JP3251783B2 - Electrophotographic equipment - Google Patents

Electrophotographic equipment

Info

Publication number
JP3251783B2
JP3251783B2 JP19722494A JP19722494A JP3251783B2 JP 3251783 B2 JP3251783 B2 JP 3251783B2 JP 19722494 A JP19722494 A JP 19722494A JP 19722494 A JP19722494 A JP 19722494A JP 3251783 B2 JP3251783 B2 JP 3251783B2
Authority
JP
Japan
Prior art keywords
developing
photosensitive drum
photoconductor
magnetic
exposure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19722494A
Other languages
Japanese (ja)
Other versions
JPH0844203A (en
Inventor
英司 落合
誠 浜口
浩由 戸出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP19722494A priority Critical patent/JP3251783B2/en
Publication of JPH0844203A publication Critical patent/JPH0844203A/en
Application granted granted Critical
Publication of JP3251783B2 publication Critical patent/JP3251783B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Brush Developing In Electrophotography (AREA)
  • Developing For Electrophotography (AREA)
  • Dry Development In Electrophotography (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、プリンタ、複写機、フ
ァクシミリ等の電子写真装置に係り、特に一成分若しく
は二成分の磁性現像剤を用い、低帯電電位で且つ低現像
バイアス電圧により画像かぶりのない高濃度画像を形成
する電子写真装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrophotographic apparatus such as a printer, a copying machine, a facsimile, etc., and more particularly to an image fog using a one-component or two-component magnetic developer at a low charging potential and a low developing bias voltage. The present invention relates to an electrophotographic apparatus that forms a high-density image without images.

【0002】[0002]

【従来の技術】従来より感光体ドラム外周面上に、露
光、現像、転写、クリーニング(残留トナー除去)、除
電、及び帯電の各プロセス手段を配置し、所定の電子写
真プロセスにより画像形成を行なう、いわゆるカールソ
ンプロセスに基づく電子写真装置は周知である。
2. Description of the Related Art Conventionally, respective process means of exposure, development, transfer, cleaning (removal of residual toner), charge elimination and charging are arranged on the outer peripheral surface of a photosensitive drum, and an image is formed by a predetermined electrophotographic process. Electrophotographic apparatuses based on the so-called Carlson process are well known.

【0003】この種の電子写真装置は固定磁石集成体を
内挿した非磁性スリーブと感光体ドラムを対峙させ、非
磁性スリーブを介して該対峙位置(現像ギャップ)に搬
送されてきた磁性トナーを選択的に露光潜像に付着させ
る現像方式が採用されている。
In this type of electrophotographic apparatus, a non-magnetic sleeve in which a fixed magnet assembly is inserted and a photosensitive drum face each other, and the magnetic toner conveyed to the facing position (developing gap) via the non-magnetic sleeve is removed. A developing method of selectively attaching to an exposure latent image is adopted.

【0004】この種の磁性トナーを用いた現像方式にお
いては一成分の磁性トナーのみを用いて、例えば現像ギ
ャップ上に印加された現像バイアスを利用してトナーを
選択的に感光体ドラム側に飛翔させる飛翔現像方法、又
磁性トナーと一又は複数のキャリアを用い、キャリアと
の摺擦により現像容器内で電荷が注入された磁性トナー
を非磁性スリーブ上に担持させ、該磁性トナーを感光体
ドラム側に摺擦させながらトナー像の形成を行う複数成
分現像方法とが存在する。
In this type of developing method using a magnetic toner, only one component of the magnetic toner is used, and the toner is selectively caused to fly to the photosensitive drum side using, for example, a developing bias applied on a developing gap. A developing method using a magnetic toner and one or a plurality of carriers, carrying a magnetic toner having a charge injected in a developing container by rubbing with the carrier on a non-magnetic sleeve, and applying the magnetic toner to a photosensitive drum. And a multi-component developing method in which a toner image is formed while rubbing against the side.

【0005】又複写機等に用いられる現像方式のよう
に、感光体ドラムの表面電位と逆極性の電荷を磁性トナ
ーに注入させ、均一帯電させた感光体ドラムの画像背景
部を露光させた後、露光されていない潜像部に、逆極性
の電荷を有する磁性トナーを付着させる正転現像方式
と、プリンタに用いられる現像方式のように、感光体ド
ラムの表面電位と逆極性の電荷を有する磁性トナーに注
入させ、均一帯電させた感光体ドラムの画像背景部を露
光させた後、露光されていない潜像部に、逆極性の電荷
を磁性トナーを付着させる正規現像方式と、プリンタに
用いられる現像方式のように、感光体ドラムの表面電位
と同極性の電荷を磁性トナーに注入させ、均一帯電させ
た感光体ドラムに画像を露光させて電荷が除去された潜
像を形成した後、該潜像に、現像バイアスを利用して同
極性の電荷を有する磁性トナーを付着させる反転現像方
式とが存在する。
[0005] Further, as in a developing method used in a copying machine or the like, a charge having a polarity opposite to the surface potential of the photosensitive drum is injected into the magnetic toner, and the image background portion of the uniformly charged photosensitive drum is exposed. A non-exposed latent image portion to which a magnetic toner having a charge of opposite polarity is attached, and a developing method used for a printer, which has a charge having a polarity opposite to the surface potential of the photosensitive drum as in a developing method used for a printer. A regular development method in which a magnetic toner is injected into a uniformly charged photoreceptor drum to expose an image background portion, and then a non-exposed latent image portion is charged with a magnetic toner of opposite polarity, and used in a printer. As in the developing method, a charge having the same polarity as the surface potential of the photosensitive drum is injected into the magnetic toner, and an image is exposed on the uniformly charged photosensitive drum to form a latent image from which the charge has been removed. The submarine In a reversal development system for attaching a magnetic toner having an electric charge of the same polarity by using the developing bias is present.

【0006】そして、特に反転現像方式においては、感
光体上の潜像部に精度よくトナーを付着させ、一方背景
部にトナーを付着させずに、言換えればかぶりが生じる
ことなく鮮明画像を形成するには、感光体の表面電位と
現像バイアスの電位差を200V以上とする必要があっ
た。又、帯電工程においても感光体表面電位として50
0V以上必要であり、又露光後の静電潜像の電位差とし
て400V以上必要であった。
[0006] In particular, in the reversal developing method, a clear image is formed without causing toner to adhere to the latent image portion on the photoreceptor while adhering the toner to the background portion, in other words, without fogging. For this purpose, the potential difference between the surface potential of the photoconductor and the developing bias had to be 200 V or more. Also, in the charging step, the photoconductor surface potential is set to 50
0 V or more was required, and the potential difference of the electrostatic latent image after exposure was 400 V or more.

【0007】この為感光体には500V以上の帯電能を
有する感光体が要求され、そしてこの帯電能は膜厚に依
存し、例えばa−Si感光体の場合は、耐膜厚が12v
/μmである為、上記の条件を満たすためには、34μ
m以上の膜厚が必要であり、一方有機感光体(OPC)
の場合は20μm以上の膜厚が必要である。
For this reason, the photoreceptor is required to have a charging ability of 500 V or more, and this charging ability depends on the film thickness.
/ Μm, to satisfy the above conditions, 34 μm
m or more, while an organic photoreceptor (OPC)
In this case, a film thickness of 20 μm or more is required.

【0008】しかしながら、帯電電位や現像バイアス電
圧を上げることは、その分各電装部品について耐電圧力
を高めねばならず、部品のコスト上昇につながる。一
方、前記電子写真装置の露光手段にLEDヘッドを組込
んだLEDプリンタはレーザプリンタと異なり、小形化
を図る上で有利である。
However, increasing the charging potential and the developing bias voltage requires an increase in the withstand voltage of each electrical component, which leads to an increase in the cost of the component. On the other hand, unlike a laser printer, an LED printer in which an LED head is incorporated in the exposure means of the electrophotographic apparatus is advantageous in miniaturization.

【0009】かかるプリンタはLEDヘッドに前記LE
D素子列を一画素ライン毎に同時点灯させる、いわゆる
スタティック駆動方式と、前記LED素子列をチップ単
位若しくはnビット単位で分割し、該分割したブロック
単位毎に順次時分割駆動させながら露光を行なう、いわ
ゆるダイナミック駆動方式(特開昭60−34877)
が存在するが、多数のLED素子を一画素ライン毎に同
時点灯させる事は、駆動電流の増大を図る必要があり、
而も該LED素子と対応する数のリード線等を必要と
し、この為近年ダイナミック駆動方式が注目されてい
る。
In such a printer, the LE head is attached to the LED head.
A so-called static drive method in which the D element rows are simultaneously turned on for each pixel line, and the LED element rows are divided in chip units or n-bit units, and exposure is performed while sequentially performing time-division driving for each of the divided block units. So-called dynamic drive system (Japanese Patent Laid-Open No. 60-34877)
However, simultaneous lighting of a large number of LED elements for each pixel line requires an increase in drive current,
In addition, a number of lead wires and the like corresponding to the LED element are required, and therefore, a dynamic driving method has recently attracted attention.

【0010】ダイナミック駆動は一画素ライン通過時間
の範囲内で前記ブロック数に対応させて各ブロックの駆
動時間を時分割してLED素子を発光させるものである
ために、その発光時間はスタティック駆動に比較して大
幅に小さくなり、この為光導電体層に光励起される電荷
は一層少なくなり、露光後の静電潜像の電位差を400
V以上に設定することは困難である。
In the dynamic driving, the driving time of each block is time-divided in accordance with the number of blocks within one pixel line transit time to cause the LED elements to emit light. As a result, the charge photo-excited in the photoconductor layer is further reduced, and the potential difference of the electrostatic latent image after exposure is reduced by 400
It is difficult to set V or more.

【0011】[0011]

【発明が解決しようとする課題】本発明はかかる従来技
術の欠点に鑑み反転現像法において、低い表面帯電電
位、低現像バイアス電圧、更には露光後の静電潜像の電
位差を小さくした場合でも画像かぶりや濃度不足が生じ
る事なく、鮮明画像を形成し得る電子写真装置における
画像形成方法を提供する事にある。本発明の他の目的
は、前記露光手段にダイナミック駆動のLEDヘッドを
用いたプリンタに好適に適用される電子写真装置におけ
る画像形成方法を提供する事にある。
SUMMARY OF THE INVENTION In view of the drawbacks of the prior art, the present invention is directed to a reversal developing method, in which a low surface charging potential, a low developing bias voltage, and a small potential difference of an electrostatic latent image after exposure are reduced. An object of the present invention is to provide an image forming method in an electrophotographic apparatus capable of forming a clear image without causing image fogging or insufficient density. It is another object of the present invention to provide an image forming method in an electrophotographic apparatus which is suitably applied to a printer using a dynamically driven LED head as the exposure means.

【0012】[0012]

【課題を解決する為の手段】本発明はかかる技術的課題
を達成するために、図1に示すように、a−Si感光体
を具えた感光体ドラムと、固定磁石集成体を内包した非
磁性スリーブを対峙させ、前記非磁性スリーブ表面に層
厚規制手段により所定層厚で層厚規制された二成分磁性
現像剤を、前記両者間に形成される現像ギャップに導き
ながら、反転現像により感光体の露光部にトナー像を付
着させる電子写真装置において、 前記a−Si感光体の
層厚を2〜25μmに、前記感光体ドラムの表面帯電電
位を500V以下に、現像バイアス電圧を50〜450
Vに設定し、前記現像ギャップ幅Bを前記層厚規制手段
による規制層厚Aより大に設定するとともに、前記現像
ギャップに位置する前記二成分磁性現像剤のニップ量C
(現像剤溜まり)を、前記現像ギャップ幅B以上に設定
した事を第1の特徴とする。
According to the present invention, there is provided an a-Si photosensitive member as shown in FIG.
Photoconductor drum with a fixed magnet assembly
The magnetic sleeve faces each other, and a layer is formed on the surface of the non-magnetic sleeve.
Two-component magnet whose thickness is regulated at a predetermined layer thickness by thickness regulating means
The developer is led to the developing gap formed between the two.
A toner image on the exposed part of the photoreceptor
In the electrophotographic apparatus, the a-Si photoreceptor is
When the layer thickness is 2 to 25 μm,
And the developing bias voltage is 50 to 450 V.
Set V, the sets the development gap width B to larger than regulating layer thickness A by the layer thickness regulating means, nip amount C of the two-component magnetic developer located in the development gap
Configure (puddle developer), the more development gap width B
The was that the first feature.

【0013】尚、前記現像剤溜まりを得るには、現像ギ
ャップ上における非磁性スリーブ回転方向を感光体ドラ
ムの回転方向に対し順方向の、フォワードフィード回転
に設定するとともに、その周速を感光体ドラムの周速の
2.5〜5.0倍に設定するとともに、前記ニップ量C
を3〜5mmに設定するのがよい。けだし、その周速を
感光体ドラムの周速の2.5倍以上に設定する事により
前記現像ギャップに供給するトナー量を大にして、言換
えればトナー密度を大にして結果として短時間に現像効
率を上げることができる。この場合前記周速差が10倍
以上では前記相対的摺擦速度の増大による機内汚染や現
像剤の寿命低下等が生じやすい。従って本発明の、第2
の特徴は、非磁性スリーブ回転方向を前記感光体ドラム
の回転方向に対し、前記現像ギャップ上においてフォワ
ードフィード回転に設定し、その周速を前記感光体ドラ
ムの周速の2.5〜5倍にするとともに、前記ニップ量
Cを3〜5mmに設定したことにある。
In order to obtain the developer pool, the rotation direction of the non-magnetic sleeve on the developing gap is set to the forward feed rotation in the forward direction with respect to the rotation direction of the photosensitive drum, and the peripheral speed is set to the photosensitive member. It is set to 2.5 to 5.0 times the peripheral speed of the drum, and the nip amount C
Is preferably set to 3 to 5 mm. However, by setting the peripheral speed to be 2.5 times or more the peripheral speed of the photosensitive drum, the amount of toner supplied to the developing gap is increased, in other words, the toner density is increased, resulting in a short time. Development efficiency can be increased. In this case, if the peripheral speed difference is 10 times or more, contamination in the machine due to an increase in the relative rubbing speed, a reduction in the life of the developer, and the like are likely to occur. Therefore, the second aspect of the present invention
The feature is that the rotation direction of the non-magnetic sleeve is
Forward on the developing gap with respect to the rotation direction of
Feed rotation, and set the peripheral speed to
2.5 to 5 times the peripheral speed of the
C is set to 3 to 5 mm.

【0014】尚、前記非磁性スリーブを、カウンタフイ
ード回転にした場合、周速の規制をする事なく、前記現
像剤溜まりを得る事ができるが、機内汚染が生じさせな
いような工夫が必要である。そして前記現像剤溜まりに
より充分なる現像が可能であるために、a−Siの場合
に前記感光体の層厚を2〜25μm、OPC感光体の場
合に前記感光体の層厚を20μm以下に設定するのがよ
い。このように設定することにより、画像解像度や線画
先鋭度についても、図3に示すように、膜厚が25μm
以下の場合、膜厚が40μmの場合に比して大幅に向上
していることが理解でき、残像が発生することがない。
When the non-magnetic sleeve is rotated by counter feed, the developer pool can be obtained without restricting the peripheral speed, but it is necessary to take measures to prevent contamination inside the machine. is there. The layer thickness of the photoreceptor is set to 2 to 25 μm in the case of a-Si, and the layer thickness of the photoreceptor is set to 20 μm or less in the case of an OPC photoreceptor so that sufficient development is possible by the developer pool. Good to do. By setting in this manner, the image resolution and the sharpness of the line drawing are also reduced to a thickness of 25 μm as shown in FIG.
In the following cases, it can be understood that the film thickness is greatly improved as compared with the case where the film thickness is 40 μm, and no afterimage occurs.

【0015】又図5に示すように、膜厚25μm以下に
薄くして露光を行うと、従来の膜厚が40μmのa−S
iドラムを用いて露光を行った場合に比較して半減感度
が1/2〜1/3程度に大幅に低下し、この結果露光解
像度の向上と共に、画質面からみた焦点深度を深くさせ
ることが可能となる。従ってa−Si系材料で感光体を
形成する場合は膜厚を薄くする事により、少ない光出力
でも所定の電位度を得る事が出来るが、その下限は略2
μmに設定するのが好ましい。
Further, as shown in FIG. 5, when exposure is performed with the film thickness reduced to 25 μm or less, the conventional a-S
Compared with the case of performing exposure using an i-drum, the half reduction sensitivity is greatly reduced to about 1/2 to 1/3. As a result, the exposure resolution can be improved and the depth of focus from the viewpoint of image quality can be deepened. It becomes possible. Therefore, when the photoreceptor is formed of an a-Si-based material, a predetermined potential degree can be obtained with a small light output by reducing the film thickness.
It is preferably set to μm.

【0016】従って本発明は露光手段よりの光出力を受
光する感光体をa−Siで薄膜に形成した為に、前記露
光手段にダイナミック駆動によるLEDヘッドを用いる
事が可能となった。而して本発明は、露光手段としてダ
イナミック駆動のLEDヘッドを用いた場合に、スタテ
ィック駆動に比較して発光時間が1/m(m:LEDブ
ロック数)となるために、鮮明な画像を形成し得ないと
いう問題を解決する事が出来、前記したように実質的に
小さな露光エネルギーを、その受光側でこれを効率よく
捕捉し、そして該露光エネルギーを捕捉して生起させた
潜像を表面電位が低下したり、又地かぶり等が生じる事
なく効率よく可視像化する事が出来る。特にa−Si系
光導電体層は、他のSeAs、SeTe、CdS、OP
C等の感光体材料に比べて光吸収能と光キャリア発生能
が高く、而も発生したキャリアの移動度が高い為に、ダ
イナミック駆動による極めて短時間の光出力でも効率よ
く光電変換が可能となる。
Accordingly, in the present invention, since the photosensitive member for receiving the light output from the exposure means is formed in a thin film of a-Si, it is possible to use a dynamically driven LED head for the exposure means. Thus, according to the present invention, when a dynamic drive LED head is used as the exposure means, the light emission time is 1 / m (m: number of LED blocks) as compared with the static drive, so that a clear image is formed. As described above, a substantially small exposure energy can be effectively captured on the light receiving side as described above, and a latent image generated by capturing the exposure energy can be solved. A visible image can be efficiently formed without lowering the potential or causing a background fog. In particular, the a-Si based photoconductor layer is made of other SeAs, SeTe, CdS, OP
Compared to C and other photoreceptor materials, it has higher light absorbing ability and photo carrier generating ability and higher mobility of generated carriers, enabling efficient photoelectric conversion even with very short optical output by dynamic driving. Become.

【0017】そして更に短時間の光出力でも効率よく光
電変換を可能にするには感光体層厚を薄くして電界強度
を高める必要があるが、従来露光手段として用いられて
いるLEDアレイの場合は光導電体層を薄くすると光導
電体層における光吸収効率が低下し、好ましい露光電荷
を得るのが困難となる。そこで、LEDを露光手段に用
いた場合、例えばa−Si:H材の入射光の90%が吸
収されるまでの膜厚は約2.2μmであることに鑑み、
その下限値を2μmに設定している。
In order to efficiently perform photoelectric conversion even with light output for a shorter time, it is necessary to increase the electric field strength by reducing the thickness of the photoreceptor layer. In the case of an LED array conventionally used as an exposure means, When the photoconductor layer is made thinner, the light absorption efficiency of the photoconductor layer decreases, and it becomes difficult to obtain a preferable exposure charge. Therefore, when an LED is used as the exposure means, for example, in consideration of the fact that the film thickness until 90% of the incident light of the a-Si: H material is absorbed is about 2.2 μm,
The lower limit is set to 2 μm.

【0018】この場合前記感光体層を薄膜化した場合、
該感光体層に印加される帯電電位を余りに高くすると生
成膜が電気的に破壊される恐れが有る。そこで本発明は
前記感光体層の表面電位を500V以下、好ましくは4
50V以下に、又現像バイアス電圧を50〜450V、
好ましくは100〜300Vに設定した。これにより帯
電若しくは現像バイアス用の各電装部品について耐電圧
力を低く設定できるとともに、部品コストの低下及び感
光体ドラムの劣化若しくは疲労防止につながる。
In this case, when the photoconductor layer is thinned,
If the charging potential applied to the photoconductor layer is too high, the resulting film may be electrically destroyed. Therefore, the present invention provides a surface potential of the photoconductor layer of 500 V or less, preferably 4 V or less.
50 V or less, and a developing bias voltage of 50 to 450 V,
Preferably, it was set to 100 to 300V. As a result, the withstand voltage can be set low for each electrical component for charging or developing bias, and this leads to a reduction in component cost and prevention of deterioration or fatigue of the photosensitive drum.

【0019】[0019]

【実施例】以下、図面に基づいて本発明の実施例を例示
的に詳しく説明する。但しこの実施例に記載されている
構成部品の寸法、材質、形状、その相対配置などは特に
特定的な記載がない限りは、この発明の範囲をそれのみ
に限定する趣旨ではなく単なる説明例に過ぎない。図2
は本発明が適用される電子写真装置を示し、図上時計回
りに回転するa−Si感光体ドラム1の周囲に、回転方
向に沿って露光用LEDヘッド2及びセルフォックレン
ズ3からなる光学系、二成分現像ユニット4、転写ロー
ラ5、クリーニングブレード6、除電ランプ7、及び帯
電ユニット8が配設されている。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing an embodiment of the present invention; However, unless otherwise specified, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention, but are merely illustrative examples. Not just. FIG.
FIG. 1 shows an electrophotographic apparatus to which the present invention is applied, and an optical system including an exposure LED head 2 and a selfoc lens 3 around an a-Si photosensitive drum 1 rotating clockwise in FIG. , A two-component developing unit 4, a transfer roller 5, a cleaning blade 6, a neutralizing lamp 7, and a charging unit 8.

【0020】次に夫々の各構成要素について説明する。
感光体ドラム1は導電性支持体1a上に感光体層1b、
及び表面層1cが積層されて形成されており、該支持体
1aは、一般にはアルミ性の円筒体を用いるが、表面に
導電膜を被着させたガラス等無機材料や、エポキシ等の
透明な樹脂等で形成され、本実施例においては肉厚が2
mmで外周径を30mmに設定すると共に、軸方向に3
00mmの長さを有するアルミ製円筒体を用いている。
Next, each component will be described.
The photoconductor drum 1 includes a photoconductor layer 1b on a conductive support 1a,
The support 1a is generally formed of an aluminum cylindrical body, but is made of an inorganic material such as glass having a conductive film adhered to the surface, or a transparent material such as epoxy. It is formed of resin or the like, and in this embodiment, the thickness is 2
mm and the outer diameter is set to 30 mm, and 3 mm in the axial direction.
An aluminum cylinder having a length of 00 mm is used.

【0021】又前記a−Si系感光体層1b、及び表面
層1cは、グロー放電分解法、スパッタリング法、EC
R法、蒸着法等により膜形成し、その形成にあたって、
ダングリングボンド終端用の元素、例えば(H)やハロ
ゲンを5〜40wt.%含有させるのがよい。即ち、感
光体層1bはa−Si:Hからなる光導電体を用い、そ
して現像バイアスが正の場合には電子の移動度を高める
為、ノンドープ又はVa族元素を含有させ、又現像バイ
アスが負の場合には正孔の移動度を高めるため、IIIa
族元素を含有させるのが好ましい。又必要に応じて暗導
電率や光導電率等の電気的特性、光学的バンドギャップ
等について所望の特性を得るために、C,O,N等の元
素を含有させても良い。
The a-Si photosensitive layer 1b and the surface layer 1c are formed by a glow discharge decomposition method, a sputtering method,
A film is formed by an R method, a vapor deposition method, and the like.
An element for terminating a dangling bond, for example, (H) or halogen is 5 to 40 wt. %. That is, the photoconductor layer 1b uses a photoconductor made of a-Si: H. When the developing bias is positive, the photoconductive layer 1b contains a non-doped or Va group element in order to increase the mobility of electrons. In the case of a negative value, IIIa
It is preferable to include a group element. If necessary, elements such as C, O, and N may be contained in order to obtain desired characteristics such as electric characteristics such as dark conductivity and photoconductivity, and optical band gap.

【0022】そして、前記感光体層1b全体の膜厚は、
必要な帯電および絶縁耐圧の確保や、露光された光の吸
収や前記したように残留電位の抑制等から2〜25μm程
度にするのがよい。
The film thickness of the entire photosensitive layer 1b is:
The thickness is preferably about 2 to 25 μm in order to ensure necessary charging and insulation withstand voltage, absorb exposed light, and suppress the residual potential as described above.

【0023】又、表面層1cは、α−SiC、α−Si
O,α−SiN、α−SiON、α−SiCON等のa
−Si系の無機高抵抗若しくは絶縁材料、ポリエチレン
テレフタレート、パリレン、ポリ四フッ化エチレン、ポ
リイミド、ポリフッ化エチレンプロピレン等の有機絶縁
材料を用いるのがよく、特に高抵抗のa−SiC層を用
いると、絶縁耐圧や耐摩耗性、耐環境性等の特性が高め
られる。このa−Si1-xxのx値は0.3≦x<1.0、好
適には0.5≦x≦0.95に設定する事により1012 〜10
13Ω・cm範囲の抵抗値で高耐湿性を得る事が出来、こ
の場合層内でC量に勾配を持たせてもよい。またCと同
時にN,O,Geを含有させる事により耐湿性を更に高
めることが出来る。
The surface layer 1c is made of α-SiC, α-Si
A such as O, α-SiN, α-SiON, α-SiCON
-It is preferable to use an organic insulating material such as an inorganic high-resistance or insulating material of a Si type, such as polyethylene terephthalate, parylene, polytetrafluoroethylene, polyimide, or polyfluoroethylene propylene. In addition, characteristics such as dielectric strength, abrasion resistance, and environmental resistance are improved. The x value of this a-Si 1-x C x is set to 0.3 ≦ x <1.0, preferably 0.5 ≦ x ≦ 0.95, whereby 10 12 to 10
High moisture resistance can be obtained with a resistance value in the range of 13 Ω · cm, and in this case, the C amount may have a gradient in the layer. Further, by containing N, O, and Ge simultaneously with C, the moisture resistance can be further improved.

【0024】表面層1cの厚みは0.05〜5μm、好適に
は0.1〜3μmの範囲内が良く、又その厚みはこの際表面
層1cの抵抗は1012 〜1013Ω・cmに設定した。
The thickness of the surface layer 1c is preferably in the range of 0.05 to 5 μm, preferably 0.1 to 3 μm, and the thickness of the surface layer 1c is set to 10 12 to 10 13 Ω · cm.

【0025】尚、本実施例においては容量結合型グロー
放電分解装置を用いて、前記a−Si感光体層1bとa
−SiC表面層1cとを順次積層し、後記するように、
感光体の層厚が夫々7、10、15、20、25、40
μm厚みの膜層を有する感光体ドラム1を作製した。こ
の場合表面層1cの膜厚は最大3μm以下で且つ全体層
厚の略5%以下に設定する。
In this embodiment, the a-Si photoconductor layers 1b and a
-SiC surface layer 1c is sequentially laminated, and as described later,
The layer thickness of the photoreceptor is 7, 10, 15, 20, 25, 40, respectively.
A photosensitive drum 1 having a film layer having a thickness of μm was produced. In this case, the thickness of the surface layer 1c is set to 3 μm or less at the maximum and to about 5% or less of the total layer thickness.

【0026】尚、この際40μmの膜厚のものについて
は、肉厚が2mmのアルミ製円筒体では真円度が出ず、
この為再度成膜を行ったが、その結果は芳しくなかっ
た。そこで本実施例においては肉厚を4ミリのアルミ素
管を用いて再度成膜を行ったところ真円度を得ることが
出来た。従って膜厚を薄くすることは基体、即ちアルミ
製円筒体を薄くすることも可能となり、これにより軽量
化が達成される。
In this case, the circularity of the aluminum cylinder having a thickness of 2 mm is not obtained in the case of a film having a thickness of 40 μm.
For this reason, film formation was performed again, but the result was not good. Therefore, in the present embodiment, when the film was formed again using an aluminum pipe having a thickness of 4 mm, roundness could be obtained. Therefore, reducing the film thickness also makes it possible to reduce the thickness of the base, that is, the aluminum cylinder, thereby achieving weight reduction.

【0027】又露光用LEDヘッド2には740nmの
ヘッドアレイを用い、これをダイナミック駆動にて一走
査ライン毎に64ビット×40回分割露光され、夫々の
LED素子からの光入力強度を0.1μJ/cm2以上
で且つその露光パルス時間を5〜100μs、好ましく
は10〜30μsに設定している。る。
A 740 nm head array is used as the exposure LED head 2, and the head array is divided into 64 bits × 40 times for each scanning line by dynamic driving, and the light input intensity from each LED element is set to 0. The exposure pulse time is set to 1 μJ / cm 2 or more and the exposure pulse time is set to 5 to 100 μs, preferably 10 to 30 μs. You.

【0028】現像ユニット4は、キャリアとトナーから
なる複数成分現像剤が収納された現像容器41と固定磁
石集成体43が収納された非磁性の現像スリーブ42か
らなり、該スリーブ42に例えば50〜450Vに可変
可能な直流現像バイアス電源44を接続して、現像を行
うように構成する。そして 前記現像ユニット4の構成
について図1に基づいて更に詳細に説明するに、現像ユ
ニット4は現像容器41の上方位置に補給ローラ44を
介してトナー収容容器45が取付けられ、現像容器41
内のT/C濃度を検知する検知センサ46よりの信号に
基づいて適宜間隔で現像容器41内に磁性トナーを供給
可能に構成する。
The developing unit 4 comprises a developing container 41 in which a multi-component developer composed of a carrier and a toner is stored, and a non-magnetic developing sleeve 42 in which a fixed magnet assembly 43 is stored. A DC developing bias power supply 44 variable to 450 V is connected to perform development. The configuration of the developing unit 4 will be described in more detail with reference to FIG. 1. The developing unit 4 is provided with a toner container 45 via a supply roller 44 at a position above the developing container 41.
The magnetic toner can be supplied into the developing container 41 at appropriate intervals based on a signal from a detection sensor 46 for detecting the T / C concentration in the inside.

【0029】そして現像容器内41にはキャリアとトナ
ーを攪拌する攪拌ローラ47及び非磁性スリーブ42と
対面させて現像ギャップ上方位置に非磁性のドクタブレ
ード48を配する。又ドクタブレード48による層厚規
制間隔は現像ギャップ間隔Bより小、具体的には現像ギ
ャップ間隔Bを2mm、層厚規制間隔Aを1mmに設定
し、又感光体ドラム1は時計方向に、非磁性スリーブ4
2は反時計方向に回転させ、両者が現像ギャップ上でフ
ォワードフィード回転させている。そして非磁性スリー
ブ42の周速は感光体ドラム1の周速に対し、後記する
ように種々変化可能に構成している。
In the inside of the developing container 41, a non-magnetic doctor blade 48 is disposed above the developing gap so as to face the stirring roller 47 for stirring the carrier and the toner and the non-magnetic sleeve 42. Further, the layer thickness regulation interval by the doctor blade 48 is smaller than the development gap interval B, specifically, the development gap interval B is set to 2 mm, the layer thickness regulation interval A is set to 1 mm, and the photosensitive drum 1 is turned clockwise. Magnetic sleeve 4
2 rotates counterclockwise, and both rotate forward feed on the developing gap. The peripheral speed of the non-magnetic sleeve 42 can be variously changed with respect to the peripheral speed of the photosensitive drum 1 as described later.

【0030】又固定磁石集成体43は、現像ギャップと
対応する位置に主極N1を、又ドクターブレードを挟ん
で、S2、N3 を有し、更にシールド極S1及び搬送極N2
を有する。
The fixed magnet assembly 43 has a main pole N 1 at a position corresponding to the developing gap, S 2 and N 3 across a doctor blade , and further has a shield pole S 1 and a transport pole N 2.
Having.

【0031】そして前記現像容器内に収納されるキャリ
アにはフェライトキャリア、鉄粉、マグネタイト等から
なる磁性粉体キャリアと、磁性体がバインダー樹脂中に
均一に分散されてなるや磁性樹脂キャリアとの混合キャ
リアを用い、その磁力は、好ましくは5kOe(エール
ステッド)の磁場での最大磁化が55emu/g以上、
より好ましくは55〜80emu/gである。また、1
kOeの磁場での最大磁化は、45emu/g以上が好
適であり、より好ましくは45〜60emu/gであ
る。キャリア14の磁力が余り小さくなると、現像剤の
搬送性が劣化し、また、キャリアがトナーとともに現像
される。
The carrier contained in the developing container includes a magnetic powder carrier made of a ferrite carrier, iron powder, magnetite, and the like, and a magnetic resin carrier made of a magnetic substance uniformly dispersed in a binder resin. Using a mixed carrier, the magnetic force is preferably such that the maximum magnetization in a magnetic field of 5 kOe (Oersted) is 55 emu / g or more,
More preferably, it is 55 to 80 emu / g. Also, 1
The maximum magnetization in a kOe magnetic field is preferably 45 emu / g or more, more preferably 45 to 60 emu / g. If the magnetic force of the carrier 14 becomes too small, the transportability of the developer deteriorates, and the carrier is developed together with the toner.

【0032】又トナーは通常の高抵抗若しくは絶縁性ト
ナーが用いられ、例えば、バインダー樹脂、着色剤、電
荷制御剤、オフセット防止剤などに、磁性体を添加して
その平均中心粒度は5〜15μm前後の磁性トナーとし
て構成し上記のキャリアとトナーと適正混合比を例えば
85〜95:15〜5重量%に設定する。転写ローラ5
4は転写効率を上げるために導電性ローラを用い、前記
トナーの帯電電位と逆極性の転写バイアスを印加させる
とともに、前記感光体ドラム1周面に均一に圧接し、該
ドラム1と同期して回転可能に構成する。
As the toner, a normal high-resistance or insulating toner is used. For example, a magnetic substance is added to a binder resin, a colorant, a charge control agent, an anti-offset agent and the like, and the average central particle size is 5 to 15 μm. The carrier and the toner are configured as the front and rear magnetic toners, and the appropriate mixing ratio of the carrier and the toner is set to, for example, 85 to 95:15 to 5% by weight. Transfer roller 5
Reference numeral 4 uses a conductive roller to increase the transfer efficiency, applies a transfer bias having a polarity opposite to the charging potential of the toner, and uniformly presses against the peripheral surface of the photosensitive drum 1 to synchronize with the drum 1 It is configured to be rotatable.

【0033】帯電ユニット8にはすでに公知であるコロ
トロン方式の帯電器にて感光体上に均一に帯電させた。
図中81はコロナ放電線、82は制御グリッド、83は
放電バイアス、84は帯電制御バイアスである。本実施
例では、帯電制御バイアスを150Vから500V前後
に可変可能に設定した状態で高電圧の放電バイアスを印
加させる事により、感光体ドラム1表面を500V以下
の所定の表面電位に帯電させている。次にかかる装置を
利用して次のような実験を行った。
The charging unit 8 was uniformly charged on the photoreceptor by a known corotron type charger.
In the figure, 81 is a corona discharge line, 82 is a control grid, 83 is a discharge bias, and 84 is a charge control bias. In this embodiment, the surface of the photosensitive drum 1 is charged to a predetermined surface potential of 500 V or less by applying a high-voltage discharge bias in a state where the charging control bias is variably set from about 150 V to about 500 V. . Next, the following experiment was performed using such an apparatus.

【0034】先ず膜厚が25μmの感光体ドラム1を用
い、該感光体ドラム1の表面電位が300Vになるよう
に帯電制御バイアス等を調整し、又現像バイアス電圧を
210Vに設定した後、感光体ドラム1上に結像させる
エネルギーレベルが1.0μJ/cm2になるように、
露光ヘッド2の出力を調整した後、前記非磁性スリーブ
の感光体ドラムに対する相対的周速を1.5倍、2.5
倍、2.9倍、5倍に夫々設定し、現像ギャップ上に位
置する磁性現像剤のニップ量Cが、2mm、3mm、5
mm、5mmと変化し、そして夫々のニップ量Cにおけ
るかぶりと画像濃度を調べたところ、(表1)の値とな
った。
First, the photosensitive drum 1 having a thickness of 25 μm is used, the charging control bias and the like are adjusted so that the surface potential of the photosensitive drum 1 becomes 300 V, and the developing bias voltage is set to 210 V. The energy level to be imaged on the body drum 1 is 1.0 μJ / cm 2 ,
After adjusting the output of the exposure head 2, the relative peripheral speed of the non-magnetic sleeve with respect to the photosensitive drum is increased by 1.5 times and 2.5 times.
, 2.9 times, and 5 times, respectively, and the nip amount C of the magnetic developer located on the developing gap is 2 mm, 3 mm, 5 mm.
mm and 5 mm, and the fog and image density at each nip amount C were examined. The results were as shown in Table 1.

【0035】[0035]

【表1】 [Table 1]

【0036】尚、ニップ幅の飽和点とは、非磁性スリー
ブ42の現像ギャップ背面に配した主磁極N1の磁気的
保持力により現像ギャップ上で保持されるニップ量Cの
最大値を示し、従って本実施例の場合は該ニップ量Cは
前記スリーブの周速を2.9倍以上に増加させても、そ
れ以上現像ギャップ位置で増加することのない値、具体
的には4〜5mmを指す。
[0036] Note that the saturation point of the nip width, the maximum value of the nip amount C which is held on the developing gap by magnetic holding force of the main arranged on the back development gap pole N 1 of the non-magnetic sleeve 42, Therefore, in the case of the present embodiment, the nip amount C is set to a value which does not increase any more at the developing gap position even when the peripheral speed of the sleeve is increased 2.9 times or more, specifically 4 to 5 mm. Point.

【0037】本表より理解されるように、非磁性スリー
ブの感光体ドラムに対する相対的周速が2.9倍以上で
は、ニップ量Cが5mmと変化せず、飽和点に達してい
ることが理解され、且つその飽和域においては、感光体
ドラム1の表面電位が300V、又現像バイアス電圧を
210Vと低くした場合でも画像濃度もかぶりも発生す
ることなく、好ましい画像が得られた。
As can be understood from the table, when the peripheral speed of the non-magnetic sleeve relative to the photosensitive drum is 2.9 times or more, the nip amount C does not change to 5 mm and reaches the saturation point. It is understood that, in the saturation region, even when the surface potential of the photosensitive drum 1 is as low as 300 V and the developing bias voltage is as low as 210 V, a favorable image was obtained without occurrence of image density and fogging.

【0038】次に非磁性スリーブの感光体ドラムに対す
る相対的周速を2.9倍に設定した状態で、表面電位2
00V、現像バイアス電圧150Vで画像形成した場合
のドラム膜厚と線幅との関係を図3に示し、(A)は水
平方向、(B)は垂直方向の線画のグラフ図である。本
図より理解されるように、水平線及び垂直線のいずれの
場合も感光体膜厚が40mm以下の場合の線幅は、25
μm以下の場合の線幅に比較して太く、その分先鋭度と
解像度が低下している事が理解される。又25μm以下
の場合は、先鋭度も解像度もほぼ一致しており、有意差
はない。
Next, with the relative peripheral speed of the non-magnetic sleeve to the photosensitive drum set to 2.9 times, the surface potential 2
FIG. 3 shows the relationship between the drum film thickness and the line width when an image is formed at 00 V and a developing bias voltage of 150 V. FIG. 3A is a graph showing line drawings in the horizontal direction and FIG. As can be understood from this figure, the line width when the photoconductor thickness is 40 mm or less in both the horizontal line and the vertical line is 25 mm.
It is understood that the line width is thicker than that in the case of μm or less, and the sharpness and the resolution are reduced by that amount. In the case of 25 μm or less, the sharpness and the resolution are almost the same, and there is no significant difference.

【0039】更に図4は表面電位が450Vで帯電させ
た後、LEDヘッドのエネルギー密度を0.2μJ/c
2に引上げ、他は同一条件で露光した場合の焦点深度
とドラム感度の関係を示したもので、膜厚40μmの場
合に比較して、7μm、15μmのものは焦点深度が3
70μmと、焦点深度が2倍弱向上する事になり、そし
て焦点深度が大になることは、露光像を感光体ドラム上
に結像させる為の光学系の加工精度や組み立て精度をラ
フに設定できると共に、画像品質のバラツキが大幅に低
減する。
FIG. 4 shows that the energy density of the LED head is 0.2 μJ / c after charging at a surface potential of 450 V.
pulled m 2, other shows the relationship between focal depth and drum sensitivity when exposed under the same conditions, as compared with the case of the film thickness 40 [mu] m, 7 [mu] m, the depth of focus as the 15 [mu] m 3
With a depth of focus of 70 μm, the depth of focus is improved by a factor of less than two, and a large depth of focus means that the processing accuracy and assembly accuracy of the optical system for forming an exposure image on the photosensitive drum are roughly set. In addition to this, variations in image quality are greatly reduced.

【0040】尚、OPC感光体ドラムにおいても本発明
の効果を確認する為、膜厚が15μmのOPC感光体ド
ラムを用い、前記感光体ドラム1の表面電位が300V
になるように帯電制御バイアス等を調整し、又現像バイ
アス電圧を210Vに設定した後、感光体ドラム1上に
結像させるエネルギーレベルが1.0μJ/cm2にな
るように、露光ヘッド2の出力を調整した後、前記非磁
性スリーブの感光体ドラムに対する相対的周速を2.9
倍にして画像濃度とかぶりの状況を調べてみたところ表
1に示すように良好な結果が得られた。
In order to confirm the effect of the present invention also on the OPC photosensitive drum, an OPC photosensitive drum having a thickness of 15 μm was used, and the surface potential of the photosensitive drum 1 was 300 V.
The charging control bias, etc. adjusted to, also after setting the developing bias voltage to 210 V, the energy level to be imaged on the photosensitive drum 1 is such that the 1.0μJ / cm 2, the exposure head 2 After adjusting the output, the relative peripheral speed of the non-magnetic sleeve with respect to the photosensitive drum is set to 2.9.
When the image density and the fogging state were examined by doubling the density, good results were obtained as shown in Table 1.

【0041】[0041]

【発明の効果】以上記載したごとく本発明によれば、低
い表面帯電電位、低現像バイアス電圧、更には露光後の
静電潜像の電位差を小さくした場合でも画像かぶりや濃
度不足が生じる事なく、鮮明画像を形成し得る。又本発
明によれば、薄膜のa−Siドラムを用いた電子写真装
置においても残像が発生する事なく、而も前記露光手段
にダイナミック駆動のLEDヘッドを用いたプリンタに
おいても高画質で先鋭度が高い画像を容易に形成し得る
共に、露光手段の組み立て及び加工誤差が生じても高画
質の画像を容易に形成できる。等の種々の著効を有す。
As described above, according to the present invention, image fogging and insufficient density do not occur even when the potential difference between a low surface charge potential, a low developing bias voltage, and an electrostatic latent image after exposure is reduced. And a clear image can be formed. Further, according to the present invention, afterimages do not occur even in an electrophotographic apparatus using a thin-film a-Si drum, and high image quality and sharpness can be obtained even in a printer using a dynamically driven LED head as the exposure unit. Image can be easily formed, and a high-quality image can be easily formed even if an assembly and processing error of the exposure unit occurs. And so on.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図2の要部拡大図で、感光体ドラムと非磁性ス
リーブとの関係を示す。
FIG. 1 is an enlarged view of a main part of FIG. 2, showing a relationship between a photosensitive drum and a non-magnetic sleeve.

【図2】本発明が適用される電子写真装置を示す概略図
である。
FIG. 2 is a schematic view showing an electrophotographic apparatus to which the present invention is applied.

【図3】ドラム膜厚と線幅との関係を示し、(A)は水
平線、(B)は垂直線を示す。
FIG. 3 shows a relationship between a drum film thickness and a line width, wherein (A) shows a horizontal line and (B) shows a vertical line.

【図4】各ドラム膜厚におけるドラム感度と焦点深度の
関係を示すグラフ図である。
FIG. 4 is a graph showing a relationship between a drum sensitivity and a depth of focus for each drum film thickness.

【図5】ドラム膜厚と半減感度の関係を示すグラフ図で
ある。
FIG. 5 is a graph showing a relationship between a drum film thickness and half sensitivity.

【符号の説明】[Explanation of symbols]

1 感光体ドラム 2 露光用ヘッド 3 光学系 4 二成分現像ユニット 8 帯電装置 42 非磁性スリーブ 43 固定磁石集成体 DESCRIPTION OF SYMBOLS 1 Photosensitive drum 2 Exposure head 3 Optical system 4 Two-component developing unit 8 Charging device 42 Non-magnetic sleeve 43 Fixed magnet assembly

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−124027(JP,A) 特開 平1−133086(JP,A) 特開 平4−212181(JP,A) 特開 平2−73383(JP,A) (58)調査した分野(Int.Cl.7,DB名) G03G 15/08 - 15/095 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-6-124027 (JP, A) JP-A-1-13086 (JP, A) JP-A-4-212181 (JP, A) JP-A-2- 73383 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) G03G 15/08-15/095

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 a−Si感光体を具えた感光体ドラム
と、固定磁石集成体を内包した非磁性スリーブを対峙さ
せ、前記非磁性スリーブ表面に層厚規制手段により所定
層厚で層厚規制された二成分磁性現像剤を、前記両者間
に形成される現像ギャップに導きながら、反転現像によ
り感光体の露光部にトナー像を付着させる電子写真装置
において、 前記a−Si感光体の層厚を2〜25μmに、前記感光
体ドラムの表面帯電電位を500V以下に、現像バイア
ス電圧を50〜450Vに設定し、 前記現像ギャップ幅Bを前記層厚規制手段による規制層
厚Aより大に設定するとともに、前記現像ギャップに位
置する前記二成分磁性現像剤のニップ量Cを、前記現像
ギャップ幅B以上に設定し、 非磁性スリーブ回転方向を前記感光体ドラムの回転方向
に対し、前記現像ギャップ上においてフォワードフィー
ド回転に設定し、その周速を前記感光体ドラムの周速の
2.5〜5倍にするとともに、前記ニップ量Cを3〜5
mmに設定した事を特徴とする電子写真装置。
1. A photoconductor drum having an a-Si photoconductor and a non-magnetic sleeve containing a fixed magnet assembly are opposed to each other. An electrophotographic apparatus in which a toner image is attached to an exposed portion of a photoconductor by reversal development while guiding the two-component magnetic developer thus obtained to a developing gap formed between the two, the layer thickness of the a-Si photoconductor. Is set to 2 to 25 μm, the surface charging potential of the photosensitive drum is set to 500 V or less, the developing bias voltage is set to 50 to 450 V, and the developing gap width B is set to be larger than the regulation layer thickness A by the layer thickness regulation means. In addition, the nip amount C of the two-component magnetic developer located in the developing gap is set to be equal to or greater than the developing gap width B, and the non-magnetic sleeve rotation direction is the rotation direction of the photosensitive drum. Against, 3-5 set to the forward feed rotation on the developing gap, as well as the peripheral speed 2.5 to 5 times the peripheral speed of the photosensitive drum, the nip amount C
An electrophotographic apparatus characterized in that the distance is set to mm.
【請求項2】 前記感光体に露光を行う露光手段をダイ
ナミック駆動方式のLEDヘッドを用いて構成した請求
項1記載の電子写真装置。
2. An electrophotographic apparatus according to claim 1, wherein said exposure means for exposing said photoreceptor comprises a dynamic drive type LED head.
JP19722494A 1994-07-29 1994-07-29 Electrophotographic equipment Expired - Lifetime JP3251783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19722494A JP3251783B2 (en) 1994-07-29 1994-07-29 Electrophotographic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19722494A JP3251783B2 (en) 1994-07-29 1994-07-29 Electrophotographic equipment

Publications (2)

Publication Number Publication Date
JPH0844203A JPH0844203A (en) 1996-02-16
JP3251783B2 true JP3251783B2 (en) 2002-01-28

Family

ID=16370910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19722494A Expired - Lifetime JP3251783B2 (en) 1994-07-29 1994-07-29 Electrophotographic equipment

Country Status (1)

Country Link
JP (1) JP3251783B2 (en)

Also Published As

Publication number Publication date
JPH0844203A (en) 1996-02-16

Similar Documents

Publication Publication Date Title
US4545669A (en) Low voltage electrophotography with simultaneous photoreceptor charging, exposure and development
US4334772A (en) Electrophotographic apparatus of retentive type
WO1990004810A1 (en) Color electrophotographic method and apparatus
US5023666A (en) Image forming apparatus using an image carrier with multiple layers
JP3202746B2 (en) Method and apparatus for developing a three-level electrostatic latent image with toner
JP3251783B2 (en) Electrophotographic equipment
JP3943885B2 (en) Image forming method
US4898797A (en) Multiple xeroprinted copies from a single exposure using photosensitive film buffer element
JP3268753B2 (en) Image forming device
JP3146272B2 (en) Image forming method
JP3513331B2 (en) Image forming device
JP3630998B2 (en) Image forming apparatus
JPS6064364A (en) Method and device for image formation
JPH11184218A (en) Image forming device
KR910007441B1 (en) Color electrophotographic apparatus
JP3466840B2 (en) Image forming device
JP3332835B2 (en) Image forming device
JP3576744B2 (en) Image forming method
JP2604714B2 (en) Color electrophotographic equipment
JP2005215626A (en) Developing device
JP3140116B2 (en) Image forming method
JP3157891B2 (en) Image forming device
JP3538389B2 (en) Image forming apparatus and image forming method
KR920002923B1 (en) Color transcription photography apparatus
JPH05119542A (en) Conductive magnetic carrier for developer, developer, and image forming method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071116

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081116

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091116

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091116

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 12

EXPY Cancellation because of completion of term