JP3249275B2 - Transmission voltage adjustment processing device in distribution system - Google Patents

Transmission voltage adjustment processing device in distribution system

Info

Publication number
JP3249275B2
JP3249275B2 JP33893893A JP33893893A JP3249275B2 JP 3249275 B2 JP3249275 B2 JP 3249275B2 JP 33893893 A JP33893893 A JP 33893893A JP 33893893 A JP33893893 A JP 33893893A JP 3249275 B2 JP3249275 B2 JP 3249275B2
Authority
JP
Japan
Prior art keywords
voltage
bank
value
distribution system
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33893893A
Other languages
Japanese (ja)
Other versions
JPH07163051A (en
Inventor
祐一 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP33893893A priority Critical patent/JP3249275B2/en
Publication of JPH07163051A publication Critical patent/JPH07163051A/en
Application granted granted Critical
Publication of JP3249275B2 publication Critical patent/JP3249275B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/16Electric power substations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/22Flexible AC transmission systems [FACTS] or power factor or reactive power compensating or correcting units

Landscapes

  • Control Of Electrical Variables (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は電力系統において、負荷
の変動による供給電圧の不安定を改善し、需要家に対し
て常に一定電圧を供給するための配電系統における送出
電圧調整処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transmission voltage adjustment processing device in a power distribution system for improving the instability of a supply voltage due to a change in load and constantly supplying a constant voltage to consumers in a power system.

【0002】[0002]

【従来の技術】従来、変電所から送出される電圧は、季
節別に想定された負荷曲線や配電線電流、又、配電系統
データベースに蓄えられたデータをもとに、1年に1
度、計算機を用いて計算を行ない、その結果により四半
期別に当該バンクの最適送出電圧を決定し、プログラム
により制御する操作を行なっていた。
2. Description of the Related Art Conventionally, a voltage transmitted from a substation is calculated once a year based on a load curve and distribution line current assumed for each season and data stored in a distribution system database.
Each time, the calculation was performed using a computer, and based on the result, the optimum transmission voltage of the bank was determined for each quarter, and the operation of controlling by a program was performed.

【0003】[0003]

【発明が解決しようとする課題】上記した従来方式によ
れば、変電所に設置されているプログラム設定器によっ
て設定されたバンク電圧に基づき、LR(負荷時電圧調
整器、以下同じ)タップの昇降を行なっていた。しか
し、最適バンク送出電圧を決定するためには、変電所の
バンク毎に計算を行ない、プログラム設定をする必要が
あるため、多大な時間と労力とを要していた。又、配電
線の負荷が変動した場合に対しては、迅速にバンク送出
電圧の調整をしなければならず、これらの変動に対応す
ることは困難であった。本発明は上記事情に鑑みてなさ
れたものであり、配電線の負荷が変動した場合において
も、需要家に対してほぼ一定の電圧を供給し得る配電系
統における送出電圧調整処理装置を提供することを目的
としている。
According to the above-mentioned conventional method, the LR (load voltage regulator, the same applies hereinafter) tap is raised and lowered based on the bank voltage set by the program setting device installed in the substation. Was doing. However, in order to determine the optimum bank transmission voltage, it is necessary to perform calculations for each bank of the substation and set a program, which requires a great deal of time and effort. Further, when the load on the distribution line fluctuates, the bank sending voltage must be quickly adjusted, and it is difficult to cope with these fluctuations. The present invention has been made in view of the above circumstances, and provides a transmission voltage adjustment processing device in a distribution system capable of supplying a substantially constant voltage to a customer even when the load on a distribution line fluctuates. It is an object.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
の構成を、図1によって説明する。本発明の送出電圧調
整処理装置10は、各遠方監視制御装置を介して一定周期
(例えば15分間隔)で得られた電圧値や電流値を計算
機内に取り込むデータ入力手段11と、配電系統の設備や
負荷の情報とそれら各設備がどのように構成されている
かを示す情報を記憶する系統情報記憶手段12と、前記デ
ータ入力手段から変動負荷データと系統情報記憶手段か
らの情報をもとにして所定の間隔(例えば30分間隔)
で当該バンクの最適送出電圧値を計算する最適値計算手
段13と、前記最適値計算手段からの計算結果をもとにし
てバンク送出電圧を制御するバンク制御手段14とから構
成した。なお、1は変電所側の遠制装置親局(TM親局
と称す)であり、遠制装置子局(TM子局と称す)1-1
を介して配電線用遮断器1-2 及び電流情報を入力する。
2は各開閉器側のTC親局、2-1 ,2-2 はTC子局、
3,31は開閉器である。
An arrangement for achieving the above object will be described with reference to FIG. The transmission voltage adjustment processing device 10 according to the present invention includes a data input unit 11 that takes in a computer a voltage value or a current value obtained at a fixed period (for example, every 15 minutes) via each remote monitoring control device, and a power distribution system. System information storage means 12 for storing equipment and load information and information indicating how each equipment is configured, based on the variable load data from the data input means and information from the system information storage means At predetermined intervals (for example, every 30 minutes)
And an optimum value calculation means 13 for calculating an optimum transmission voltage value of the bank, and a bank control means 14 for controlling the bank transmission voltage based on the calculation result from the optimum value calculation means. Reference numeral 1 denotes a remote control device master station (referred to as a TM master station) on the substation side, and a remote control device slave station (referred to as a TM slave station) 1-1.
Input the distribution line breaker 1-2 and current information via the.
2 is the TC master station on each switch side, 2-1 and 2-2 are TC slave stations,
Reference numerals 3 and 31 denote switches.

【0005】[0005]

【作用】各遠制装置(TC,TM親局)を介して通知さ
れてきたバンクや各開閉器,配電線の負荷変動データ
は、データ入力手段に入力される。これらの各値は最適
値計算手段へデータを通知する。系統情報記憶手段に蓄
えられた配電系統データベースと、先の負荷変動データ
とを用いて、最適値計算手段では各配電系統の電圧降下
を計算し、最適となるバンク電圧を算出する。そして算
出されたバンク電圧となるようにバンク制御手段により
バンクLR制御装置をリアルタイムに制御する。
The load fluctuation data of the bank, each switch, and the distribution line notified via each remote control device (TC, TM master station) is input to the data input means. Each of these values notifies the optimum value calculation means of data. Using the distribution system database stored in the system information storage unit and the load variation data, the optimum value calculation unit calculates the voltage drop of each distribution system and calculates the optimal bank voltage. Then, the bank LR control device is controlled in real time by the bank control means so as to have the calculated bank voltage.

【0006】[0006]

【実施例】図2は本発明による送出電圧調整処理装置の
一実施例の構成図である。図2において、21は負荷変動
データ入力装置で、負荷変動データである配電線電流,
バンク電圧,配電線を複数区間に区分、あるいは配電線
用相互間を連系する区分開閉器の電圧や電流を一定周期
(例えば15分間隔)で収集する。22は配電系統データ
ベースで、各種の配電系統の情報(開閉情報,数値情報
等)が記憶されている。23は最適バンク送出電圧計算手
段で、配電系統データベースに蓄えられた各種データを
もとに所定間隔(例えば30分間隔)で最適値を計算す
る。24はバンクLR制御装置で、送出電圧の計算結果に
基づいてLRの昇降を制御する。
FIG. 2 is a block diagram of an embodiment of a transmission voltage adjusting processing apparatus according to the present invention. In FIG. 2, reference numeral 21 denotes a load fluctuation data input device, which is a distribution line current which is load fluctuation data;
The bank voltage and distribution lines are divided into a plurality of sections, or the voltages and currents of the division switches interconnecting the distribution lines are collected at regular intervals (for example, every 15 minutes). Reference numeral 22 denotes a distribution system database in which information (switching information, numerical information, etc.) of various distribution systems is stored. 23 is an optimum bank sending voltage calculating means for calculating an optimum value at predetermined intervals (for example, every 30 minutes) based on various data stored in the power distribution system database. Reference numeral 24 denotes a bank LR control device, which controls the LR up / down based on the calculation result of the transmission voltage.

【0007】次に作用につて説明する。先ず負荷変動デ
ータ入力装置21により、配電線電流値やバンク電圧値、
開閉器点の電圧,電流値が取り込まれる。負荷変動デー
タ入力装置21からの各値と配電系統データベース22から
のデータとによって、最適バンク送出電圧計算手段によ
り、その時々に応じた最適バンク送出電圧が決定され、
バンクLR制御装置24にて配電線の状態を常に一定電圧
に保つように制御される。
Next, the operation will be described. First, the distribution line current value, the bank voltage value,
The voltage and current values at the switch point are taken in. Based on the values from the load fluctuation data input device 21 and the data from the distribution system database 22, the optimal bank transmission voltage is determined by the optimal bank transmission voltage calculating means,
The bank LR control device 24 controls the state of the distribution line so as to always maintain a constant voltage.

【0008】図3は処理全体の流れを示すフローチャー
トである。図のステップS31において、この処理が計算
/制御対象バンクであれば、ステップS32にてそのバン
クに対し最適バンク送出電圧調整計算を行なう。ステッ
プS33において、まずここで配電用計算機でタップ昇降
制御を行なうバンクかどうかの判断をする。なかには計
算だけを行ない、制御は行なわないバンクもあるからで
ある。これが制御対象であれば、ステップS34にて電圧
調整値計算に使用するバンク電圧と負荷時電圧調整器
(以下、LRとする)制御時のバンク電圧との差が1タ
ップ昇降値以内であれば、変化なしと判定する。これは
計算中に急激な変化がないことを条件としているからで
ある。普通配電線で大きな変化(電圧降下等)はあって
も、バンクで大きな変化をすることはない。
FIG. 3 is a flowchart showing the flow of the entire process. If the process is a bank to be calculated / controlled in step S31 in the figure, an optimum bank sending voltage adjustment calculation is performed on the bank in step S32. In step S33, it is first determined whether or not the bank is for performing tap elevating control by the power distribution computer. This is because some banks only perform calculations and do not perform control. If this is a control target, if the difference between the bank voltage used for calculating the voltage adjustment value and the bank voltage at the time of controlling the on-load voltage regulator (hereinafter referred to as LR) is less than the one tap up / down value in step S34. , No change is determined. This is because there is no sudden change during the calculation. Even if there is a large change (voltage drop etc.) in the ordinary distribution line, there is no big change in the bank.

【0009】そのような場合は異常である。そこで変化
がなければ、ステップS35でLRが自動かどうか判断
し、自動であればステップS36で手動に切り換える。こ
こで言う手動とはあくまでLRに対してであって、LR
を手動にしなければ、系統制御装置(系制)によりLR
からタップ制御されるため、せっかく配電用計算機がタ
ップ制御を行なっても無意味となるからである。そうし
ておいてステップS37でタップを昇降させ、計算結果を
反映させる。一方、ステップS33で制御対象でなけれ
ば、ステップS38でLRを自動に戻しておく(つまり系
制で制御させる)バンクかどうかを判断し、自動戻しバ
ンクであればステップS39でLRが手動か否か判断し、
手動であればステップS391 にてLRを自動にしてお
く。作業等で電圧を一定に保つためにずっとLRを手動
にし、タップ制御を行なわないバンクもある。ステップ
S38よりLR自動戻しバンクでないか、あるいはステッ
プS39でLRが手動でないと判断した場合は、そのまま
処理を終える。
In such a case, it is abnormal. If there is no change, it is determined whether or not the LR is automatic in step S35, and if it is automatic, it is switched to manual in step S36. The manual here is only for the LR, and the LR
If LR is not set manually, the LR is
This is because tap control is performed from the beginning, and it becomes meaningless even if the distribution computer performs tap control. Then, the tap is moved up and down in step S37 to reflect the calculation result. On the other hand, if it is not a control target in step S33, it is determined in step S38 whether or not the bank is a bank in which the LR is returned to automatic (that is, controlled by the system control). Judge,
If it is manual, LR is automatically set in step S391. In some banks, the LR is manually set to keep the voltage constant during work or the like, and tap control is not performed. If it is determined in step S38 that the bank is not the LR automatic return bank, or if it is determined in step S39 that the LR is not manual, the process ends.

【0010】図4は最適バンク送出電圧調整値計算処理
(図3のステップS32)の詳細を示すフローチャートで
ある。先ず、電源側・負荷側開閉器の変動負荷データを
取得(ステップS41)し、そのデータをもとに許容電圧
値の計算を行なう(ステップS42)。許容電圧値を超え
ていれば(ステップS43)、許容値から逸脱した需要家
の数を計算(ステップS44)し、この逸脱需要家の数が
減少していれば(ステップS45)、ステップS42での許
容電圧値を最良解として情報を記憶(ステップS46)
し、LRタップの昇降(ステップS47)(ただし、この
時点では実際の昇降制御はまだ行なわない)をし、各開
閉器点電圧値の昇降(ステップS48)を行ない、ステッ
プS42へ戻る。一方、ステップS43にて許容電圧値を超
えていなければステップS42の許容電圧値を最適解とし
て情報を記憶(ステップS49)して、図3のステップS
33へ処理を移す。又、ステップS45にて逸脱需要家の数
が減少していなければ、そのまま図3のステップS33へ
処理を移す。
FIG. 4 is a flowchart showing the details of the optimum bank transmission voltage adjustment value calculation process (step S32 in FIG. 3). First, the variable load data of the power source / load side switch is obtained (step S41), and the allowable voltage value is calculated based on the data (step S42). If it exceeds the permissible voltage value (step S43), the number of customers deviating from the permissible value is calculated (step S44). If the number of deviating customers is decreasing (step S45), the process proceeds to step S42. The information is stored with the permissible voltage value as the best solution (step S46).
Then, the LR tap is moved up and down (step S47) (however, the actual up and down control is not yet performed at this time), the voltage at each switch point is raised and lowered (step S48), and the process returns to step S42. On the other hand, if the allowable voltage value does not exceed the allowable voltage value in step S43, the information is stored as the allowable voltage value in step S42 as the optimal solution (step S49), and the information is stored in step S43 in FIG.
Move the processing to 33. If the number of deviating consumers has not decreased in step S45, the process directly proceeds to step S33 in FIG.

【0011】次にステップS41,ステップS42で最適値
を計算する時に必要となる電圧値・電流値データについ
ての説明をする。図5は開閉器通過電流の計算方法につ
いて説明したものである。電力供給経路上にある全ての
開閉器に対し、末端区間への送電開閉器から電源側開閉
器へ順次、以下の計算式(1) にて通過電流を算出する。
Next, a description will be given of voltage value / current value data required for calculating the optimum value in steps S41 and S42. FIG. 5 illustrates a method of calculating a switch passing current. For all the switches on the power supply path, the passing current is calculated by the following formula (1) in order from the power transmission switch to the terminal section to the power supply side switch.

【数1】 WS(i) =WCF(n) +ΣWS ……………(1) WS(i) :開閉器(i) の通過電流 WCF(n) :開閉器(i) が送電を行なっている区間(n)
の負荷電流 ΣWS :区間(n) より流出する開閉器通過電流の合
計(ただし、末端区間では0Aである)
## EQU1 ## WS (i) = WCF (n) + WS (1) WS (i): Current passing through switch (i) WCF (n): Switch (i) performs power transmission Section (n)
Load current ΣWS: Total switch passing current flowing out from section (n) (however, it is 0A in the terminal section)

【0012】図5において、SW1の通過電流65Aは
SW1が送電している区間C2の負荷電流20Aと、区
間C2より流出する開閉器通過電流合計(15A+10
A+20A)の和により算出される。更に、当該区間の
電流流入開閉器(k)と電流流出開閉器(1)間の平均
通過電流WCT(k,1)を次の(2) 式によって算出す
る。
In FIG. 5, the passing current 65A of the switch SW1 is the sum of the load current 20A of the section C2 where power is transmitted by the switch SW1 and the switch passing current flowing out of the section C2 (15A + 10A).
A + 20A). Further, an average passing current WCT (k, 1) between the current inflow switch (k) and the current outflow switch (1) in the section is calculated by the following equation (2).

【数2】 この算出された平均通過電流値と、電流流入開閉器
(k)と電流流出開閉器(1)間のインピーダンスを乗
算し、当該開閉器間の電圧降下値として、次に述べる電
圧値の計算で用いる。
(Equation 2) The calculated average passing current value is multiplied by the impedance between the current inflow switch (k) and the current outflow switch (1), and a voltage value between the switches is calculated by a voltage value described below. Used.

【0013】図6は電圧値の計算方法について説明した
ものである。電圧値の測定可能な開閉器(SW1,SW
3,SW4)の電圧値は測定値をそのまま使用し、それ
以外の電圧値測定不可能な開閉器(SW2,SW5)に
ついては、電源側の測定可能開閉器の測定値から、先に
求めた各開閉器点の区間ルート毎の電圧降下値の合計を
減算することにより求める。このとき開閉器SW2の電
圧値VSW2 は次の(3)式で表される。
FIG. 6 illustrates a method of calculating a voltage value. Switches that can measure voltage values (SW1, SW
The voltage value of (3, SW4) uses the measured value as it is, and for the other switches (SW2, SW5) for which the voltage value cannot be measured, the voltage value is previously obtained from the measured value of the measurable switch on the power supply side. It is obtained by subtracting the sum of the voltage drop values for each section route at each switch point. At this time, the voltage value V SW2 of the switch SW2 is expressed by the following equation (3).

【数3】 なお、VR(1,2)は開閉器1,2間の電圧降下、同
じくVR(2,3)は開閉器2,3間の電圧降下を意味
する。
(Equation 3) VR (1,2) means a voltage drop between switches 1 and 2, and VR (2,3) means a voltage drop between switches 2 and 3.

【0014】次に、電源側・負荷側開閉器の電圧値の取
得について説明する。開閉器区間に接続される全開閉器
の電圧値から、電源側・負荷側開閉器の電圧値を取得す
るに際し、負荷側開閉器が複数存在するときは、負荷側
開閉器の中で最小の電圧値を取る。又、負荷側開閉器が
存在しないときは、負荷側開閉器の電圧値を電源側開閉
器の電圧値と同じとする。又、負荷側・電源側開閉器の
電圧値が6000〜7000Vの範囲を超えるときは、
電圧不整合として処理を中止する。
Next, the acquisition of the voltage values of the power-supply-side and load-side switches will be described. When acquiring the voltage values of the power-side and load-side switches from the voltage values of all the switches connected to the switch section, if there are multiple load-side switches, the minimum Take the voltage value. When there is no load-side switch, the voltage value of the load-side switch is the same as the voltage value of the power-side switch. When the voltage value of the load-side / power-side switch exceeds the range of 6000 to 7000 V,
Processing is stopped as voltage mismatch.

【0015】次に、ステップS42の許容電圧値の計算に
ついて説明する。開閉器区間単位に、変圧器直下及び低
圧線末端の許容電圧値(上下限値)を夫々計算する。配
電線によりバンク送出電圧よりも開閉器設置点の電圧が
高い場合や、他の配電線と電圧特性が全く異なる場合に
は、特定区間として考慮する。以下に許容電圧値の計算
式(4) ,(5) ,(6) ,(7) を示す。
Next, the calculation of the allowable voltage value in step S42 will be described. The permissible voltage value (upper / lower limit value) immediately below the transformer and at the end of the low voltage line is calculated for each switch section. If the voltage at the switch installation point is higher than the bank sending voltage due to the distribution line, or if the voltage characteristics are completely different from other distribution lines, the section is considered as a specific section. The calculation formulas (4), (5), (6), and (7) for the allowable voltage value are shown below.

【0016】[0016]

【数4】 (変圧器直下の場合) 上限値={(101+m)+(TD+TRD)*n} *各区間毎のタップ値/105 …………(4) 下限値={(101−m)+(TD+TRD)*n} *各区間毎のタップ値/105 …………(5) (低圧線末端の場合) 上限値={(101+m)+(TD+LWD)*n} *各区間毎のタップ値/105 …………(6) 下限値={(101−m)+(TD+LWD)*n} *各区間毎のタップ値/105 …………(7) ただし、TD :変圧器内の電圧降下(1.6を標準と
する)。TRD:変圧器直下の電圧降下(1.0を標準
とする)。LWD:低圧線末端の電圧降下(6.0を標
準とする)。m :通常区間の場合は6、特定区間の場
合は10とする。n :電圧チェック補正値。
(In the case of immediately below the transformer) Upper limit value = {(101 + m) + (TD + TRD) * n} * Tap value for each section / 105 ............ (4) Lower limit value = {(101-m) + (TD + TRD) * n} * Tap value for each section / 105 ............ (5) (at low voltage line end) Upper limit = {(101 + m) + (TD + LWD) * n} * Tap for each section Value / 105 …… (6) Lower limit value = {(101−m) + (TD + LWD) * n} * Tap value for each section / 105 ……… (7) where TD is the value in the transformer. Voltage drop (1.6 is standard). TRD: voltage drop directly below the transformer (1.0 is standard). LWD: Voltage drop at the end of the low voltage line (6.0 as standard). m: 6 for a normal section and 10 for a specific section. n: Voltage check correction value.

【0017】一般に電気事業法第26条及び電気事業法
施工規則第25条において、電気事業者は供給点におい
て、100V供給の場合は101V±6V(式(4) の
(101+m)の部分)に保持すべき義務が課せられて
いる。又、このままでは電圧降下分を加味していないの
で、それを加えて補正する(式(4) の(TD+TRD)
の部分)。なお、nは次式で与えられる。
Generally, in Article 26 of the Electricity Business Act and Article 25 of the Regulations on Construction of the Electricity Business Act, at the supply point, the electric power company must supply 101 V ± 6 V (part (101 + m) of the formula (4)) when supplying 100 V. There are obligations to hold. In addition, since the voltage drop is not taken into account as it is, correction is made by adding the voltage drop ((TD + TRD) in equation (4)).
Part). Note that n is given by the following equation.

【数5】n=(融通計算に使用したバンク電流)/バン
クの年最大電流 (≦1)更に定数部分(式(4) の(各
区間毎のタップ値/105)の部分)を乗じて許容電圧
値として計算する。
[Mathematical formula-see original document] n = (bank current used for flexibility calculation) / annual maximum current of bank (≦ 1) multiplied by a constant part ((tap value for each section / 105) part of equation (4)) Calculate as allowable voltage value.

【0018】次に、ステップS44における逸脱需要家数
の計算について説明する。電圧値が通常区間に対する許
容電圧値を超えた場合に、逸脱需要家数を計算する。こ
のとき、上限逸脱,下限逸脱共に発生している場合に
は、上限逸脱,下限逸脱の両方とも計算する。ただし、
電圧値と特定区間に対する許容電圧値とを比較した場合
に、電圧値が特定区間に対する許容電圧値を超えている
場合には計算を中止する。区間の需要家数は幹線高圧線
に沿って均等に分布しており、なおかつ変圧器直下から
低圧末端までの需要家数は、低圧線に沿って均等に分布
していることを前提とする。
Next, the calculation of the number of deviating consumers in step S44 will be described. When the voltage value exceeds the allowable voltage value for the normal section, the number of deviating consumers is calculated. At this time, if both the upper limit deviation and the lower limit deviation occur, both the upper limit deviation and the lower limit deviation are calculated. However,
When the voltage value is compared with the allowable voltage value for the specific section, if the voltage value exceeds the allowable voltage value for the specific section, the calculation is stopped. It is assumed that the number of consumers in the section is evenly distributed along the main high voltage line, and that the number of customers from immediately below the transformer to the low voltage terminal is evenly distributed along the low voltage line.

【0019】この時、逸脱需要家数は図7に示す通りと
なる。図7におけるV1 −V2 外にA,B,C,Dが存
在する場合に逸脱需要家有りとなる。なお、図7におい
て、V1 は電源側開閉器電圧値、V2 は負荷側開閉器電
圧値、Co は上限逸脱需要家数、Cb は通常需要家数、
Aは許容電圧値上限値(変圧器直下)、Bは許容電圧値
下限値(変圧器直下)、Cは許容電圧値上限値(低圧線
末端)、Dは許容電圧値下限値(低圧線末端)である。
又、全需要家数Ca と指定区間電圧幅は以下のようにな
る。
At this time, the number of deviating consumers is as shown in FIG. If A, B, C, and D exist outside V 1 -V 2 in FIG. 7, it is determined that there is a deviating customer. In FIG. 7, V 1 is the power supply-side switch voltage value, V 2 is the load-side switch voltage value, C o is the number of customers deviating from the upper limit, C b is the number of normal customers,
A is the upper limit of the allowable voltage (directly below the transformer), B is the lower limit of the allowable voltage (directly below the transformer), C is the upper limit of the allowable voltage (low voltage line end), and D is the lower limit of the allowable voltage (low voltage line end). ).
Further, the total number of consumers Ca and the designated section voltage width are as follows.

【数6】全需要家数Ca =Co +Cb (V1 −V2 ) 指定区間電圧幅=A,S,C,Dに囲まれた領域[Equation 6] Total number of consumers C a = C o + C b (V 1 −V 2 ) The area surrounded by the specified section voltage width = A, S, C, D

【0020】即ち、開閉器から開閉器までの1区間のお
客さま数は、電源側開閉器電圧V1と負荷側開閉器電圧
2 に囲まれた部分で表され、そのうち(4) 〜(7) 式か
ら求まる電圧値(A,B,C,D)で囲まれた部分から
はみ出した所が許容値から逸脱したお客さま数を表す。
もしD≦V1 ,V2 ≦Aであれば逸脱したお客さまはな
しであり、いくつかの上限逸脱パターンが考えられる
(下限逸脱の場合は逆)。図7はこの内の上限逸脱の条
件1(A<V1 ≦CかつV2 ≦A)について説明したも
のである。この時、逸脱お客さま数は次式で表される。
That is, the number of customers in one section from the switch to the switch is represented by a portion surrounded by the power supply-side switch voltage V 1 and the load-side switch voltage V 2, and (4) to ( 7) The number of customers who deviate from the permissible value indicates the part that protrudes from the part surrounded by the voltage values (A, B, C, D) obtained from the equation.
If D ≦ V 1 , V 2 ≦ A, there is no customer who has deviated, and several upper limit departure patterns are conceivable (in the case of lower limit departure, reverse). FIG. 7 illustrates the upper limit deviation condition 1 (A <V 1 ≦ C and V 2 ≦ A). At this time, the number of deviating customers is expressed by the following equation.

【数7】 Co =Ca *0.5*(V1 −A)2 /((C−A)*(V1 −V2 )) …………(8) この式に各値を代入することで逸脱お客さま数を計算す
る。
C o = C a * 0.5 * (V 1 -A) 2 / ((C−A) * (V 1 -V 2 )) (8) Calculate the number of deviating customers by substituting.

【0021】なお、(8) 式は次のようにして生成する。
図7において、ABの延長線とV1 との交点をP、AC
とV1 との交点をQ、DCとV1 との交点をRとする
と、
Expression (8) is generated as follows.
7, the intersection of the extension line and the V 1 of the AB P, AC
The intersection of the V 1 Q, and the intersection between the DC and the V 1 and R and,

【数8】PA=(V1 −A) , CR=(C−V1 ) 又、ΔAPQとΔCRQは相似であるため、PA = (V 1 −A), CR = (C−V 1 ) Also, since ΔAPQ and ΔCRQ are similar,

【数9】 AP:CR=PQ:RQ=(V1 −A):(C−V1 ) PR=PQ+RQ=(C−A)であるため、AP: CR = PQ: RQ = (V 1 −A) :( C−V 1 ) Since PR = PQ + RQ = (CA),

【数10】 又、全お客さま数は(C−A)×(V1 −V2 )である
から、逸脱お客さま数は結局、Ca に占めるCo の割合
となるので、
[Equation 10] Further, the total customer number because it is (C-A) × (V 1 -V 2), departing customer number eventually, since the ratio of C o occupying the C a,

【数11】 となる。[Equation 11] Becomes

【0022】図8は上限逸脱お客さま数の計算例を示す
図であり、電圧値が許容電圧上限値を越えている場合に
は、次に示す条件に従って上限逸脱お客さま数を計算す
る(V1 <V2 の場合には、V1 <V2 の値を入れ換え
る)。なお、条件としては各種考えられるが、図8
(a)はA<V1 <=C AND V2 <=Aであり、
この場合の上限逸脱需要家数Co は、
FIG. 8 is a diagram showing a calculation example of the number of customers who exceed the upper limit. When the voltage value exceeds the allowable voltage upper limit, the number of customers who exceed the upper limit is calculated according to the following condition (V 1 <in the case of V 2 may replace the value of V 1 <V 2). Although various conditions can be considered, FIG.
(A) is A <V 1 ≦ C AND V 2 ≦ A,
In this case, the upper limit deviating customer number Co is:

【数12】 Co =Ca *0.5(V1 −A)2 /((C−A)*(V1 −V2 )) である。It is [number 12] C o = C a * 0.5 ( V 1 -A) 2 / ((C-A) * (V 1 -V 2)).

【0023】同様に図8(b)はA<V1 <=C AN
D A<V2 <V1 であり、
Similarly, FIG. 8B shows A <V 1 ≦ = CAN.
DA <V 2 <V 1 ,

【数13】 Co =Ca *(0.5(V1 +V2 )−A)/(C−A) である。同様に図8(c)はA<V1 <C AND V
1 =V2 であり、
Equation 13] C o = C a * is (0.5 (V 1 + V 2 ) -A) / (C-A). Similarly, FIG. 8C shows A <V 1 <C AND V
A 1 = V 2,

【数14】Co =Ca *(V1 −A)/(C−A) である。[The number 14 is a C o = C a * (V 1 -A) / (C-A).

【0024】次に、ステップS46,ステップS49におけ
る解の判定について説明する。既に計算された開閉器点
の電圧値,許容電圧値、又、許容値を逸脱した需要家数
に従って解を判定する。本発明における最適バンク送出
電圧調整に対する解は、…最適解、…最良解の2種
類とし、夫々の解の判定について説明する。 最適解の判定:求められた電圧値が次の条件を満足
した場合に、最適解とする。 条件:処理対象の全区間の電圧値が、通常区間に対する
許容電圧値(上下限値)を超えていないこと。 最良解の判定:求められた解が最適解でない場合、
次の最良解評価基準に基づき、今回の解が前回の解と比
較して良い場合に、今回の解を最良解として新たに記憶
する。 最良解評価基準:逸脱需要家数が最小のこと。
Next, the determination of a solution in steps S46 and S49 will be described. A solution is determined according to the already calculated voltage value of the switch point, the allowable voltage value, and the number of customers who have deviated from the allowable value. There are two types of solutions for the optimum bank transmission voltage adjustment in the present invention:... The optimum solution and... The best solution, and the determination of each solution will be described. Judgment of optimal solution: When the obtained voltage value satisfies the following condition, it is determined as an optimal solution. Condition: Voltage values in all sections to be processed do not exceed allowable voltage values (upper / lower limit values) for normal sections. Judgment of the best solution: If the obtained solution is not the optimal solution,
If the current solution is better than the previous solution based on the next best solution evaluation criterion, the current solution is newly stored as the best solution. Best Solution Evaluation Criteria: Minimum number of deviating customers.

【0025】ただし、前回の解より逸脱需要家数が減少
していない場合には、再計算の処理を終了する。又、L
Rタップ昇降により再計算した結果、最適解が見つから
なかった場合、最終的に最良解として記憶されているデ
ータを最適バンク送出電圧調整に対する解とする。以上
述べてきたように、上記実施例によれば負荷変動データ
を短い周期で収集して最適なバンク送出電圧値を計算
し、LRタップ制御を行なうことにより常に各家庭の電
圧を一定保つことが可能となる。
However, if the number of deviating consumers has not decreased from the previous solution, the recalculation process is terminated. Also, L
If the optimal solution is not found as a result of recalculation by R tap elevation, the data finally stored as the optimal solution is determined as the solution for the optimal bank transmission voltage adjustment. As described above, according to the above-described embodiment, the load fluctuation data is collected in a short cycle, the optimum bank transmission voltage value is calculated, and the LR tap control is performed, so that the voltage of each home can be always kept constant. It becomes possible.

【0026】[0026]

【発明の効果】以上説明したように、本発明によればこ
れまでバンク送出電圧の調整にかけていた多大な時間や
労力を短縮することが可能となった。又、配電線の状態
を常に監視してバンク電圧の調整を行なっているので、
負荷が変動しても迅速に対応し、これに対処することが
可能となった。
As described above, according to the present invention, it has become possible to reduce a great amount of time and labor required for adjusting the bank sending voltage. In addition, since the state of the distribution line is constantly monitored and the bank voltage is adjusted,
Even if the load fluctuated, it was possible to respond quickly and to cope with this.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る送出電圧調整処理装置の一実施例
の構成図。
FIG. 1 is a configuration diagram of an embodiment of a transmission voltage adjustment processing device according to the present invention.

【図2】最適バンク送出電圧調整処理装置の詳細図。FIG. 2 is a detailed diagram of an optimum bank transmission voltage adjustment processing device.

【図3】本発明の処理全体のフローチャート。FIG. 3 is a flowchart of the entire process of the present invention.

【図4】最適なバンク送出電圧調整値計算のフローチャ
ート。
FIG. 4 is a flowchart of calculating an optimum bank transmission voltage adjustment value.

【図5】各開閉器の通過電流の説明図。FIG. 5 is an explanatory diagram of a passing current of each switch.

【図6】各開閉器点の電圧値の説明図。FIG. 6 is an explanatory diagram of a voltage value at each switch point.

【図7】逸脱需要家数の説明図。FIG. 7 is an explanatory diagram of the number of deviating consumers.

【図8】上限逸脱お客さま数の計算例を示す図。FIG. 8 is a diagram showing a calculation example of the number of customers who have exceeded the upper limit.

【符号の説明】[Explanation of symbols]

1 TM親局 2 TC親局 1-1 TM子局 2-1 TC子局 1-2 配電用遮断器 1-3 変流器 3,3-1 開閉器 10 送出電圧調整処理装置 11 データ入力手段 12 系統情報記憶手段 13 最適値計算手段 14 バンク制御手段 21 負荷変動データ入力装置 22 配電系統データベース 23 最適パターン送出電圧計算手段 24 バンクLR制御装置 DESCRIPTION OF SYMBOLS 1 TM master station 2 TC master station 1-1 TM slave station 2-1 TC slave station 1-2 Distribution circuit breaker 1-3 Current transformer 3,3-1 Switch 10 Transmission voltage adjustment processing device 11 Data input means 12 System information storage means 13 Optimum value calculation means 14 Bank control means 21 Load fluctuation data input device 22 Power distribution system database 23 Optimum pattern transmission voltage calculation means 24 Bank LR control device

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 配電線用遮断器に接続され、開閉器によ
って複数区間に区分された配電系統の電気的情報を遠方
監視制御装置を介して取り込み、この電気的情報をもと
前記配電系統につながる各需要家に対して供給する
圧を調整する送出電圧調整処理装置において、前記電気
的情報は、配電線電流値,バンク電圧値、及び区分開閉
器の電圧値と電流値を含む負荷変動データであって、か
つ配電系統の設備や負荷の情報、及び各設備がどのよう
に構成されているかを示す情報を記憶する系統情報記憶
手段と、前記負荷変動データと前記系統情報記憶手段に
より記憶されている情報をもとにして前記配電系統にお
けるバンクの最適電圧値を計算する最適値計算手段と、
この最適値計算手段の計算結果に基づいてバンク電圧を
制御するバンク制御手段と、を備えたことを特徴とする
配電系統における送出電圧調整処理装置。
An electric information of a distribution system connected to a circuit breaker for distribution lines and divided into a plurality of sections by a switch is transmitted to a remote location.
Uptake via the monitoring control device, electrostatic supplied to the customers connected to the distribution system of the electrical information on the basis
In sending voltage adjusting apparatus for adjusting the pressure, the electrical
Information is distribution line current value, bank voltage value, and section switching
Load fluctuation data including the voltage and current values of the
Information on the distribution system equipment and load, and how each equipment
System information storage that stores information indicating whether the
Means, the load fluctuation data and the system information storage means.
Based on the information stored in the distribution system.
Optimal value calculating means for calculating an optimal voltage value of the bank to be used;
The bank voltage is calculated based on the calculation result of the optimum value calculation means.
And bank control means for controlling.
Transmission voltage adjustment processing device in distribution system.
JP33893893A 1993-12-02 1993-12-02 Transmission voltage adjustment processing device in distribution system Expired - Lifetime JP3249275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33893893A JP3249275B2 (en) 1993-12-02 1993-12-02 Transmission voltage adjustment processing device in distribution system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33893893A JP3249275B2 (en) 1993-12-02 1993-12-02 Transmission voltage adjustment processing device in distribution system

Publications (2)

Publication Number Publication Date
JPH07163051A JPH07163051A (en) 1995-06-23
JP3249275B2 true JP3249275B2 (en) 2002-01-21

Family

ID=18322745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33893893A Expired - Lifetime JP3249275B2 (en) 1993-12-02 1993-12-02 Transmission voltage adjustment processing device in distribution system

Country Status (1)

Country Link
JP (1) JP3249275B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4758375B2 (en) * 2007-03-12 2011-08-24 国立大学法人福井大学 Power distribution system
JP5083687B2 (en) * 2008-03-26 2012-11-28 関西電力株式会社 Line voltage drop compensator settling method, system voltage management trouble determination method, line voltage drop compensator management device, and distribution automation system
JP5311894B2 (en) * 2008-06-24 2013-10-09 中国電力株式会社 Voltage management method for distribution system, tap selection method for transformer
JP5673241B2 (en) * 2011-03-11 2015-02-18 株式会社明電舎 Voltage control device for distribution system
US9774216B2 (en) * 2012-07-10 2017-09-26 Hitachi, Ltd. System and method for controlling power system
JP6454961B2 (en) * 2013-10-31 2019-01-23 富士通株式会社 Equipment selection support program, equipment selection support method, and equipment selection support apparatus

Also Published As

Publication number Publication date
JPH07163051A (en) 1995-06-23

Similar Documents

Publication Publication Date Title
US8531173B2 (en) System and method for operating a tap changer
JP4890920B2 (en) Power quality maintenance support method and power quality maintenance support system for a distribution system in which a plurality of distributed power sources are connected
US7729810B2 (en) Electrical power distribution control systems and processes
US6188205B1 (en) Power system control apparatus and power system control method
KR101043572B1 (en) Distribution Automation System and its voltage control method for reactive power compensation
Shafiu et al. Active management and protection of distribution networks with distributed generation
US20050125104A1 (en) Electrical power distribution control systems and processes
US20010025209A1 (en) Electric power supply control system
EP0673101A2 (en) Electrical power distribution monitoring system and method
US5402057A (en) System and method for coordinating shunt reactance switching
US5117175A (en) Remote bias voltage setting LTC control system
US9600004B2 (en) System and method for regulation of voltage on an electrical network
JP4369071B2 (en) Power supply system, reactive power supply method, private power generation facility disconnection method, and reactive power supply command device
US5055766A (en) Voltage regulator compensation in power distribution circuits
Alhelou et al. Decision-making-based optimal generation-side secondary-reserve scheduling and optimal LFC in deregulated interconnected power system
JP3249275B2 (en) Transmission voltage adjustment processing device in distribution system
Kersting The modeling and application of step voltage regulators
JP2005117734A (en) Method and device for voltage management of power distribution system
CN114336634A (en) Load flow calculation method, device and equipment of power grid system
CN116961005B (en) Voltage regulating method, device and equipment for power-on terminal of base station
CN114091885A (en) Power protection method and system for important power consumption customer
JP3809569B2 (en) Power system control method and apparatus
JPH0578250B2 (en)
JP2000032664A (en) Method and device for controlling reactive power- adjusting device with capacitor bank
US20140008975A1 (en) Method and System for Voltage Regulation in a Power Distribution Network

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071109

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091109

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 12

EXPY Cancellation because of completion of term