率で示した値である。
The experimental conditions of the examples and comparative examples are summarized in Table 3. As is clear from Table 2, the enriched product A obtained in Example 1 and the enriched product B obtained in Example 2 show a high deironation rate and are suitable as raw materials for producing titanium tetrachloride. However, in particular, the enriched product B is a product which provides sufficient enrichment while diversifying and economically using titanium materials by mixing low-grade titanium materials, and is extremely industrially advantageous. In contrast, the enriched product C obtained in the comparative example
However, even if the reaction is carried out at 1000 ° C., a sufficient iron removal rate cannot be obtained, and a higher reaction temperature is required to obtain a desired titanium oxide-enriched product. The deironing ratio is a value indicating the ratio of the amount of iron removed by selective chlorination to the amount of iron in the raw ore in percentage.

【0020】[0020]

【表3】 [Table 3]

【0021】[0021]

【発明の効果】本発明は特定の組成のあるいは混合調製
されたチタン原料中の主な鉄成分を900℃以下の温度
で選択塩素化し、生成する鉄塩化物を除去して酸化チタ
ン富化物を製造する方法である。本発明においては、炭
素系還元剤を使用することなく選択塩素化反応を行う
為、高い酸化分解速度で高濃度の塩素ガスを回収するこ
とが可能となり、また、選択塩素化反応を900℃以下
の温度でも実施することが可能となる為、選択塩素化炉
等の装置材料として特殊な耐熱材料を使用することな
く、汎用の耐熱材料を使用できるようになる。さらに、
低品位チタン原料を使用することによっても所望の酸化
チタン富化物を製造することができるものであり、工業
的に安価な四塩化チタンを製造する上で甚だ有利であ
る。
According to the present invention, the main iron component in the titanium raw material having a specific composition or mixed and prepared is selectively chlorinated at a temperature of 900 ° C. or less, and the generated iron chloride is removed to remove the titanium oxide-enriched material. It is a manufacturing method. In the present invention, since the selective chlorination reaction is performed without using a carbon-based reducing agent, it is possible to recover a high concentration of chlorine gas at a high oxidative decomposition rate, and to perform the selective chlorination reaction at 900 ° C. or lower. Therefore, a general-purpose heat-resistant material can be used without using a special heat-resistant material as a device material for the selective chlorination furnace or the like. further,
By using a low-grade titanium raw material, a desired titanium oxide-rich product can be produced, which is extremely advantageous in producing industrially inexpensive titanium tetrachloride.

【0022】[0022]

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明の酸化チタン富化物を製造する
ために使用される装置及びその適用装置構成を例示する
模式図である。図中、1は選択塩素化−酸化反応器、2
は選択塩素化部、3は酸化分解部、4は四塩化チタン製
造用塩化炉、5はチタン原料、6は塩素ガス、7は塩化
第二鉄ガス、8は酸素、9は酸化第二鉄、10は回収塩
素、11は酸化チタン富化物を示す。
FIG. 1 is a schematic view illustrating an apparatus used for producing a titanium oxide-enriched product of the present invention and a configuration of an application apparatus thereof. In the figure, 1 is a selective chlorination-oxidation reactor, 2
Is a selective chlorination unit, 3 is an oxidative decomposition unit, 4 is a chlorination furnace for titanium tetrachloride production, 5 is a titanium raw material, 6 is chlorine gas, 7 is ferric chloride gas, 8 is oxygen, and 9 is ferric oxide. , 10 represents recovered chlorine, and 11 represents titanium oxide-enriched product.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−5024(JP,A) 特開 昭62−191425(JP,A) 特開 昭46−3405(JP,A) 特開 昭50−57995(JP,A) (58)調査した分野(Int.Cl.7,DB名) C01G 1/00 - 23/08 WPI(DIALOG)──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-60-5024 (JP, A) JP-A-62-191425 (JP, A) JP-A-46-3405 (JP, A) JP-A 50-50 57995 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) C01G 1/00-23/08 WPI (DIALOG)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】T.Fe(金属鉄に換算した場合の重量百
分率)が7重量%以上であって、T.TiO2(二酸化
チタンに換算した場合の重量百分率)が50重量%以
上、且つ低級チタン酸化物TiOX(0<X<2)が1
0重量%以上であるチタン原料を900℃以下で主に鉄
成分を選択的に塩素化して、塩化第二鉄を主体とする塩
素化物を生成させて分離することを特徴とする酸化チタ
ン富化物の製造方法。
(1) T. Fe (weight percentage in terms of metallic iron) of 7% by weight or more; TiO 2 (weight percentage in terms of titanium dioxide) is 50% by weight or more and low-grade titanium oxide TiO x (0 <X <2) is 1
A titanium raw material having a weight of 0% by weight or more is selectively chlorinated mainly at 900 ° C. or less mainly with an iron component to produce a chlorinated substance mainly composed of ferric chloride, and is separated. Manufacturing method.
JP35758792A 1992-12-24 1992-12-24 Method for producing titanium oxide enriched material Expired - Fee Related JP3253391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35758792A JP3253391B2 (en) 1992-12-24 1992-12-24 Method for producing titanium oxide enriched material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35758792A JP3253391B2 (en) 1992-12-24 1992-12-24 Method for producing titanium oxide enriched material

Publications (2)

Publication Number Publication Date
JPH06191847A JPH06191847A (en) 1994-07-12
JP3253391B2 true JP3253391B2 (en) 2002-02-04

Family

ID=18454890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35758792A Expired - Fee Related JP3253391B2 (en) 1992-12-24 1992-12-24 Method for producing titanium oxide enriched material

Country Status (1)

Country Link
JP (1) JP3253391B2 (en)

Also Published As

Publication number Publication date
JPH06191847A (en) 1994-07-12

Similar Documents

Publication Publication Date Title
JPH10502418A (en) Manufacturing method of elemental materials
US4140746A (en) Recovery of chlorine values from iron chloride by-produced in chlorination of ilmenite and the like
JP2563011B2 (en) Titanium valuables recovery method
US9803261B2 (en) Method for improving quality of titanium-containing feedstock
US4183899A (en) Chlorination of ilmenite and the like
JPH06102546B2 (en) Extraction and purification of titanium products from titanium-containing minerals
TW201437382A (en) Method for producing titanium oxide and iron oxide
US4060584A (en) Process for recovery of iron oxide and chlorine from dust produced in chlorination of titaniferous ores
US3977862A (en) Process for selectively chlorinating the titanium content of titaniferous materials
EP0034434B1 (en) Process for removing metal values from oxidic materials
US2852362A (en) Process for forming titanium concentrates
US3977864A (en) Process for selectively chlorinating the titanium content of titaniferous materials
EP0000498B1 (en) A flow process for chlorinating ferruginous titaniferous material
US2758019A (en) Separation of iron from titaniferous iron ores
EP0173132B1 (en) Two stage chlorination of titaniferous ore with fecl3 reclamation
US4055621A (en) Process for obtaining titanium tetrachloride, chlorine and iron oxide from ilmenite
US4619815A (en) Chlorination of iron-containing metaliferous material
IE43007B1 (en) Production of titanium tetrachloride
JP3253391B2 (en) Method for producing titanium oxide enriched material
EP2176169A1 (en) Process for preparing titanium tetrachloride using off-gases from a silica and zircon carbo-chlorination process
US3944647A (en) Recovering chlorine from the chlorination of titaniferous material
US4629607A (en) Process of producing synthetic rutile from titaniferous product having a high reduced titanium oxide content
US2928724A (en) Method for producing titanium tetrachloride
JP2014172765A5 (en)
JP2014172765A (en) Quality improvement method of titanium-including material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees