JP3250970B2 - ERW steel tube cooling system - Google Patents

ERW steel tube cooling system

Info

Publication number
JP3250970B2
JP3250970B2 JP09516797A JP9516797A JP3250970B2 JP 3250970 B2 JP3250970 B2 JP 3250970B2 JP 09516797 A JP09516797 A JP 09516797A JP 9516797 A JP9516797 A JP 9516797A JP 3250970 B2 JP3250970 B2 JP 3250970B2
Authority
JP
Japan
Prior art keywords
steel pipe
cooling device
spray
cooling
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09516797A
Other languages
Japanese (ja)
Other versions
JPH10263687A (en
Inventor
剛 山本
道春 播木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Pipe Co Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Sumitomo Pipe and Tube Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd, Sumitomo Pipe and Tube Co Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP09516797A priority Critical patent/JP3250970B2/en
Publication of JPH10263687A publication Critical patent/JPH10263687A/en
Application granted granted Critical
Publication of JP3250970B2 publication Critical patent/JP3250970B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電縫鋼管、主に機
械構造用鋼管、電線管、建材管等に使用される比較的安
価な電縫鋼管の連続製造に用いられる鋼管冷却装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel pipe cooling apparatus used for continuous production of relatively inexpensive ERW pipes used for ERW pipes, mainly steel pipes for machine structures, electric conduits, building material pipes and the like.

【0002】[0002]

【従来の技術】機械構造用鋼管、電線管、建材管等に使
用される比較的安価な電縫鋼管の連続製造ラインでは、
帯状の鋼板がパイプ状に成形された後、成形管上部の突
き合わせ部が高周波誘導溶接等により製管溶接されて溶
接管とされる。この溶接管は更に冷却された後、サイジ
ング成形を受け、所定の寸法に切断される。
2. Description of the Related Art A relatively inexpensive continuous production line of ERW steel pipes used for steel pipes for machine structures, electric conduits, construction material pipes, etc.
After the strip-shaped steel plate is formed into a pipe shape, the butted portion on the upper part of the formed pipe is welded by high frequency induction welding or the like to form a welded pipe. After being further cooled, the welded pipe is subjected to sizing and cut to predetermined dimensions.

【0003】製管溶接後に冷却を行う目的は、製管溶接
では溶接部が周囲の母材部に比べて高温となり、このま
まの状態でサイジング成形を行うと、製品に曲がりや捩
じれ、その他の変形が生じ、製品の寸法精度を低下させ
るからである。そして、この冷却は、これまでは水槽に
鋼管を通過させる、いわゆる浸漬冷却により行うのが一
般的であった。
[0003] The purpose of cooling after pipe-forming welding is that the temperature of the welded portion is higher than that of the surrounding base material in pipe-forming welding, and if sizing is performed in this state, the product will bend, twist, or otherwise deform. This causes the dimensional accuracy of the product to deteriorate. Until now, this cooling has generally been performed by so-called immersion cooling in which a steel pipe is passed through a water tank.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、浸漬冷
却によると、数mを超え10mに及ぶような装置長が必
要になる。このような装置長は工場内スペースの有効利
用という点からも、またオペレータの監視範囲が広くな
るという点からも問題が多い。装置長を短くすると、こ
れらの問題は解決されるものの、冷却後に管周方向の温
度不均一が残り、サイジング成形後に製品の寸法精度が
低下するという問題が生じる。
However, according to the immersion cooling, a device length exceeding several m and extending to 10 m is required. Such a device length has many problems in terms of effective use of the space in the factory and in that the monitoring range of the operator is widened. When the apparatus length is shortened, these problems are solved, but there is a problem that the temperature in the circumferential direction of the tube remains non-uniform after cooling and the dimensional accuracy of the product is reduced after sizing.

【0005】本発明の目的は、製管溶接後の鋼管を管周
方向に均一に冷却し、しかも装置長を従来より大幅に短
縮することができる電縫鋼管の冷却装置を提供すること
にある。
An object of the present invention is to provide a cooling apparatus for an electric resistance welded steel pipe, which can uniformly cool a steel pipe after pipe welding in a pipe circumferential direction and can greatly reduce the length of the apparatus compared with the conventional apparatus. .

【0006】[0006]

【課題を解決するための手段】ところで、鋼管を効率よ
く冷却する方法としてスプレーノズルによる冷却が知ら
れている。これに関し、特開昭53−22109号公報
には、鋼管走行ラインの周囲に4個のスプレーノズルを
等角配置し、各スプレーノズルの水量を調整することに
より、鋼管を周方向に均一冷却する技術が記載されてい
る。
As a method of efficiently cooling a steel pipe, cooling by a spray nozzle is known. In this regard, JP-A-53-22109 discloses that four steel spray nozzles are equiangularly arranged around a steel pipe running line, and the amount of water in each spray nozzle is adjusted to uniformly cool the steel pipe in the circumferential direction. The technology is described.

【0007】しかしながら、電縫鋼管の溶接後の冷却で
は、鋼管全周を冷却水の温度と同じ温度まで冷却しない
と、その周方向の温度不均一を解消できないという制約
がある。
[0007] However, in the cooling after welding of the ERW steel pipe, there is a restriction that the temperature in the circumferential direction cannot be eliminated unless the entire circumference of the steel pipe is cooled to the same temperature as the cooling water.

【0008】即ち、溶接後の鋼管が冷却装置に進入した
時点での、溶接部の温度は200〜300℃であるのに
対し、母材部、特に溶接部と反対側の部分の温度は10
0℃程度である。この鋼管の周方向の温度不均一を解消
する方法として、鋼管全周を低温部の温度である100
℃程度に冷却することが考えられる。しかしながら、1
00℃前後は冷却効率が非常に高く、冷却速度が速いた
めに、冷却温度を100℃程度に管理することは至難で
ある。このため、周方向の温度不均一を解消しようとす
ると、結局は鋼管全周を冷却水の温度と同じ温度まで冷
却することが必要となる。
That is, when the steel pipe after welding enters the cooling device, the temperature of the welded portion is 200 to 300 ° C., whereas the temperature of the base metal portion, particularly the portion on the opposite side to the welded portion is 10 ° C.
It is about 0 ° C. As a method for eliminating the temperature unevenness in the circumferential direction of the steel pipe, the entire circumference of the steel pipe is set to 100 °
It is conceivable to cool to about ° C. However, 1
Since the cooling efficiency is very high at around 00 ° C. and the cooling rate is high, it is extremely difficult to control the cooling temperature to about 100 ° C. Therefore, in order to eliminate the temperature non-uniformity in the circumferential direction, it is necessary to eventually cool the entire circumference of the steel pipe to the same temperature as the temperature of the cooling water.

【0009】しかし、鋼管走行ラインの周囲に配設され
た4個程度のスプレーノズルでは、溶接部を担当するノ
ズルの冷却域が溶接部と比べて非常に広くなり、水量調
整を行っても溶接部が効率よく冷却されない。このた
め、溶接部の冷却が遅れ、その溶接部を他の部分と同じ
速度で冷却水の温度まで冷却しようとすると、非常に多
くの水量が必要となる。
[0009] However, with about four spray nozzles arranged around the steel pipe running line, the cooling area of the nozzle in charge of the welded portion is much wider than that of the welded portion. The part is not cooled efficiently. For this reason, the cooling of the weld is delayed, and an attempt to cool the weld to the temperature of the cooling water at the same speed as the other parts requires a very large amount of water.

【0010】本発明の冷却装置は、このような知見を基
礎として開発されたもので、溶接部を上方に向けて走行
する溶接後の鋼管の走行ライン上方に走行方向に並んで
縦列配置され、それぞれが冷媒液を鋼管の溶接部に長径
方向が溶接部に沿うよう楕円状に噴射する複数の第1ス
プレーノズルと、前記鋼管の走行ライン周囲に分散配置
され、それぞれが前記鋼管の母材部に冷媒液を面状に噴
射する複数の第2スプレーノズルとを組み合わせること
により、小さい装置長で水量を節約しつつ、溶接後の鋼
管を周方向に均一に冷却するものである。
The cooling device of the present invention has been developed on the basis of such knowledge, and is arranged in a row in a running direction above a running line of a welded steel pipe running with a welded portion directed upward, A plurality of first spray nozzles each of which injects a coolant liquid in an elliptical shape such that the major axis direction of the welded portion of the steel pipe is along the welded portion, and a plurality of first spray nozzles distributed around the running line of the steel pipe; By combining a plurality of second spray nozzles for spraying the coolant liquid in a plane, the steel pipe after welding is uniformly cooled in the circumferential direction while saving the amount of water with a short apparatus length.

【0011】冷媒液を楕円状に噴出する第1スプレーノ
ズルは、楕円ノズル、長円吹きノズル、或いはフラット
ノズル等と呼ばれるものである。本発明の冷却装置で
は、この第1スプレーノズルをその楕円状の噴射パター
ンの長径方向が溶接部に沿うように、溶接部上に縦列配
置することにより、溶接部は楕円状の噴射パターンが長
径方向に並んだ直線状の噴射パターンにより直線状に冷
却される。これにより、溶接部と母材部にそれぞれ最適
な水量密度が効率よく与えられ、両部分がバランスよく
冷却される結果、僅かの装置長及び水量で、溶接後の鋼
管が周方向に均一冷却される。
The first spray nozzle for ejecting the refrigerant liquid in an elliptical shape is called an elliptical nozzle, an oblong nozzle, a flat nozzle, or the like. In the cooling device of the present invention, the first spray nozzle is arranged in tandem on the welded portion such that the major axis direction of the elliptical spray pattern is along the welded portion. The cooling is performed linearly by the linear spray pattern arranged in the direction. As a result, the optimum water volume density is efficiently given to the welded portion and the base material portion, and both portions are cooled in a well-balanced manner.As a result, the steel pipe after welding is uniformly cooled in the circumferential direction with a small equipment length and water amount. You.

【0012】第1スプレーノズルによる楕円状噴射パタ
ーンの短径方向の寸法は、10mm以上、60mm以下
が好ましい。この寸法が小さすぎると、溶接部近傍の高
温域が十分にカバーされず、冷却後に周方向の温度不均
一が残る。逆にこの寸法が大きすぎる場合は、水量の浪
費を招く。
The dimension of the elliptical spray pattern by the first spray nozzle in the minor axis direction is preferably from 10 mm to 60 mm. If this dimension is too small, the high temperature region near the weld is not sufficiently covered, and after cooling, the temperature in the circumferential direction remains uneven. On the other hand, if this dimension is too large, water is wasted.

【0013】楕円状噴射パターンの長径方向の寸法は、
100mm以上、500mm以下が好ましい。この寸法
が小さすぎると、一定長の直線状パターンを形成するた
めに多数個のノズルが必要となり、設備コストが増大す
る。逆にこの寸法が大きすぎる場合は、流量密度を確保
し難くなると共に、スリット状のノズル孔が狭くなるこ
とにより、異物による詰まりが発生し易くなる。
The major dimension of the elliptical spray pattern is as follows:
100 mm or more and 500 mm or less are preferable. If this dimension is too small, a large number of nozzles are required to form a linear pattern of a fixed length, which increases equipment costs. On the other hand, if this dimension is too large, it becomes difficult to secure the flow rate density and the slit-shaped nozzle hole becomes narrow, so that clogging with foreign matter is likely to occur.

【0014】第1スプレーノズルの配列間隔は、第1ス
プレーノズルによる楕円状噴射パターンの長径方向の寸
法とほぼ同じであることが好ましい。この配列間隔が楕
円状噴射パターンの長径方向の寸法に対して大きい場合
は、隣接するノズルからの水流が離れることにより、装
置長が増大する。逆に小さい場合は、隣接するノズルか
らの水流が干渉することにより、冷却効率が低下する。
It is preferable that the arrangement interval of the first spray nozzles is substantially the same as the dimension of the elliptical spray pattern of the first spray nozzles in the major axis direction. When the arrangement interval is larger than the dimension in the major axis direction of the elliptical injection pattern, the water flow from the adjacent nozzle is separated, thereby increasing the device length. On the other hand, when it is small, the cooling efficiency is reduced due to interference of water flows from adjacent nozzles.

【0015】母材部の冷却を担当する第2スプレーノズ
ルとしては、その母材部をできるだけ広範囲に面冷却で
きるものがよく、具体的には冷媒液を鋼管表面に円形状
に噴射する円状ノズルが好適である。
The second spray nozzle which is responsible for cooling the base material is preferably one which can cool the base material as widely as possible. Specifically, the second spray nozzle sprays the coolant liquid in a circular shape on the surface of the steel pipe. Nozzles are preferred.

【0016】溶接部に対する水量密度は1.0×103
〜1.0×104 リットル/min・m2 が好ましい。
これが小さいと冷却効率が低下するが、大きすぎる場合
は冷媒液の浪費を招く。一方、母材部に対する水量密度
としては、温度がそれほど高くないことから3.0×1
2 〜1.0×103 リットル/min・m2 が好まし
い。
The water density for the weld is 1.0 × 10 3
1.0 to 10 4 liters / min · m 2 is preferable.
If this is small, the cooling efficiency will be reduced, but if it is too large, the refrigerant liquid will be wasted. On the other hand, the water density relative to the base material was 3.0 × 1 because the temperature was not so high.
0 2 to 1.0 × 10 3 liter / min · m 2 is preferable.

【0017】冷媒液としては、水に限らず、ソブリン油
を混合した水等も使用することができる。
The refrigerant liquid is not limited to water, but may be water mixed with sovereign oil.

【0018】[0018]

【発明の実施の形態】以下に本発明の実施形態を図面に
基づいて説明する。図1は本発明の1実施形態を示す冷
却装置の構成図、図2は図1のA−A線矢示図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram of a cooling device showing one embodiment of the present invention, and FIG. 2 is a diagram showing a line AA in FIG.

【0019】管状に成形され突き合わせ部を上にした成
形管10は、溶接装置20で突き合わせ部を溶接されて
溶接管11とされた後、冷却装置30に送られ、引き続
き図示さないサイザーに送られる。溶接装置20は、成
形管20の主に突き合わせ部を加熱する高周波誘導加熱
コイル21と、加熱された突き合わせ部を接合するスク
イズロール22,22とを備えている。
The formed tube 10 formed into a tubular shape and having a butt portion facing upward is welded at the butt portion by a welding device 20 to form a welded tube 11, and then sent to a cooling device 30 and subsequently sent to a sizer (not shown). Can be The welding device 20 includes a high-frequency induction heating coil 21 that mainly heats the butted portion of the formed tube 20, and squeeze rolls 22 that join the heated butted portion.

【0020】冷却装置30は、溶接管11の溶接部11
aを冷却するために、溶接管11の走行ライン上方にそ
の走行方向に等間隔をあけて設けられた複数の第1スプ
レーノズル31,31・・・と、溶接管11の母材部1
1bを冷却するために、溶接管11の走行ラインの両側
及び下方にその走行方向に等間隔をあけて設けられた複
数の第2スプレーノズル32,32・・・とを備えてい
る。
The cooling device 30 includes a welding portion 11 of the welding pipe 11.
a plurality of first spray nozzles 31, 31... provided at equal intervals in the traveling direction above the traveling line of the welding pipe 11 to cool the base material portion 1 of the welding pipe 11.
In order to cool 1b, a plurality of second spray nozzles 32 are provided on both sides and below the running line of the welding pipe 11 at equal intervals in the running direction.

【0021】第1スプレーノズル31,31・・・は、
冷媒液を溶接管11の溶接部11aに楕円形状に噴射す
る楕円ノズルであり、その楕円状噴射パターンの長径方
向が溶接部11aの方向を向き、且つ配列間隔が楕円状
噴射パターンの長径方向の寸法D1に一致するものとな
っている。これにより、溶接管11の溶接部11aは、
その上に長径方向に並んだ複数の楕円状噴射パターンに
より直線状に冷却される。
The first spray nozzles 31, 31,...
An elliptical nozzle for injecting the refrigerant liquid into the welded portion 11a of the welding pipe 11 in an elliptical shape, the major axis direction of the elliptical injection pattern faces the direction of the welded portion 11a, and the arrangement interval is the major axis direction of the elliptical injection pattern. It is the same as the dimension D1. Thereby, the welded portion 11a of the welded pipe 11 is
It is cooled linearly thereon by a plurality of elliptical injection patterns arranged in the major axis direction.

【0022】第2スプレーノズル32,32・・・は、
冷媒液を溶接管11の母材部11bに円形状に噴射する
円状ノズルであって、第1スプレーノズル31と同じ間
隔で溶接管11の走行方向に並ぶと共に、各位置では周
方向にほぼ等間隔で並んで、溶接管11の母材部11b
を冷却する。第2スプレーノズル32による円状噴射パ
ターンの直径Dは、隣接するパターンが走行方向及び周
方向に若干重なるように、楕円状噴射パターンの長径方
向の寸法D1より大きく設定されている。
The second spray nozzles 32, 32...
A circular nozzle for injecting the refrigerant liquid into the base material portion 11b of the welding pipe 11 in a circular shape. The nozzle is arranged in the running direction of the welding pipe 11 at the same interval as the first spray nozzle 31, and at each position, substantially in the circumferential direction. The base material portion 11b of the welded pipe 11 is arranged at equal intervals.
To cool. The diameter D of the circular spray pattern by the second spray nozzle 32 is set to be larger than the major dimension D1 of the elliptical spray pattern in such a manner that adjacent patterns slightly overlap in the running direction and the circumferential direction.

【0023】なお、噴射パターンの径は、本発明では管
表面上での湾曲した噴射パターンの径ではなく、ノズル
から管表面までの最短距離における平面的な噴射パター
ンの径を言う。
In the present invention, the diameter of the spray pattern is not the diameter of the curved spray pattern on the tube surface but the diameter of the planar spray pattern at the shortest distance from the nozzle to the tube surface.

【0024】上記冷却装置30によると、溶接管11の
母材部11bは、円状ノズルからなる複数の第2スプレ
ーノズル32,32・・・から噴射される冷媒液によ
り、比較的低い水量密度で冷却されるのに対し、溶接管
11の溶接部11aは、楕円ノズルからなる複数の第1
スプレーノズル31,31・・・から噴射される冷媒液
により、高い水量密度で限定的に集中冷却され、その結
果として溶接管11の全体が冷媒液とほぼ同じ温度まで
バランスよく冷却される。
According to the cooling device 30, the base material portion 11b of the welded pipe 11 has a relatively low water volume density due to the refrigerant liquid injected from the plurality of second spray nozzles 32, 32. On the other hand, the welded portion 11a of the welded pipe 11 has a plurality of first elliptical nozzles.
Due to the coolant liquid injected from the spray nozzles 31, 31,..., The coolant is limited and intensively cooled at a high water density, and as a result, the entirety of the welding pipe 11 is cooled in a well-balanced manner to substantially the same temperature as the coolant liquid.

【0025】即ち、溶接部11a及びその近傍の高温部
分に、他の部分より高い密度の水量が限定的に供給さ
れ、その結果として僅かの装置長及び水量で溶接管11
が周方向に均一に冷却されるのである。
That is, the amount of water having a higher density than that of the other parts is supplied to the welded portion 11a and the high-temperature portion in the vicinity thereof in a limited manner.
Is uniformly cooled in the circumferential direction.

【0026】[0026]

【実施例】次に本発明の実施例を示し、比較例と対比す
ることにより、本発明の効果を明らかにする。
EXAMPLES Next, examples of the present invention will be shown, and the effects of the present invention will be clarified by comparison with comparative examples.

【0027】外径が165.2mm、肉厚が3.2mm
の炭素鋼からなる電縫鋼管の連続製造ラインにおいて、
溶接装置の下流側に第1スプレーノズルとして、ワーク
ディスタンス200mmで長径が150mm、短径が4
0mmとなる楕円ノズルを、溶接管の溶接部上200m
mの位置に150mmの間隔で20個配置した。また第
2スプレーノズルとして、ワークディスタンス220m
mで直径が180mmとなる円状ノズルを、第1スプレ
ーノズルと同じ間隔で溶接管走行方向に20個配置する
と共に、各位置に周方向にほぼ等間隔をあけて3個配置
した。
The outer diameter is 165.2 mm and the wall thickness is 3.2 mm
In the continuous production line of ERW steel pipe made of carbon steel,
Downstream of the welding device, a first spray nozzle having a work distance of 200 mm, a major axis of 150 mm, and a minor axis of 4
The elliptical nozzle of 0 mm is placed 200 m above the welded part of the welded pipe.
20 were arranged at the position of m at intervals of 150 mm. The work distance is 220m as the second spray nozzle.
Twenty circular nozzles having a diameter of 180 mm and a diameter of 180 mm were arranged at the same interval as the first spray nozzle in the running direction of the welded pipe, and three at each position at substantially equal intervals in the circumferential direction.

【0028】溶接装置でのコイル供給電力が200kV
A、溶接速度が30m/分、冷却装置進入時の溶接部温
度が約200℃である条件のときに、温度が約30℃の
冷却水を20個の第1スプレーノズルからそれぞれ12
リットル/分の流量で噴射すると共に、60個の第2ス
プレーノズルからそれぞれ10リットル/分の流量で噴
射して、溶接管を水温とほぼ同じ約30℃まで冷却し
た。第1スプレーノズルでのトータル水量は240リッ
トル/分であり、ここでの水量密度は2.0×103
ットル/分・m2 であった。また、第2スプレーノズル
でのトータル水量は600リットル/分であり、ここで
の水量密度は0.42×103 リットル/分・m2 であ
った。
The coil supply power of the welding device is 200 kV
A. Under the condition that the welding speed is 30 m / min and the temperature of the welded portion when entering the cooling device is about 200 ° C., cooling water having a temperature of about 30 ° C.
Injection was performed at a flow rate of 1 liter / min, and at a flow rate of 10 liters / minute from each of the 60 second spray nozzles, to cool the welded pipe to about 30 ° C., which is almost equal to the water temperature. The total amount of water at the first spray nozzle was 240 liters / minute, and the water density here was 2.0 × 10 3 liters / minute · m 2 . The total amount of water at the second spray nozzle was 600 liters / minute, and the water density here was 0.42 × 10 3 liters / minute · m 2 .

【0029】冷却装置の装置長が3m(150mm×2
0)であったが、冷却後のサンジング成形で変形が発生
せず、管周方向に均一冷却されていることが確認され
た。
The length of the cooling device is 3 m (150 mm × 2
0), but no deformation occurred in the sanding after cooling, and it was confirmed that the pipe was uniformly cooled in the pipe circumferential direction.

【0030】ちなみに、従来の浸漬冷却の場合は、この
条件では9mの装置長を必要とした。
Incidentally, in the case of the conventional immersion cooling, an apparatus length of 9 m was required under this condition.

【0031】また比較のために、図3に示すように、ワ
ークディスタンス200mmで噴射パターン径が150
mmとなる円状ノズル32を溶接管走行ラインの真上、
両側及び真下の4位置に、走行方向に150mmの間隔
をあけて20個ずつ配置した。走行ラインの真上に配置
された20個の円状ノズル32からそれぞれ12リット
ル/分の流量で冷却水を噴射すると共に、残りの60個
の円状ノズルからそれぞれ10リットル/分の流量で冷
却水を噴射した場合は、溶接部近傍を除く部分は水温と
ほぼ同じ約30℃まで冷却されたが、溶接部近傍は十分
に冷却されなかったため、冷却後のサイジング成形で顕
著な変形が発生した。
For comparison, as shown in FIG. 3, the work distance was 200 mm and the spray pattern diameter was 150 mm.
mm nozzle 32 just above the welding pipe travel line,
Twenty pieces were placed at four positions on both sides and immediately below, with an interval of 150 mm in the running direction. Cooling water is injected at a flow rate of 12 liters / minute from each of the 20 circular nozzles 32 disposed directly above the traveling line, and cooling is performed at a flow rate of 10 liters / minute from the remaining 60 circular nozzles. When water was injected, the portion except for the vicinity of the weld was cooled to about 30 ° C., which was almost the same as the water temperature, but the vicinity of the weld was not sufficiently cooled, so that significant deformation occurred in the sizing after cooling. .

【0032】この変形が発生しないようにするために
は、走行ラインの真上に配置された20個の円状ノズル
32からそれぞれ45リットル/分の流量で冷却水を噴
射する必要があった。これは第1スプレーノズルからの
噴射流量(12リットル/分)の約4倍である。
In order to prevent this deformation from occurring, it was necessary to inject cooling water at a flow rate of 45 liters / minute from each of the 20 circular nozzles 32 disposed immediately above the running line. This is about four times the injection flow rate (12 l / min) from the first spray nozzle.

【0033】図4は電縫鋼管の溶接部を水冷するときの
水量密度と熱伝達率の関係についての調査結果を示した
図表である。電縫鋼管の溶接部に対する水量密度は、
1.0×103 リットル/分・m2 以上あれば、十分な
ことが分かる。
FIG. 4 is a table showing the results of investigation on the relationship between the water density and the heat transfer coefficient when the welded portion of the ERW steel pipe is water-cooled. The water density for the weld of the ERW pipe is
It can be seen that 1.0 × 10 3 liters / min · m 2 or more is sufficient.

【0034】[0034]

【発明の効果】以上の説明から明かなように、本発明の
電縫鋼管の冷却装置は、冷媒液を楕円状に噴射するスプ
レーノズルをその噴射パターンの長径方向が溶接部に沿
うように溶接部上に縦列配置し、溶接部を直線状に冷却
することにより、溶接部近傍の限られた高温部分に、そ
の部分に最適な水量密度を限定的に付与することができ
るので、溶接部及び母材部をバランスよく冷却すること
ができる。従って、従来の浸漬冷却と比べて、装置長を
大幅に短縮することができる。また、水量やノズル密度
を特に大きくする必要がないので、経済性にも優れる。
As is apparent from the above description, the cooling device for an electric resistance welded steel pipe according to the present invention welds a spray nozzle for injecting a coolant liquid in an elliptical shape so that the major axis direction of the spray pattern is along the welded portion. By arranging in tandem on the part and cooling the weld in a straight line, it is possible to limit the optimum water amount density to the limited high-temperature part in the vicinity of the weld. The base material can be cooled in a well-balanced manner. Therefore, the apparatus length can be significantly reduced as compared with the conventional immersion cooling. In addition, since there is no need to particularly increase the amount of water and the nozzle density, it is also economical.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の1実施形態を示す冷却装置の構成図で
ある。
FIG. 1 is a configuration diagram of a cooling device showing one embodiment of the present invention.

【図2】図1のA−A線矢示図である。FIG. 2 is a view taken along line AA of FIG.

【図3】比較用冷却装置の正面図である。FIG. 3 is a front view of a comparative cooling device.

【図4】電縫鋼管の溶接部に対する水量密度と熱伝達率
の関係を示す図表である。
FIG. 4 is a table showing a relationship between a water density and a heat transfer coefficient with respect to a welded portion of an ERW steel pipe.

【符号の説明】[Explanation of symbols]

10 成形管 11 溶接管 11a 溶接部 11b 母材部 20 溶接装置 30 冷却装置 31 第1スプレーノズル 32 第2スプレーノズル DESCRIPTION OF SYMBOLS 10 Formed pipe 11 Welded pipe 11a Weld part 11b Base material part 20 Welding device 30 Cooling device 31 First spray nozzle 32 Second spray nozzle

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭51−106618(JP,A) 特開 平8−319517(JP,A) 特開 昭61−199025(JP,A) 特開 平1−252732(JP,A) 特開 昭54−80213(JP,A) 特開 昭53−22109(JP,A) 特開 昭56−166325(JP,A) (58)調査した分野(Int.Cl.7,DB名) B21C 37/00 - 43/04 B23K 13/00 C21D 1/00 C21D 9/00 - 9/44 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-51-106618 (JP, A) JP-A-8-319517 (JP, A) JP-A-61-199025 (JP, A) JP-A-1- 252732 (JP, A) JP-A-54-80213 (JP, A) JP-A-53-22109 (JP, A) JP-A-56-166325 (JP, A) (58) Fields investigated (Int. 7 , DB name) B21C 37/00-43/04 B23K 13/00 C21D 1/00 C21D 9/00-9/44

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電縫鋼管製造ラインの溶接装置の下流側
に設けられる鋼管冷却装置であって、溶接部を上方に向
けて走行する溶接後の鋼管の走行ライン上方に走行方向
に並んで縦列配置され、それぞれが冷媒液を鋼管の溶接
部に長径方向が溶接部に沿うよう楕円状に噴射する複数
の第1スプレーノズルと、前記鋼管の走行ライン周囲に
分散配置され、それぞれが前記鋼管の母材部に冷媒液を
面状に噴射する複数の第2スプレーノズルとを具備する
ことを特徴とする電縫鋼管の冷却装置。
1. A steel pipe cooling device provided downstream of a welding device of an electric resistance welded steel pipe production line, wherein the steel pipe cooling device is arranged in a running direction above a running line of a welded steel pipe that runs a welded portion upward. A plurality of first spray nozzles are disposed, each of which sprays a refrigerant liquid in a shape of an ellipse such that a major axis direction of the refrigerant liquid is along the welded portion to the welded portion of the steel pipe, and is dispersedly arranged around a traveling line of the steel pipe, and each of the plurality of spray nozzles is disposed of A cooling device for an electric resistance welded steel pipe, comprising: a plurality of second spray nozzles for injecting a coolant liquid into a base material portion in a planar manner.
【請求項2】 第1スプレーノズルによる楕円状の噴射
パターンの短径方向の寸法が10mm以上、60mm以
下であることを特徴とする請求項1に記載の電縫鋼管の
冷却装置。
2. The cooling device for an electric resistance welded steel pipe according to claim 1, wherein the dimension in the minor axis direction of the elliptical spray pattern by the first spray nozzle is 10 mm or more and 60 mm or less.
【請求項3】 第1スプレーノズルの配列間隔が、第1
スプレーノズルによる楕円状の噴射パターンの長径方向
の寸法にほぼ等しいことを特徴とする請求項1又は2に
記載の電縫鋼管の冷却装置。
3. An arrangement interval of the first spray nozzles is equal to the first interval.
3. The cooling device for an electric resistance welded steel pipe according to claim 1, wherein the length of the elliptical injection pattern by the spray nozzle is substantially equal to the dimension in the major axis direction.
【請求項4】 第2スプレーノズルが、冷媒液を円形に
噴射する円形ノズルであることを特徴とする請求項1、
2又は3に記載の電縫鋼管の冷却装置。
4. The method according to claim 1, wherein the second spray nozzle is a circular nozzle for injecting the refrigerant liquid in a circular shape.
4. The cooling device for an electric resistance welded steel pipe according to 2 or 3.
JP09516797A 1997-03-27 1997-03-27 ERW steel tube cooling system Expired - Fee Related JP3250970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09516797A JP3250970B2 (en) 1997-03-27 1997-03-27 ERW steel tube cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09516797A JP3250970B2 (en) 1997-03-27 1997-03-27 ERW steel tube cooling system

Publications (2)

Publication Number Publication Date
JPH10263687A JPH10263687A (en) 1998-10-06
JP3250970B2 true JP3250970B2 (en) 2002-01-28

Family

ID=14130216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09516797A Expired - Fee Related JP3250970B2 (en) 1997-03-27 1997-03-27 ERW steel tube cooling system

Country Status (1)

Country Link
JP (1) JP3250970B2 (en)

Also Published As

Publication number Publication date
JPH10263687A (en) 1998-10-06

Similar Documents

Publication Publication Date Title
JP3664313B2 (en) Manufacturing method of welded metal pipe
JPS5817716B2 (en) Electric resistance welding equipment for manufacturing equipment for molten metal plated steel pipes
JP2001246408A (en) Device and method for uniformly cooling long size steel tube which is heated to high temperature
JP3250970B2 (en) ERW steel tube cooling system
JPS62292279A (en) Producing device for welded pipe
KR20190077757A (en) Device and method for welding steel material
KR100366250B1 (en) Multi-wound stainless steel pipe
JP3276318B2 (en) Cooling device for steel plate edge
JPH05148531A (en) Induction hardening device for work provided with flange
JP2005052867A (en) Flame scarfing device
JPH1069968A (en) Induction heating method and device
JP3348989B2 (en) Gas shield welding equipment for ERW steel pipes
JPH0418954B2 (en)
KR101534029B1 (en) Shielding gas injection apparatus and shielding gas injection apparatus for multiple welding
JPH09287026A (en) Method for hot treatment of metal bar material and cooling device
JPH09182987A (en) Method for cooling weld zone of welded tube
JP3556061B2 (en) Open pipe edge preheating device
JPH10272561A (en) Nozzle unit for hot-scarfing steel and steel hot-scarfing method
JP6058410B2 (en) Welding smoother for inner surface of welded steel pipe
JP2897707B2 (en) Gas shield welding equipment for ERW steel pipe production
JP2018176193A (en) Electric-resistance weld pipe welding device
JPS5912148Y2 (en) Impeder device for medium frequency induction welding method
JP3270719B2 (en) Cooling method of pressure welded steel pipe
JP2530502Y2 (en) One-shot hardening type induction hardening coil
KR0115078Y1 (en) Pipe making for impeder

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011009

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071116

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081116

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091116

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091116

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 11

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees