JP3250065B2 - Resin molding method and resin molded product - Google Patents

Resin molding method and resin molded product

Info

Publication number
JP3250065B2
JP3250065B2 JP28547394A JP28547394A JP3250065B2 JP 3250065 B2 JP3250065 B2 JP 3250065B2 JP 28547394 A JP28547394 A JP 28547394A JP 28547394 A JP28547394 A JP 28547394A JP 3250065 B2 JP3250065 B2 JP 3250065B2
Authority
JP
Japan
Prior art keywords
resin
fibers
molding method
product
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28547394A
Other languages
Japanese (ja)
Other versions
JPH08142218A (en
Inventor
幸久 熊谷
正道 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polyplastics Co Ltd
Original Assignee
Polyplastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyplastics Co Ltd filed Critical Polyplastics Co Ltd
Priority to JP28547394A priority Critical patent/JP3250065B2/en
Publication of JPH08142218A publication Critical patent/JPH08142218A/en
Application granted granted Critical
Publication of JP3250065B2 publication Critical patent/JP3250065B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0005Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor using fibre reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14598Coating tubular articles

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、繊維を混入させること
により強化された樹脂成形方法及び樹脂成形品に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resin molding method and a resin molded article reinforced by mixing fibers.

【0002】[0002]

【従来の技術】樹脂成形品は軽量化するのに有利である
と共に、錆による腐食の心配がないので水と接する箇所
で好適に使用できる反面、樹脂単独では引張破壊強度お
よび曲げ破壊強度に乏しい欠点がある。そこで、樹脂内
に繊維を混入せしめることによって強度を高める技術が
一般に知られており、多くの樹脂成形品に、そのような
樹脂組成物を使用したものが実用化されている。このよ
うな繊維の混入による強化は、繊維とマトリックス樹脂
の密着、繊維の強度、繊維の伸び及び繊維の配向によっ
て大きく左右されるといっても過言でない。
2. Description of the Related Art Resin molded articles are advantageous in reducing weight and can be suitably used in places in contact with water because there is no fear of corrosion due to rust. On the other hand, resin alone has poor tensile breaking strength and bending breaking strength. There are drawbacks. Therefore, a technique for increasing the strength by mixing fibers into a resin is generally known, and many resin molded articles using such a resin composition have been put to practical use. It is not an exaggeration to say that such reinforcement by mixing fibers largely depends on the adhesion between the fibers and the matrix resin, the strength of the fibers, the elongation of the fibers, and the orientation of the fibers.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来はその繊
維の配向の問題に関しての考慮がなく、強度が不足した
場合一般的にはリブによる補強あるいは肉厚の増加等で
対処する事が多かった。そのため材料の持っている性能
を十分に発揮した高い強度の製品が得られなかった。ま
た、その原因解明もされていないのが実情であった。
Conventionally, however, no consideration has been given to the problem of the orientation of the fiber, and when the strength is insufficient, it is common practice to reinforce it with ribs or to increase the wall thickness. . Therefore, a high-strength product that sufficiently exhibited the performance of the material could not be obtained. In addition, the fact has not been clarified.

【0004】[0004]

【課題を解決するための手段】本発明は、含有された繊
維の作用を解明し、それによって繊維の含有効果を有効
に利用して引張り破壊強度及び曲げ破壊強度をより向上
させ、品質の安定化を図ることに成功した成形方法であ
る。その第1手段の構成は、繊維を含有した熱可塑性合
成樹脂組成物を、1箇所に又は2箇所以上に設けられた
ゲートから製造しようとするキャビティ内へ射出させる
とともに、樹脂成形品中で2本以上に分岐流動させ、2
箇所以上から同時に合流させて樹脂会合部を形成させな
がら樹脂会合部に沿って溶融樹脂を流動させることによ
り、製品を強化しようとする方向へ繊維を強く配向させ
て樹脂会合部をほぼ平面状のまま硬化させる樹脂成形方
法である。なお、この第1手段の2本以上に分岐流動さ
せる具体的手段として、成形品中の流動位置で強化させ
たい部分の手前に、樹脂流動方向に直交するピン等の障
害部材を設けることが望ましい。第2手段の構成は、繊
維を含有した熱可塑性合成樹脂組成物を、1箇所に又は
2箇所以上に設けられたゲートから製造しようとするキ
ャビティ内へ射出させるとともに、樹脂成形品中で2箇
所以上に流動の速度の差をつけ、2箇所以上の先行した
樹脂流動部分を同時に合流させることにより生ずる樹脂
会合部に沿って繊維を強く配向させて製品を強化しよう
とする方向の曲げ応力に対し大きな強度向上をもたらす
樹脂成形方法である。なお、第2手段の2箇所以上に流
動の速度の差をつける具体的手段としては、強化したい
位置の手前の流動部分に肉厚の異なる部分を設ける方法
がある。第3手段の構成は、繊維を含有した熱可塑性合
成樹脂組成物を一端側の2箇所以上に設けられたゲート
から製造しようとするキャビティ内へ同時に射出させる
とともに、2箇所以上の先行した樹脂流動部分を合流さ
せることにより生ずる樹脂会合部に沿って繊維を強く配
向させて製品を強化しようとする方向の曲げ応力に対し
大きな強度向上をもたらす樹脂成形方法である。なお、
この方法では、キャビティ内へ射出される時点で複数本
に流動が分割されており、キャビティ内で生じる前記分
岐流動とは相違する。第4手段の構成は、繊維を含有し
た熱可塑性合成樹脂組成物を中心軸に対し等角度且つ等
距離又は中心軸対称となる2箇所以上に設けられたゲー
トから製造しようとする円柱又は角柱形状のキャビティ
内へ同時に射出させることにより生ずる樹脂会合部の特
性を活用し、製品を強化しようとする方向へ繊維の配向
を大きく変化させる樹脂成形方法である。第5手段の構
成は、前記第1手段から第4手段に係る方法を実施して
得られる繊維を含有した熱可塑性合成樹脂組成物を射出
させ、構造を強化しようとする方向へ樹脂会合部を形成
し、繊維の配向を大きく変化させた樹脂成形品であっ
て、繊維をその成形品中で重量平均繊維長0.3mm 以上と
する樹脂成形品である。
DISCLOSURE OF THE INVENTION The present invention clarifies the action of the contained fiber, thereby effectively utilizing the effect of the contained fiber to further improve the tensile breaking strength and the bending breaking strength, and stabilize the quality. This is a molding method that has succeeded in forming a molding. The configuration of the first means is to inject the thermoplastic synthetic resin composition containing the fiber into the cavity to be manufactured from the gate provided at one or two or more places, and to reduce More than two branches
By flowing the molten resin along the resin association section while simultaneously forming the resin association section from above the points, the fibers are strongly oriented in the direction in which the product is to be reinforced, and the resin association section is substantially flat. This is a resin molding method that cures as it is. As a specific means for branching and flowing into two or more of the first means, it is desirable to provide an obstruction member such as a pin perpendicular to the resin flow direction in front of a portion to be reinforced at the flow position in the molded article. . The configuration of the second means is that the thermoplastic synthetic resin composition containing the fiber is injected into the cavity to be manufactured from one or more gates provided at one or more places, and two points are formed in the resin molded article. The difference in flow speed is given above, and the bending stress in the direction of strengthening the product by strongly orienting the fiber along the resin association part caused by simultaneously joining two or more preceding resin flowing parts is considered. This is a resin molding method that provides a great improvement in strength. In addition, as a specific means for providing a difference in the flow speed at two or more locations of the second means, there is a method of providing a portion having a different thickness at a flow portion before a position to be strengthened. The structure of the third means is to simultaneously inject the thermoplastic synthetic resin composition containing the fiber into the cavity to be manufactured from the gates provided at two or more places on one end side, and to perform the resin flow at two or more places at the preceding point. This is a resin molding method in which fibers are strongly oriented along a resin association portion generated by merging portions, and a large improvement in strength against bending stress in a direction in which a product is to be strengthened. In addition,
In this method, the flow is divided into a plurality of flows at the time of injection into the cavity, which is different from the branch flow generated in the cavity. The configuration of the fourth means is that a cylindrical or prismatic shape to be manufactured from two or more gates provided with a thermoplastic synthetic resin composition containing fibers at equal angles and equidistant with respect to the central axis or symmetrical with respect to the central axis. This is a resin molding method in which the characteristics of the resin association portion generated by simultaneous injection into the cavity are utilized to greatly change the fiber orientation in the direction in which the product is to be reinforced. The structure of the fifth means is such that the thermoplastic synthetic resin composition containing fibers obtained by performing the method according to the first to fourth means is injected, and the resin association portion is formed in a direction in which the structure is to be reinforced. A resin molded product formed and having a greatly changed fiber orientation, wherein the fiber has a weight average fiber length of 0.3 mm or more in the molded product.

【0005】[0005]

【作用】第1手段の樹脂成形品中で2本以上に分岐流動
させ、2箇所以上から同時に合流させて樹脂会合部を形
成させながら樹脂会合部に沿って溶融樹脂を流動させる
ことにより、製品を強化しようとする方向へ繊維を強く
配向させて樹脂会合部をほぼ平面状のまま硬化させる。
第2手段の構成は、繊維を含有した熱可塑性合成樹脂組
成物を樹脂成形品中で2箇所以上に流動の速度の差をつ
け、2箇所以上の先行した樹脂流動部分を同時に合流さ
せる樹脂成形方法により、キャビティ内への射出時期が
異なる樹脂流動部分であってもその合流点の樹脂会合部
に沿って繊維を強く配向させて製品を強化しようとする
方向の曲げ応力に対し大きな強度向上をもたらす。第3
手段の一端側の2箇所以上に設けられたゲートから製造
しようとするキャビティ内へ同時に射出させるととも
に、2箇所以上の先行した樹脂流動部分を同時に合流さ
せる樹脂成形方法により、キャビティ内の流動方向へ樹
脂会合部に沿って繊維を強く配向させて製品を強化しよ
うとする方向の曲げ応力に対し大きな強度向上をもたら
す。第4手段の中心軸に対し等角度且つ等距離又は中心
軸対称となる2箇所以上に設けられたゲートから製造し
ようとする円柱又は角柱形状のキャビティ内へ同時に射
出させる樹脂成形方法により、円柱等形状のキャビティ
の長手方向という特定箇所にウエルドを形成できる。こ
のように、ウエルドを意図的に発生させることにより、
繊維をそのウエルド会合面に沿って平行に強く配向さ
せ、更に流動時の剪断により流動方向に強く配向させる
ことができ、その配向方向に対する引張強度及び曲げ強
度を大幅に向上させることができる。更に、第5手段の
繊維を成形品中で重量平均繊維長0.3mm 以上に長くする
技術を併用することにより、強化繊維の配向度合いを増
加させ強度を更に高めることができる。
In the resin molded product of the first means, the molten resin flows along the resin association section while branching and flowing into two or more parts and simultaneously joining from two or more places to form a resin association section. The fibers are strongly oriented in the direction in which the resin is to be strengthened, and the resin association portion is cured while remaining substantially flat.
The configuration of the second means is that a thermoplastic synthetic resin composition containing fibers is provided with a difference in flow speed at two or more places in a resin molded product, and two or more preceding resin flowing parts are simultaneously merged. By the method, even in the resin flowing part where the injection timing into the cavity is different, the fiber is strongly oriented along the resin association part at the confluence to greatly increase the bending strength in the direction to strengthen the product. Bring. Third
A resin molding method for simultaneously injecting into the cavity to be manufactured from gates provided at two or more places on one end side of the means and simultaneously joining two or more preceding resin flowing parts in the direction of flow in the cavity. The fiber is strongly oriented along the resin association portion, thereby providing a large strength improvement against bending stress in the direction in which the product is to be reinforced. A resin molding method for simultaneously injecting into a cylindrical or prismatic cavity to be manufactured from gates provided at two or more locations equiangular, equidistant or centrally symmetric with respect to the central axis of the fourth means, etc. A weld can be formed at a specific location in the longitudinal direction of the shaped cavity. In this way, by intentionally generating weld,
The fibers can be strongly orientated in parallel along the weld-association surface, and can be strongly orientated in the flow direction by shearing during the flow, and the tensile strength and bending strength in the orientation direction can be greatly improved. Further, by using the fifth means of increasing the fiber length to 0.3 mm or more in the molded product, the degree of orientation of the reinforcing fibers can be increased and the strength can be further increased.

【0006】[0006]

【実施例】本発明に係る樹脂製成形方法及びその樹脂成
形品、並びにそれらの金型構造を図面に基づいて説明す
る。図1から図4は、樹脂製円柱状試験片の固定型と可
動型からなる射出成形用金型の、正面、側面及び平面を
まとめて例示したものである。1は成形機のノズルに接
続されるスプルー、2、2A及び2Bはスプルー1から
製品部キャビティに向け溶融樹脂を流す為のランナー、
3、3A及び3Bは前記ランナー2、2A、2Bから樹
脂を流入させる為のゲート、4は前記ゲート3、3A、
3Bから樹脂が流入される、製造しようとする製品部キ
ャビティである。他に金型には、図示しないが成形品、
ランナーを突き出す為のエジェクター及び金型の冷却温
調を行う為の冷却回路が設置されている。各部材の寸法
は、スプルー1は先端部でφ4mm、根本部でφ8m
m、ランナー2、2A、2Bはφ8mmの円形断面形状
とし、ゲート3、3A、3Bはφ4mmの円形断面形状
とした。図1はゲートを鍔部側面に2箇所設けた樹脂製
円柱状試験片金型の基本構造説明図である。図1の2つ
のランナー2A、2Bはスプルー1から、一端側のゲー
ト3A、3Bまでの距離は同一であり、その形状も中心
軸に対し等角度、等距離及び中心軸対称となっている。
図3はゲートを鍔部の上面に2箇所設けたものを示す。
図1と同様に、図3のランナー2、2は、スプルー1か
ら、一端側の上面に隣接して設けられる各々のゲート
3、3までの距離は同一で、ゲート3、3は中心軸に対
し等角度、等距離及び中心軸対称となっている。図2は
ゲート3を鍔部4Aの側面に、また、図4はゲート3A
を鍔部4Aの上面に各々1箇所設けたものを示し、それ
らの鍔部4Aの1点ゲート3及び3Aから溶融樹脂を充
填させる構造となっている。これらは、従来技術の例と
して、図1及び図3と対比するために示したものであ
り、本発明のような効果は生じない。図5及び図6は、
樹脂製円筒状試験片の固定型と可動型からなる射出成形
用金型に係るキャビティを例示したもので、5は成形機
のノズルに接続されるスプルーでもあるダイレクトゲー
ト、6は製造しようとする成形品の製品部キャビティの
構造となっている。図6のキャビティは図5のものの肉
抜き8aのための突起を金型から一部削除し、8個から
4個に減らすことにより、厚い肉厚部8bを形成してい
る。成形品を突き出す為のエジェクター及び金型の冷却
温調を行う為の冷却回路は図示されてはいないが金型に
は設置されている。スプルー5は先端部でφ4mm、根
本部でφ8mmの円形断面形状とした。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A resin molding method according to the present invention, a resin molded product thereof, and a mold structure thereof will be described with reference to the drawings. FIGS. 1 to 4 collectively exemplify the front, side, and plane of an injection mold including a fixed mold and a movable mold for a resin cylindrical test piece. 1 is a sprue connected to the nozzle of the molding machine, 2, 2A and 2B are runners for flowing molten resin from the sprue 1 toward the product cavity.
3, 3A and 3B are gates for flowing resin from the runners 2, 2A and 2B, and 4 is the gates 3 and 3A.
This is a product part cavity to be manufactured into which resin flows from 3B. In addition to the mold, although not shown, a molded product,
An ejector for projecting the runner and a cooling circuit for controlling the cooling temperature of the mold are provided. The dimensions of each member are as follows: the sprue 1 is φ4 mm at the tip and φ8 m at the root.
m, the runners 2, 2A, 2B had a circular cross section of φ8 mm, and the gates 3, 3A, 3B had a circular cross section of φ4 mm. FIG. 1 is an explanatory view of the basic structure of a resin cylindrical test piece mold in which gates are provided at two places on the side surface of a flange portion. The two runners 2A, 2B in FIG. 1 have the same distance from the sprue 1 to the gates 3A, 3B on one end, and their shapes are also equiangular, equidistant, and symmetric with respect to the central axis.
FIG. 3 shows an example in which two gates are provided on the upper surface of the flange.
As in FIG. 1, the runners 2 and 2 in FIG. 3 have the same distance from the sprue 1 to each of the gates 3 and 3 provided adjacent to the upper surface on one end side. It is equiangular, equidistant, and symmetric with respect to the central axis. FIG. 2 shows the gate 3 on the side of the flange 4A, and FIG.
Are provided on the upper surface of the flange portion 4A, respectively, and the molten resin is filled from the one-point gates 3 and 3A of the flange portion 4A. These are shown for comparison with FIGS. 1 and 3 as examples of the prior art, and do not provide the effects of the present invention. FIG. 5 and FIG.
This is an example of a cavity for an injection mold composed of a fixed mold and a movable mold of a resin cylindrical test piece. 5 is a direct gate which is also a sprue connected to a nozzle of a molding machine, and 6 is to manufacture. It has the structure of the product part cavity of the molded product. The cavity shown in FIG. 6 forms a thick portion 8b by partially removing the projection for the lightening 8a of FIG. 5 from the mold and reducing the number of protrusions from eight to four. Although not shown, an ejector for ejecting a molded article and a cooling circuit for controlling the cooling temperature of the mold are installed in the mold. The sprue 5 had a circular cross section of φ4 mm at the tip and φ8 mm at the root.

【0007】熱可塑性合成樹脂組成物としては、一般に
繊維強化熱可塑性樹脂として知られているものがいずれ
も使用できるが、ガラス繊維やカーボン繊維、合成繊維
などの長繊維に、押出し機で溶融した熱可塑性プラスチ
ックを含浸させ、適当な長さに切断してペレット化した
ものが好適に使用される。この熱可塑性合成樹脂組成物
は、長繊維の折損を最低限に留めるため、圧縮比が小さ
く、深溝のスクリューを備え、ノズルの大きな射出装置
を使用することが望ましく、逆流防止弁を備えたものが
好適である。
As the thermoplastic synthetic resin composition, any one generally known as a fiber-reinforced thermoplastic resin can be used, but it is melted into long fibers such as glass fiber, carbon fiber and synthetic fiber by an extruder. What is impregnated with a thermoplastic, cut into an appropriate length, and pelletized is preferably used. In order to minimize breakage of long fibers, the thermoplastic synthetic resin composition has a small compression ratio, is provided with a deep groove screw, and it is desirable to use an injection device having a large nozzle, and is provided with a check valve. Is preferred.

【0008】この様な樹脂組成物を用いて前記射出成形
金型により、周知の射出手段によって樹脂製円柱状試験
片及び樹脂製円筒状試験片の射出成形品を成形する。円
柱状試験片の射出工程に於いては、図1の様に鍔部に相
当する部位4Aの中心軸に対して対称位置に設けられた
ゲート3A,3Bから製品部キャビティ4内に溶融樹脂
を同時に充填開始した場合、鍔部分4AにウエルドWが
発生し樹脂がウエルドWである樹脂会合部に沿って流動
して、点線で示すように平面状の樹脂会合部であるウェ
ルドWを形成したまま硬化していく事により、溶融樹脂
中の繊維は流動方向である中心軸と平行な方向に強く配
向し、後述の実験に示すように引張の荷重に対し大きな
強度向上をもたらす事になる。図3についても同様なこ
とが言える。又溶融樹脂中の重量平均繊維長が大きい場
合はこの傾向がより顕著となる。また、円筒状試験片の
射出工程に於ける樹脂流動を、模式的に表現する図7に
より説明する。図7(a)はキャビティの斜視図を、
(b)は、平面図の(c)における鎖線で切断する縦断
面図を、線分Lはキャビティ表面における時間毎の流動
パターンを示す。肉厚部8bの樹脂流動が、肉厚の薄い
他の部分8cの樹脂流動より速く先行するため、その肉
厚部8bに挟まれる肉厚の薄い部分8cに、流動方向と
平行にウエルドWが発生し、溶融樹脂中の繊維がウェル
ドWに沿って強く配向し、後述の実験に示すように曲げ
応力に対し大きな強度向上をもたらす事になる。本発明
においては、上記のように意図的にウエルドを発生さ
せ、強化したい方向に繊維を強く配向させる事に特徴が
ある
Using the above resin composition, an injection-molded product of a resin-made cylindrical test piece and a resin-made cylindrical test piece is molded by a well-known injection means using the above-mentioned injection mold. In the injection process of the cylindrical test piece, molten resin is injected into the product part cavity 4 from the gates 3A and 3B provided symmetrically with respect to the central axis of the part 4A corresponding to the flange as shown in FIG. When the filling is started at the same time, a weld W is generated in the flange portion 4A, and the resin flows along the resin association portion which is the weld W, and as shown by a dotted line, the weld is a planar resin association portion.
The fibers in the molten resin are strongly oriented in the direction parallel to the central axis, which is the flow direction, by hardening while forming the screen W, and as shown in the experiment described later, the strength is greatly improved with respect to the tensile load. Will bring. The same can be said for FIG. This tendency becomes more remarkable when the weight average fiber length in the molten resin is large. FIG. 7 schematically illustrates the flow of resin in the injection step of a cylindrical test piece. FIG. 7A is a perspective view of the cavity,
(B) is a vertical cross-sectional view taken along the chain line in (c) of the plan view, and a line segment L represents a flow pattern at each time on the cavity surface. Since the resin flow of the thick portion 8b precedes the resin flow of the other thin portion 8c faster, the weld W is formed in parallel with the flow direction on the thin portion 8c sandwiched between the thick portions 8b. As a result, the fibers in the molten resin are strongly oriented along the weld W, resulting in a great improvement in strength against bending stress as shown in an experiment described later. The present invention is characterized in that the weld is intentionally generated as described above, and the fibers are strongly oriented in the direction in which reinforcement is desired.

【0009】<実験例1>樹脂製円柱状試験片で、短繊
維を含有した樹脂と長繊維を含有した樹脂とによる引張
破壊強度、重量平均繊維長の比較を試みた。実験は前記
実施例の図1及び図3の2点ゲート金型並びに図2及び
図4の1点ゲート金型を使用し、射出成形品を得た。実
験例1の成形条件、実験条件及び実験結果は下記表1か
ら表4に示す。また2点ゲート成形品と1点ゲート成形
品の断面の繊維配向の観察を行う。ここで使用した熱可
塑性合成樹脂組成物は、いずれもポリアミド66をマト
リックスとしガラス繊維を50重量%含有させた短繊維
強化樹脂材料と長繊維強化樹脂材料(ペレット長12.
7mm)である。
<Experimental Example 1> With respect to a cylindrical test piece made of resin, a comparison was made between tensile strength at break and weight average fiber length of a resin containing short fibers and a resin containing long fibers. In the experiment, an injection-molded product was obtained using the two-point gate mold of FIGS. 1 and 3 and the one-point gate mold of FIGS. The molding conditions, experimental conditions, and experimental results of Experimental Example 1 are shown in Tables 1 to 4 below. In addition, the fiber orientation of the cross section of the two-point gate molded product and the one-point gate molded product is observed. Each of the thermoplastic synthetic resin compositions used here was a short fiber reinforced resin material containing polyamide 66 as a matrix and containing 50% by weight of glass fiber and a long fiber reinforced resin material (pellet length 12.
7 mm).

【0010】[0010]

【表1】 尚成形機は株式会社大隈鉄工所製のOKM150を使用
した。
[Table 1] The molding machine used was OKM150 manufactured by Okuma Iron Works Co., Ltd.

【0011】[0011]

【表2】 尚、株式会社島津製作所製 万能試験機DSS−500
0を使用した。
[Table 2] A universal tester DSS-500 manufactured by Shimadzu Corporation
0 was used.

【0012】[0012]

【表3】 [Table 3]

【0013】[0013]

【表4】 [Table 4]

【0014】また、2点ゲートによる成形品と1点ゲー
ト成形品の断面の繊維配向を、図3の線分a−aにおけ
る断面の端面図である図8、及び図4の線分b−bにお
ける断面の端面図である図9に示した。図8及び図9と
もに、周端にはスキン層Sがあり、その内周にはコア層
Cが形成されているが、2点ゲート使用時には成形品中
央部にウエルドWがみられ、繊維配向の変化が観察され
る。これは短繊維樹脂でも長繊維樹脂でも同様に観察さ
れる。
Further, the fiber orientation of the cross section of the molded product by the two-point gate and the cross-section of the molded product by the one-point gate is shown by an end view of the cross section taken along line a--a in FIG. FIG. 9 is an end view of the cross section at b. 8 and 9, there is a skin layer S at the peripheral end and a core layer C on the inner periphery thereof. However, when a two-point gate is used, a weld W is seen in the center of the molded product, and fiber orientation is observed. Is observed. This is similarly observed for both short fiber resin and long fiber resin.

【0015】以上の結果より、ウエルドを意図的に発生
させ、そのウエルドを引張の方向と平行にしたとき、引
張破壊荷重が向上していることが確認された。その効果
は長繊維強化樹脂を用いて、その繊維が成形品中で重量
平均繊維長0.3mm 以上のときより好ましい。
From the above results, it was confirmed that when a weld was intentionally generated and the weld was made parallel to the tensile direction, the tensile breaking load was improved. The effect is more preferable when the long fiber reinforced resin is used and the fiber has a weight average fiber length of 0.3 mm or more in the molded article.

【0016】<実験例2>樹脂製円筒状試験片にて肉抜
き形状の違いによる成形品の曲げトルクの比較評価を行
った。実験は前記実施例の装置の図5と図6の金型を使
用し、肉抜きを設けたもの(図5)及び図5の肉抜きを
金型から一部削除したもの(図6)の射出成形品を得
た。成形条件、実験条件及び実験結果を下記表5から表
7に示す。ここで使用した熱可塑性合成樹脂組成物は、
ポリプロピレンをマトリックスとしガラス繊維を40重
量%含有させた長繊維強化樹脂材料(ペレット長12.
7mm)である。
<Experimental Example 2> A comparative evaluation of the bending torque of a molded product due to a difference in the thickness of a hollow portion made of a resin-made cylindrical test piece was performed. The experiment was performed using the molds of FIGS. 5 and 6 of the apparatus of the above embodiment, with the lightening provided (FIG. 5) and with the lightening of FIG. 5 partially removed from the mold (FIG. 6). An injection molded product was obtained. The molding conditions, experimental conditions and experimental results are shown in Tables 5 to 7 below. The thermoplastic synthetic resin composition used here,
Long fiber reinforced resin material containing 40% by weight of glass fiber with polypropylene as matrix (pellet length 12.
7 mm).

【0017】[0017]

【表5】 尚成形機は株式会社大隈鉄工所製のOKM150を使用
した。
[Table 5] The molding machine used was OKM150 manufactured by Okuma Iron Works Co., Ltd.

【0018】[0018]

【表6】 尚、株式会社島津製作所製 万能試験機IS−5000
を使用した。
[Table 6] In addition, a universal testing machine IS-5000 manufactured by Shimadzu Corporation
It was used.

【0019】[0019]

【表7】 [Table 7]

【0020】以上の結果より、剛性を強化したい部分に
ウエルドを意図的に発生させ、そのウエルドを曲げの方
向と直角にしたとき、曲げトルクが向上していることが
確認された。なお、キャビティの内側でウエルドを生じ
させる手段としては、図1及び図3のようにゲートを複
数個設ける手段や、図11のようにキャビティの内側に
おいて強化させたい部分の手前に、樹脂流動方向に直交
するピンの障害等による空間部11を設け、点線で示す
ように平面状の樹脂会合部であるウェルドWを形成した
まま硬化させる手段がある。図11の上側にはキャビテ
ィの平面図を、下側にはゲートを含んだ縦断面図を示し
ている。また、その分岐流動に速度差を生じさせる手段
としては、図12のようにキャビティの内側に金型の突
起により、キャビティの肉薄部12を形成する方法があ
る。なお、図11及び図12に示す一点鎖線Lは時間毎
の流動パターンを示している。
From the above results, it has been confirmed that when a weld is intentionally generated at a portion where rigidity is desired to be increased and the weld is made perpendicular to the direction of bending, the bending torque is improved. As a means for generating a weld inside the cavity, a means for providing a plurality of gates as shown in FIGS. 1 and 3 or a resin flow direction before the portion to be reinforced inside the cavity as shown in FIG. Is provided with a space portion 11 due to a pin failure or the like orthogonal to FIG.
A weld W, which is a planar resin association portion, is formed as described above.
There is a means to cure as it is. The upper side of FIG. 11 shows a plan view of the cavity, and the lower side shows a longitudinal sectional view including a gate. As a means for causing a velocity difference in the branch flow, there is a method of forming a thin portion 12 of the cavity by using a projection of a mold inside the cavity as shown in FIG. Note that the alternate long and short dash line L shown in FIGS. 11 and 12 indicates a flow pattern every time .

【0021】図13は、円柱形状のキャビティの一端側
である円柱の底面に2箇所以上に設けられるゲートの位
置の説明図である。(a)は、底面の中心軸に対し等角
度且つ等距離、及び中心軸対称となる5箇所にゲートを
設けている。(b)は等角度ではあるが等距離及び中心
軸対称ではないから適当ではない。(c)は、等角度で
はない(θ1≠θ2)が等距離及び中心軸対称である。
(d)は、等距離ではないが等角度及び中心軸対称であ
る。なお、中心軸に位置するゲートは等角度、等距離及
び中心軸対称ではないが、その位置以外のゲートの個数
分多くウェルドを作成するので適当である。図14は、
円柱形状のキャビティの円柱底面以外の一端側に設ける
ゲートの位置を側面から示す説明図である。(a)は、
長手方向の曲げを強化するためにその長手方向に樹脂流
動する場合、円柱の側面の一端側である樹脂流動の上手
側に、一点鎖線で示す中心軸に対し対称的に及び等角度
且つ等距離にある場合を示し、図1と同じである。
(b)は、強化する部位の前提となる樹脂流動方向が異
なっているので適当ではない。(c)及び(d)は、中
心軸との対称性が欠如しており適当ではない。
FIG. 13 is an explanatory view of the positions of gates provided at two or more locations on the bottom surface of a cylinder, which is one end side of a cylindrical cavity. (A), gates are provided at five locations that are equiangular, equidistant, and symmetric with respect to the central axis of the bottom surface. (B) is not appropriate because it is equiangular but not equidistant and not symmetric about the central axis. (C) is not equiangular (θ1 ≠ θ2) but is equidistant and symmetric about the central axis.
(D) is not equidistant but equiangular and central axis symmetric. The gates located on the central axis are not equiangular, equidistant, and symmetric with respect to the central axis, but it is appropriate because welds are created as many as the number of gates other than the positions. FIG.
It is explanatory drawing which shows the position of the gate provided in one end side other than the cylindrical bottom face of a cylindrical cavity from a side surface. (A)
When the resin flows in the longitudinal direction in order to strengthen the bending in the longitudinal direction, the upper side of the resin flow, which is one end of the side surface of the cylinder, is symmetrical, equiangular, and equidistant with respect to the central axis indicated by the dashed line. , Which is the same as FIG.
(B) is not appropriate because the resin flow direction which is the premise of the part to be reinforced is different. (C) and (d) are not suitable because they lack symmetry with the central axis.

【0022】本実施例及び実験例はポリアミド、ポリプ
ロピレンについて説明したが、他の熱可塑性合成樹脂組
成物、例えばPBT.PET.ポリアセタール、、ポリ
ウレタン等でも数値の違いはあるにしろ同様の結果が確
認され、本発明で使用される熱可塑性合成樹脂、繊維の
種類は自由に選択できる。
Although the examples and experimental examples have been described for polyamide and polypropylene, other thermoplastic synthetic resin compositions such as PBT. PET. Similar results were confirmed for polyacetal, polyurethane, and the like, albeit with different numerical values, and the type of thermoplastic synthetic resin and fiber used in the present invention can be freely selected.

【0023】[0023]

【発明の効果】本発明によれば、繊維がウエルド形成方
向と平行に強く配向されることにより、その方向に対す
る引張強度及び曲げ強度を大幅に向上させることができ
る。更に、繊維を長くする技術を併用することにより、
強化繊維の配向度合いを増加させ強度を更に高めること
ができ、その繊維は成形品中で重量平均繊維長0.3mm 以
上がより好ましい。
According to the present invention, since the fibers are strongly oriented parallel to the direction in which the weld is formed, the tensile strength and bending strength in that direction can be greatly improved. Furthermore, by using technology to lengthen the fiber,
The degree of orientation of the reinforcing fibers can be increased to further increase the strength, and the fibers are more preferably 0.3 mm or more in weight average fiber length in the molded product.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係るゲートを鍔部側面に2箇所設け
た樹脂製円柱状試験片金型で、実験例1で採用の基本構
造説明図である。
FIG. 1 is a diagram illustrating a basic structure of a resin cylindrical test piece mold having two gates provided on a side surface of a flange portion according to the present invention, which is adopted in Experimental Example 1.

【図2】 従来技術に係るゲートを鍔部側面に1箇所設
けた樹脂製円柱状試験片金型で、実験例1で採用の基本
構造説明図である。
FIG. 2 is a diagram illustrating a basic structure of a resin-made cylindrical test piece mold in which a gate according to the related art is provided at one position on a side surface of a flange portion, which is adopted in Experimental Example 1.

【図3】 本発明に係るゲートを鍔部上面に2箇所設け
た樹脂製円柱状試験片金型で、実験例1で採用の基本構
造説明図である。
FIG. 3 is a diagram illustrating a basic structure of a resin column-shaped test piece mold in which two gates according to the present invention are provided on the upper surface of a flange portion, which are adopted in Experimental Example 1.

【図4】 従来技術に係るゲートを鍔部上面に1箇所設
けた樹脂製円柱状試験片金型で、実験例1で採用の基本
構造説明図である。
FIG. 4 is a view illustrating a basic structure of a resin column-shaped test piece mold in which a gate according to the related art is provided at one place on the upper surface of a flange portion, which is adopted in Experimental Example 1.

【図5】 従来技術に係る具体例としてゲート周囲に8
個の肉抜きを設けた樹脂製円筒状試験片金型で、実験例
2で採用の基本構造説明図である。
FIG. 5 shows an example around the gate as a specific example according to the prior art.
FIG. 9 is a diagram illustrating a basic structure of a resin-made cylindrical test piece mold provided with individual hollow portions and adopted in Experimental Example 2.

【図6】 本発明に係る具体例として図5の8個の肉抜
きを1つおきになくし4個の肉抜きを設けた樹脂製円筒
状試験片金型で、実験例2で採用の基本構造説明図であ
る。
FIG. 6 shows a concrete example of the present invention, which is a resin cylindrical test piece mold provided with four lightenings instead of every other eight lightenings in FIG. FIG.

【図7】 円筒状試験片の射出工程に於ける樹脂の充填
パターンを示す模式図である。
FIG. 7 is a schematic view showing a filling pattern of a resin in an injection step of a cylindrical test piece.

【図8】 図3の線分a−aにおける断面の端面図であ
る。
FIG. 8 is an end view of a cross section taken along line aa in FIG. 3;

【図9】 図4の線分b−bにおける断面の端面図であ
る。
FIG. 9 is an end view of a cross section taken along line bb in FIG. 4;

【図10】 図5、図6の成形品の曲げ試験の様子を示
した説明図である。
FIG. 10 is an explanatory view showing a state of a bending test of the molded product of FIGS. 5 and 6;

【図11】 他の実施例の説明図である。FIG. 11 is an explanatory diagram of another embodiment.

【図12】 他の実施例の説明図である。FIG. 12 is an explanatory diagram of another embodiment.

【図13】 ゲートの位置の説明図である。FIG. 13 is an explanatory diagram of a position of a gate.

【図14】 ゲートの位置の説明図である。FIG. 14 is an explanatory diagram of a position of a gate.

【符号の説明】[Explanation of symbols]

1…スプルー、 2,2A,2B…ランナー、 3,3
A,3B…ゲート、4…製品部キャビティ、 4A…鍔
部、 5…スプルー、 6…円筒状成形品、7…曲げの
負荷のかかる円筒部分、 8a…肉抜き基本形状、 8
b…肉抜きを削除し厚肉化した部分、 8c…円筒基本
形状、 9…固定用治具、 10…ハンドル 11…肉
抜き、 12…薄肉部分、 L…流動パターン、 W…
ウェルド、 S…スキン層、 C…コア層、 F…荷
重。
1 ... sprue, 2, 2A, 2B ... runner, 3, 3
A, 3B: gate, 4: product cavity, 4A: flange, 5: sprue, 6: cylindrical molded product, 7: cylindrical portion subjected to bending load, 8a: basic shape of lightening, 8
b: a portion where the thickness is removed and the thickness is increased 8c: a cylindrical basic shape, 9: a fixing jig, 10: a handle 11: a thickness, 12: a thin portion, L: a flow pattern, W:
Weld, S: skin layer, C: core layer, F: load.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B29C 45/00 - 45/84 B29D 23/00 ──────────────────────────────────────────────────続 き Continued on the front page (58) Fields surveyed (Int. Cl. 7 , DB name) B29C 45/00-45/84 B29D 23/00

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 繊維を含有した熱可塑性合成樹脂組成物
を、1箇所に又は2箇所以上に設けられたゲートから製
造しようとするキャビティ内へ射出させるとともに、樹
脂成形品中で2本以上に分岐流動させ、2箇所以上から
同時に合流させて樹脂会合部を形成させながら樹脂会合
部に沿って溶融樹脂を流動させることにより、製品を強
化しようとする方向へ繊維を強く配向させて樹脂会合部
をほぼ平面状のまま硬化させる樹脂成形方法。
1. A thermoplastic synthetic resin composition containing fibers is injected into a cavity to be manufactured from a gate provided at one or two or more places, and is injected into two or more resin molded articles. Resin association while forming a resin association part by branching and flowing simultaneously from two or more places
The Rukoto in flowing molten resin along the section, the product fibers are oriented strongly in the direction to be reinforced with a resin meeting portion
Resin molding method in which the resin is cured while remaining substantially flat .
【請求項2】 繊維を含有した熱可塑性合成樹脂組成物
を、1箇所に又は2箇所以上に設けられたゲートから製
造しようとするキャビティ内へ射出させるとともに、樹
脂成形品中で2箇所以上に流動の速度の差をつけ、2箇
所以上の先行した樹脂流動部分を同時に合流させること
により生ずる樹脂会合部に沿って繊維を強く配向させて
製品を強化しようとする方向の曲げ応力に対し大きな強
度向上をもたらす樹脂成形方法。
2. A thermoplastic synthetic resin composition containing fibers is injected into a cavity to be manufactured from one or more gates provided at one or more locations, and is injected into two or more locations in a resin molded product. Bending stress in the direction of strengthening the product by strongly orienting the fibers along the resin association caused by simultaneously joining two or more preceding resin flowing parts by making the flow speed different. Great strength against
Resin molding method which improves the degree .
【請求項3】 繊維を含有した熱可塑性合成樹脂組成物
を、一端側の2箇所以上に設けられたゲートから製造し
ようとするキャビティ内へ同時に射出させるとともに、
2箇所以上の先行した樹脂流動部分を同時に合流させる
ことにより生ずる樹脂会合部に沿って繊維を強く配向さ
せて製品を強化しようとする方向の曲げ応力に対し大き
な強度向上をもたらす樹脂成形方法。
3. A thermoplastic synthetic resin composition containing fibers is simultaneously injected into cavities to be manufactured from gates provided at two or more locations on one end side , and
The fibers are strongly oriented along the resin association caused by the simultaneous merging of two or more preceding resin flow sections.
The bending stress in the direction in which the product is to be strengthened.
A resin molding method that provides a great improvement in strength .
【請求項4】 繊維を含有した熱可塑性合成樹脂組成物
を中心軸に対し等角度且つ等距離又は中心軸対称となる
2箇所以上に設けられたゲートから製造しようとする円
又は角柱形状のキャビティ内へ同時に射出させること
により生ずる樹脂会合部の特性を活用し、製品を強化し
ようとする方向へ繊維の配向を大きく変化させる樹脂成
形方法。
4. A cylindrical or prism-shaped cavity to be manufactured from two or more gates provided with a thermoplastic synthetic resin composition containing fibers at an equiangular, equidistant or central axis symmetry with respect to a central axis. A resin molding method that utilizes the characteristics of a resin association portion caused by simultaneous injection into the interior to greatly change the fiber orientation in the direction in which the product is to be reinforced.
【請求項5】 請求項1から請求項4のいずれかの樹脂
成形方法により成形される樹脂成形品であって、繊維を
その成形品中で重量平均繊維長0.3mm 以上とする樹脂成
形品。
5. A resin molded article molded by the resin molding method according to claim 1, wherein the fiber has a weight average fiber length of 0.3 mm or more in the molded article.
JP28547394A 1994-11-18 1994-11-18 Resin molding method and resin molded product Expired - Fee Related JP3250065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28547394A JP3250065B2 (en) 1994-11-18 1994-11-18 Resin molding method and resin molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28547394A JP3250065B2 (en) 1994-11-18 1994-11-18 Resin molding method and resin molded product

Publications (2)

Publication Number Publication Date
JPH08142218A JPH08142218A (en) 1996-06-04
JP3250065B2 true JP3250065B2 (en) 2002-01-28

Family

ID=17691980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28547394A Expired - Fee Related JP3250065B2 (en) 1994-11-18 1994-11-18 Resin molding method and resin molded product

Country Status (1)

Country Link
JP (1) JP3250065B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2360242A (en) * 2000-03-17 2001-09-19 Patterson & Rothwell Ltd Moulded plastics components and method
JP4613971B2 (en) 2008-03-25 2011-01-19 東海ゴム工業株式会社 Resin molding method, resin molded product, and mold
EP2481548A4 (en) 2009-09-25 2013-10-02 Tokai Rubber Ind Ltd Resin molding method and resin molding
JP6796934B2 (en) * 2016-02-22 2020-12-09 ダイセルポリマー株式会社 Manufacturing method of rod-shaped molded product
JP6777910B2 (en) * 2016-07-15 2020-10-28 日本ケミカルスクリュー株式会社 Bolt molding method and bolts, and bolt molding molds

Also Published As

Publication number Publication date
JPH08142218A (en) 1996-06-04

Similar Documents

Publication Publication Date Title
US4439387A (en) Method of manufacturing a composite reinforcing structure
US4312917A (en) Fiber-reinforced compound composite structure and method of manufacturing same
CA1129453A (en) Games rackets
USRE32772E (en) Method of manufacturing a composite reinforcing structure
JP2802430B2 (en) Molding method
EP2860009B1 (en) Method for their manufacture of reinforced moulded items
US10220578B2 (en) Fiber composite material component, and method for producing a fiber composite material component
JP3250065B2 (en) Resin molding method and resin molded product
US6843954B2 (en) Injection molding techniques utilizing fluid channels
Malzahn et al. Transverse core fiber alignment in short-fiber injection-molding
US3591215A (en) Plastic rope connector
EP1257411B1 (en) Multi-component injection moulding with liquid injection for articles with knit lines and article produced thereby
JPH04118301A (en) Resin wheel
JP3232387B2 (en) Grooved resin molded product and molding method
JP2972024B2 (en) Sandwich injection molding method
US2693095A (en) slingsby
JP3211019B2 (en) Resin molded article by reduced flow and molding method thereof
JPS6372517A (en) Manufacture of fiber reinforced plastic bolt
JP2773261B2 (en) Method for producing fiber-reinforced thermoplastic resin molded article
JPH07293535A (en) Resin bolt and its forming method
JP2563236B2 (en) Racket frame manufacturing method
CN1065812C (en) Process for the processing of thermoplastic polymers by means of the injection-moulding techinque
JPH1158536A (en) Manufacture of fiber reinforced resin composite body
JPH08142217A (en) Rod-shaped resin molded product and molding thereof
JPS63221023A (en) Reinforcing weldline

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees